首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Endogenous retroviruses (ERVs) are widespread in vertebrate genomes and have been loosely grouped into "classes" on the basis of their phylogenetic relatedness to the established genera of exogenous retroviruses. Four of these genera-the lentiviruses, alpharetroviruses, betaretroviruses, and deltaretroviruses-form a well-supported clade in retroviral phylogenies, and ERVs that group with these genera have been termed class II ERVs. We used PCR amplification and sequencing of retroviral fragments from more than 130 vertebrate taxa to investigate the evolution of the class II retroviruses in detail. We confirm that class II retroviruses are largely confined to mammalian and avian hosts and provide evidence for a major novel group of avian retroviruses, and we identify additional members of both the alpha- and the betaretrovirus genera. Phylogenetic analyses demonstrated that the avian and mammalian viruses form distinct monophyletic groups, implying that interclass transmission has occurred only rarely during the evolution of the class II retroviruses. In contrast to previous reports, the lentiviruses clustered as sister taxa to several endogenous retroviruses derived from rodents and insectivores. This topology was further supported by the shared loss of both the class II PR-Pol frameshift site and the class II retrovirus G-patch domain.  相似文献   

4.
5.
6.
Retrovirus genes have become inserted into the human genome for more than one million years. These retroviruses are now inactivated due to mutation, such as deletions or nonsense mutations. After mutation, retroviruses eventually become fixed in the genome in the endogenous form and exist as traces of ancient viruses. These retroviruses are called human endogenous retroviruses (HERVs). HERVs cannot make fully active viruses, but a number of viral proteins (or even virus particles) are expressed under various conditions. By comparison with ERVs, some exogenous retroviruses are still infectious and cause serious diseases threatening human life. Recent studies have shown that some elements of HERVs are closely related to other exogenous retroviruses, including human immunodeficiency virus (HIV). This review will describe the regulation and interaction between HERVs and other active viral infections. In addition, we introduce the development of vaccines and therapeutic agents against these viral infections through the use of HERV elements.  相似文献   

7.
Several human retroviruses have been discovered in the past decade, the majority of which have been implicated as etiological agents of severe disease entities. Thus, there is a clear need for accurate identification of human retroviruses in the laboratory. In this review, the classification and general properties of human retroviruses are outlined. Methods for detecting the presence of antibodies are reviewed. In addition, the principles of methods used for isolating and identifying retroviruses are discussed. Finally, techniques which detect the presence of retroviruses directly in clinical specimens without prior amplification in culture are summarized. Clearly, the ability to differentiate and recognize the different types of retrovirus is important for the proper treatment of diseases caused by these viruses.  相似文献   

8.
《Trends in microbiology》2023,31(9):933-946
In humans, retroviruses thrive more as symbionts than as parasites. Apart from the only two modern exogenous human retroviruses (human T-cell lymphotropic and immunodeficiency viruses; HTLV and HIV, respectively), ~8% of the human genome is occupied by ancient retroviral DNA [human endogenous retroviruses (HERVs)]. Here, we review the recent discoveries about the interactions between the two groups, the impact of infection by exogenous retroviruses on the expression of HERVs, the effect of HERVs on the pathogenicity of HIV and HTLV and on the severity of the diseases caused by them, and the antiviral protection that HERVs can allegedly provide to the host. Tracing the crosstalk between contemporary retroviruses and their endogenized ancestors will provide better understanding of the retroviral world.  相似文献   

9.
To limit the spread of retroviruses, mammals appear to have tailored a way to inhibit host-to-host infection by?milk-borne retroviruses. In this issue of Cell Host & Microbe, Okeoma et?al. (2010) reveal that the host restriction factor APOBEC3 expressed in mammary endothelial cells inactivates retroviruses released in maternal milk.  相似文献   

10.
Retroviruses are distinguished from other viruses by several features. Notably, some retroviruses are present as normal elements in the genomes of virtually all vertebrates (endogenous proviruses). Others are exogenous, i.e. horizontally transmitted agents, many of which cause fatal diseases. The endogenous retroviruses are genetically transmitted and to a large extent their significance is uncertain. However, there is evidence suggesting that they contribute to the development of diseases in several animal species. Most importantly, some endogenous retroviruses are capable of interacting with exogenous counterparts through a variety of different mechanisms with serious consequences to the host. Conversely, others are advantageous in that they protect against exogenous retroviruses. In this review various types of interactions between endogenous and exogenous retroviruses are discussed, including receptor interference, recombination, phenotypic mixing, immunological interactions and heterologoustrans-activation.  相似文献   

11.
12.
Because of evolutionary pressures imposed through episodic colonization by retroviruses, many mammals express factors, such as TRIM5alpha and APOBEC3 proteins, that directly restrict retroviral replication. TRIM5 and APOBEC restriction factors are most often studied in the context of modern primate lentiviruses, but it is likely that ancient retroviruses imposed the selective pressure that is evident in primate TRIM5 and APOBEC3 genes. Moreover, these antiretroviral factors have been shown to act against a variety of retroviruses, including gammaretroviruses. Endogenous retroviruses can provide a 'fossil record' of extinct retroviruses and perhaps evidence of ancient TRIM5 and APOBEC3 antiviral activity. Here, we investigate whether TRIM5 and APOBEC3 proteins restricted the replication of two groups of gammaretroviruses that were endogenized in the past few million years. These endogenous retroviruses appear quite widespread in the genomes of old world primates but failed to colonize the human germline. Our analyses suggest that TRIM5alpha proteins did not pose a major barrier to the cross-species transmission of these two families of gammaretroviruses, and did not contribute to their extinction. However, we uncovered extensive evidence for inactivation of ancient gammaretroviruses through the action of APOBEC3 cytidine deaminases. Interestingly, the identities of the cytidine deaminases responsible for inactivation appear to have varied in both a virus and host species-dependent manner. Overall, sequence analyses and reconstitution of ancient retroviruses from remnants that have been preserved in the genomes of modern organisms offer the opportunity to probe and potentially explain the evolutionary history of host defenses against retroviruses.  相似文献   

13.
Because of evolutionary pressures imposed through episodic colonization by retroviruses, many mammals express factors, such as TRIM5α and APOBEC3 proteins, that directly restrict retroviral replication. TRIM5 and APOBEC restriction factors are most often studied in the context of modern primate lentiviruses, but it is likely that ancient retroviruses imposed the selective pressure that is evident in primate TRIM5 and APOBEC3 genes. Moreover, these antiretroviral factors have been shown to act against a variety of retroviruses, including gammaretroviruses. Endogenous retroviruses can provide a ‘fossil record’ of extinct retroviruses and perhaps evidence of ancient TRIM5 and APOBEC3 antiviral activity. Here, we investigate whether TRIM5 and APOBEC3 proteins restricted the replication of two groups of gammaretroviruses that were endogenized in the past few million years. These endogenous retroviruses appear quite widespread in the genomes of old world primates but failed to colonize the human germline. Our analyses suggest that TRIM5α proteins did not pose a major barrier to the cross-species transmission of these two families of gammaretroviruses, and did not contribute to their extinction. However, we uncovered extensive evidence for inactivation of ancient gammaretroviruses through the action of APOBEC3 cytidine deaminases. Interestingly, the identities of the cytidine deaminases responsible for inactivation appear to have varied in both a virus and host species–dependent manner. Overall, sequence analyses and reconstitution of ancient retroviruses from remnants that have been preserved in the genomes of modern organisms offer the opportunity to probe and potentially explain the evolutionary history of host defenses against retroviruses.  相似文献   

14.
The prion protein (PrP) is crucially involved in transmissible spongiform encephalopathies (TSE), but neither its exact role in disease nor its physiological function are known. Here we show for mice, using histological, immunochemical and PCR-based methods, that stimulation of innate resistance was followed by appearance of numerous endogenous retroviruses and ensuing PrP up-regulation in germinal centers of the spleen. Subsequently, the activated retroviruses disappeared in a PrP-dependent manner. Our results reveal the regular involvement of endogenous retroviruses in murine immune responses and provide evidence for an essential function of PrP in the control of the retroviral activity. The interaction between PrP and ubiquitous endogenous retroviruses may allow new interpretations of TSE pathophysiology and explain the evolutionary conservation of PrP.  相似文献   

15.
Abdel Ghany AG  Zaki EA 《Planta》2002,216(2):351-353
Eukaryotic genomes harbor mobile genetic elements known as long terminal repeat (LTR) retrotransposons. LTR retrotransposons are closely related to the infectious and endogenous retroviruses. The viral envelope (env) gene of the retroviruses, which is responsible for their infective properties, distinguishes them from the LTR retrotransposons. Here, we report the cloning and sequencing of an envelope-like gene in Gossypium, implying that enveloped retroviruses are not limited to animals.  相似文献   

16.
Wang  Miao  Wang  Liying  Liu  Haizhou  Chen  Jianjun  Liu  Di 《中国病毒学》2021,36(6):1315-1326
Virologica Sinica - Human endogenous retroviruses (HERVs) are the remains of ancient retroviruses that invaded our ancestors’ germline cell and were integrated into the genome. The expression...  相似文献   

17.
Various retroviruses have been shown to encode dUTPase. The overall phylogeny of dUTPase is unclear, though. The human genome contains a significant amount of human endogenous retroviruses (HERV) representing fossilized sequences of ancient exogenous retroviruses. A few HERV families have been reported to harbor dUTPase domains. We surveyed the various HERV families for the presence of dUTPase and found that ancestors of all HERV-K families but one encoded dUTPase. With two exceptions phylogenetic analysis shows a monophyletic origin of dUTPase for the different HERV-K dUTPases. Sequences of consensus dUTPase domains suggest that the various exogenous ancestors of HERV-K once encoded active enzymes. Our analysis provides informations on dUTPase phylogeny and further shows that endogenous retroviruses provide important informations regarding retrovirus evolution.  相似文献   

18.
Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections of the host germline transmitted vertically from generation to generation. It is hypothesized that some ERVs are used by the host as restriction factors to block the infection of pathogenic retroviruses. Indeed, some ERVs efficiently interfere with the replication of related exogenous retroviruses. However, data suggesting that these mechanisms have influenced the coevolution of endogenous and/or exogenous retroviruses and their hosts have been more difficult to obtain. Sheep are an interesting model system to study retrovirus-host coevolution because of the coexistence in this animal species of two exogenous (i.e., horizontally transmitted) oncogenic retroviruses, Jaagsiekte sheep retrovirus and Enzootic nasal tumor virus, with highly related and biologically active endogenous retroviruses (enJSRVs). Here, we isolated and characterized the evolutionary history and molecular virology of 27 enJSRV proviruses. enJSRVs have been integrating in the host genome for the last 5-7 million y. Two enJSRV proviruses (enJS56A1 and enJSRV-20), which entered the host genome within the last 3 million y (before and during speciation within the genus Ovis), acquired in two temporally distinct events a defective Gag polyprotein resulting in a transdominant phenotype able to block late replication steps of related exogenous retroviruses. Both transdominant proviruses became fixed in the host genome before or around sheep domestication (approximately 9,000 y ago). Interestingly, a provirus escaping the transdominant enJSRVs has emerged very recently, most likely within the last 200 y. Thus, we determined sequentially distinct events during evolution that are indicative of an evolutionary antagonism between endogenous and exogenous retroviruses. This study strongly suggests that endogenization and selection of ERVs acting as restriction factors is a mechanism used by the host to fight retroviral infections.  相似文献   

19.
The ancestor of cetaceans underwent a macroevolutionary transition from land to water early in the Eocene Period >50 million years ago. However, little is known about how diverse retroviruses evolved during this shift from terrestrial to aquatic environments. Did retroviruses transition into water accompanying their hosts? Did retroviruses infect cetaceans through cross-species transmission after cetaceans invaded the aquatic environments? Endogenous retroviruses (ERVs) provide important molecular fossils for tracing the evolution of retroviruses during this macroevolutionary transition. Here, we use a phylogenomic approach to study the origin and evolution of ERVs in cetaceans. We identify a total of 8,724 ERVs within the genomes of 25 cetaceans, and phylogenetic analyses suggest these ERVs cluster into 315 independent lineages, each of which represents one or more independent endogenization events. We find that cetacean ERVs originated through two possible routes. 298 ERV lineages may derive from retrovirus endogenization that occurred before or during the transition from land to water of cetaceans, and most of these cetacean ERVs were reaching evolutionary dead-ends. 17 ERV lineages are likely to arise from independent retrovirus endogenization events that occurred after the split of mysticetes and odontocetes, indicating that diverse retroviruses infected cetaceans through cross-species transmission from non-cetacean mammals after the transition to aquatic life of cetaceans. Both integration time and synteny analyses support the recent or ongoing activity of multiple retroviral lineages in cetaceans, some of which proliferated into hundreds of copies within the host genomes. Although ERVs only recorded a proportion of past retroviral infections, our findings illuminate the complex evolution of retroviruses during one of the most marked macroevolutionary transitions in vertebrate history.  相似文献   

20.
Mouse retroviruses cause a variety of diseases, including lymphoma/leukemia, and such experimental systems have served as useful models for analogous human diseases. Both ecotropic (mouse tropic) retroviruses (EMV) and polytropic recombinant mink cytopathic focus inducing (MCF) retroviruses have been studied for disease pathogenesis and as targets for host humoral and cellular immunity. Here, the cytolytic T lymphocyte (CTL) response to selected ecotropic and MCF retroviruses is defined, including an immunodominant CTL epitope located in the p15E transmembrane anchor envelope protein and several minor/subdominant epitopes. Also presented is evidence for retroviral escape from CTL by selection following genetic recombination, point mutation, and other strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号