首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The reliable identification of proteins containing 50 or fewer amino acids is difficult due to the limited information content in short sequences. The 37 amino acid CydX protein in Escherichia coli is a member of the cytochrome bd oxidase complex, an enzyme found throughout Eubacteria. To investigate the extent of CydX conservation and prevalence and evaluate different methods of small protein homologue identification, we surveyed 1095 Eubacteria species for the presence of the small protein.

Results

Over 300 homologues were identified, including 80 unannotated genes. The ability of both closely-related and divergent homologues to complement the E. coli ΔcydX mutant supports our identification techniques, and suggests that CydX homologues retain similar function among divergent species. However, sequence analysis of these proteins shows a great degree of variability, with only a few highly-conserved residues. An analysis of the co-variation between CydX homologues and their corresponding cydA and cydB genes shows a close synteny of the small protein with the CydA long Q-loop. Phylogenetic analysis suggests that the cydABX operon has undergone horizontal gene transfer, although the cydX gene likely evolved in a progenitor of the Alpha, Beta, and Gammaproteobacteria. Further investigation of cydAB operons identified two additional conserved hypothetical small proteins: CydY encoded in CydAQlong operons that lack cydX, and CydZ encoded in more than 150 CydAQshort operons.

Conclusions

This study provides a systematic analysis of bioinformatics techniques required for the unique challenges present in small protein identification and phylogenetic analyses. These results elucidate the prevalence of CydX throughout the Proteobacteria, provide insight into the selection pressure and sequence requirements for CydX function, and suggest a potential functional interaction between the small protein and the CydA Q-loop, an enigmatic domain of the cytochrome bd oxidase complex. Finally, these results identify other conserved small proteins encoded in cytochrome bd oxidase operons, suggesting that small protein subunits may be a more common component of these enzymes than previously thought.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-946) contains supplementary material, which is available to authorized users.  相似文献   

2.
《FEBS letters》2014,588(9):1537-1541
Cytochrome bd ubiquinol oxidase uses the electron transport from ubiquinol to oxygen to establish a proton gradient across the membrane. The enzyme complex consists of subunits CydA and B and contains two b- and one d-type hemes as cofactors. Recently, it was proposed that a third subunit named CydX is essential for the function of the complex. Here, we show that CydX is indeed a subunit of purified Escherichia coli cytochrome bd oxidase and that the small protein is needed either for the assembly or the stability of the active site di-heme center and, thus, is essential for oxidase activity.Structured summary of protein interactionscydA physically interacts with cydB by affinity technology (View interaction)cydA physically interacts with cydB by molecular sieving (View interaction)cydB, cydA and cydX physically interact by molecular sieving (View interaction)cydB, cydA, and cydX physically interacts by affinity technology (1, 2)  相似文献   

3.
Bacteria can not only encounter carbon monoxide (CO) in their habitats but also produce the gas endogenously. Bacterial respiratory oxidases, thus, represent possible targets for CO. Accordingly, host macrophages were proposed to produce CO and release it into the surrounding microenvironment to sense viable bacteria through a mechanism that in Escherichia (E.) coli was suggested to involve the targeting of a bd-type respiratory oxidase by CO. The aerobic respiratory chain of E. coli possesses three terminal quinol:O2-oxidoreductases: the heme-copper oxidase bo3 and two copper-lacking bd-type oxidases, bd-I and bd-II. Heme-copper and bd-type oxidases differ in the mechanism and efficiency of proton motive force generation and in resistance to oxidative and nitrosative stress, cyanide and hydrogen sulfide. Here, we investigated at varied O2 concentrations the effect of CO gas on the O2 reductase activity of the purified cytochromes bo3, bd-I and bd-II of E. coli. We found that CO, in competition with O2, reversibly inhibits the three enzymes. The inhibition constants Ki for the bo3, bd-I and bd-II oxidases are 2.4 ± 0.3, 0.04 ± 0.01 and 0.2 ± 0.1 μM CO, respectively. Thus, in E. coli, bd-type oxidases are more sensitive to CO inhibition than the heme-copper cytochrome bo3. The possible physiological consequences of this finding are discussed.  相似文献   

4.
Background: CO-releasing molecules (CO-RMs) are potential therapeutic agents, able to deliver CO – a critical gasotransmitter – in biological environments. CO-RMs are also effective antimicrobial agents; although the mechanisms of action are poorly defined, haem-containing terminal oxidases are primary targets. Nevertheless, it is clear from several studies that the effects of CO-RMs on biological systems are frequently not adequately explained by the release of CO: CO-RMs are generally more potent inhibitors than is CO gas and other effects of the molecules are evident. Methods: Because sensitivity to CO-RMs cannot be predicted by sensitivity to CO gas, we assess the differential susceptibilities of strains, each expressing only one of the three terminal oxidases of E. coli — cytochrome bd-I, cytochrome bd-II and cytochrome bo′, to inhibition by CORM-3. We present the first sensitive measurement of the oxygen affinity of cytochrome bd-II (Km 0.24 μM) employing globin deoxygenation. Finally, we investigate the way(s) in which thiol compounds abolish the inhibitory effects of CORM-2 and CORM-3 on respiration, growth and viability, a phenomenon that is well documented, but poorly understood. Results: We show that a strain expressing cytochrome bd-I as the sole oxidase is least susceptible to inhibition by CORM-3 in its growth and respiration of both intact cells and membranes. Growth studies show that cytochrome bd-II has similar CORM-3 sensitivity to cytochrome bo′. Cytochromes bo′ and bd-II also have considerably lower affinities for oxygen than bd-I. We show that the ability of N-acetylcysteine to abrogate the toxic effects of CO-RMs is not attributable to its antioxidant effects, or prevention of CO targeting to the oxidases, but may be largely due to the inhibition of CO-RM uptake by bacterial cells. Conclusions: A strain expressing cytochrome bd-I as the sole terminal oxidase is least susceptible to inhibition by CORM-3. N-acetylcysteine is a potent inhibitor of CO-RM uptake by E. coli. General significance: Rational design and exploitation of CO-RMs require a fundamental understanding of their activity. CO and CO-RMs have multifaceted effects on mammalian and microbial cells; here we show that the quinol oxidases of E. coli are differentially sensitive to CORM-3. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

5.
6.
7.
Microcin J25 has two targets in sensitive bacteria, the RNA polymerase, and the respiratory chain through inhibition of cellular respiration. In this work, the effect of microcin J25 in E. coli mutants that lack the terminal oxidases cytochrome bd-I and cytochrome bo3 was analyzed. The mutant strains lacking cytochrome bo3 or cytochrome bd-I were less sensitive to the peptide. In membranes obtained from the strain that only expresses cytochrome bd-I a great ROS overproduction was observed in the presence of microcin J25. Nevertheless, the oxygen consumption was less inhibited in this strain, probably because the oxygen is partially reduced to superoxide. There was no overproduction of ROS in membranes isolated from the mutant strain that only express cytochrome bo3 and the inhibition of the cellular respiration was similar to the wild type. It is concluded that both cytochromes bd-I and bo3 are affected by the peptide. The results establish for the first time a relationship between the terminal oxygen reductases and the mechanism of action of microcin J25.  相似文献   

8.
To counter antibiotic-resistant bacteria, we screened the Kitasato Institute for Life Sciences Chemical Library with bacterial quinol oxidase, which does not exist in the mitochondrial respiratory chain. We identified five prenylphenols, LL-Z1272β, γ, δ, ? and ζ, as new inhibitors for the Escherichia coli cytochrome bd. We found that these compounds also inhibited the E. coli bo-type ubiquinol oxidase and trypanosome alternative oxidase, although these three oxidases are structurally unrelated. LL-Z1272β and ? (dechlorinated derivatives) were more active against cytochrome bd while LL-Z1272γ, δ, and ζ (chlorinated derivatives) were potent inhibitors of cytochrome bo and trypanosome alternative oxidase. Thus prenylphenols are useful for the selective inhibition of quinol oxidases and for understanding the molecular mechanisms of respiratory quinol oxidases as a probe for the quinol oxidation site. Since quinol oxidases are absent from mammalian mitochondria, LL-Z1272β and δ, which are less toxic to human cells, could be used as lead compounds for development of novel chemotherapeutic agents against pathogenic bacteria and African trypanosomiasis.  相似文献   

9.
At least four genes are known to affect formation of the cytochrome bd-type terminal oxidase of Escherichia coli. In addition to the genes (cydA and cydB) encoding the two constituent subunits of this complex, a further two genes (cydC and cydD) map near 19 min on the E. coli chromosome. We report here the cloning of both genes on a 5.3 kb ClaI-HindIII restriction fragment, which, when used to transform either a cydC or cydD mutant, restored the ability of these mutants to grow on a selective medium containing azide and zinc ions and also restored the spectral signals associated with the cytochrome components of the oxidase complex. A subcloned 1.8 kb DdeI fragment similarly restored growth and cytochrome content of a cydD mutant, but not a cydC mutant. The complete nucleotide sequence of the ClaI-HindIII fragment reveals three open reading frames, one being trxB (19.3 min on the E. coli chromosome map, encoding thioredoxin reductase), confirming the mapping position of cydD previously established by P1-mediated transduction. Two ORFs identified by complementation experiments as cydD and cydC encode proteins with predicted molecular masses, respectively, of 65103 and 62 946 Da. The hydropathy profile of each protein reveals an N-terminal hydrophobic domain and a C-terminal hydrophilic domain containing a putative nucleotide-binding site. The gene products probably constitute an ABC (ATP-binding cassette) family membrane transporter, the function of which is necessary for the formation of the cytochrome bd quinol oxidase. The CydDC system appears to be the first prokaryotic example of a heterodimeric ABC transport system in which each polypeptide contains both hydrophobic and ATP-binding domains.  相似文献   

10.
The respiratory chain of Escherichia coli is usually considered a device to conserve energy via the generation of a proton motive force, which subsequently may drive ATP synthesis by the ATP synthetase. It is known that in this system a fixed amount of ATP per oxygen molecule reduced (P/O ratio) is not synthesized due to alternative NADH dehydrogenases and terminal oxidases with different proton pumping stoichiometries. Here we show that P/O ratios can vary much more than previously thought. First, we show that in wild-type E. coli cytochrome bo, cytochrome bd-I, and cytochrome bd-II are the major terminal oxidases; deletion of all of the genes encoding these enzymes results in a fermentative phenotype in the presence of oxygen. Second, we provide evidence that the electron flux through cytochrome bd-II oxidase is significant but does not contribute to the generation of a proton motive force. The kinetics support the view that this system is as an energy-independent system gives the cell metabolic flexibility by uncoupling catabolism from ATP synthesis under non-steady-state conditions. The nonelectrogenic nature of cytochrome bd-II oxidase implies that the respiratory chain can function in a fully uncoupled mode such that ATP synthesis occurs solely by substrate level phosphorylation. As a consequence, the yield with a carbon and energy source can vary five- to sevenfold depending on the electron flux distribution in the respiratory chain. A full understanding and control of this distribution open new avenues for optimization of biotechnological processes.The aerobic respiratory chain of Escherichia coli can function with a variety of different membrane-bound NADH dehydrogenases, including NDH-I, NDH-II, and WrbA (8, 26-28), as well as YhdH and QOR (15, 38, 39), on the electron input side and three ubiquinol oxidases (cytochromes bd-I, bd-II, and bo) (12, 14, 19, 22, 29) on the output side (Fig. (Fig.1).1). The stoichiometry for the number of protons pumped for each two electrons transferred (H+/2e ratio) has unequivocally been determined for NDH-I (H+/2e, 4) and NDH-II (H+/2e, 0) (10, 23, 41). Although no specific data are available for WrbA, YhdH, and QOR, it is generally assumed that these NADH:quinone oxidoreductases are not electrogenic because of the absence of (predicted) transmembrane alpha-helices (15, 38, 39). Similarly, the energy-conserving efficiencies of the cytochrome bd-I oxidase and the cytochrome bo oxidase are different; the cytochrome bd-I complex does not actively pump protons, but due to the oxidation of the quinol on the periplasmic side of the membrane and subsequent uptake of protons from the cytoplasmic side of the membrane, which are used in the formation of water, net electron transfer results in proton translocation with an H+/2e stoichiometry of 2 (32). In contrast, the cytochrome bo complex actively pumps protons over the membrane, resulting in an H+/2e stoichiometry of 4 (33, 42). The stoichiometry of proton translocation of the cytochrome bd-II complex is unknown.Open in a separate windowFIG. 1.Diagram of all NADH:quinone oxidoreductases and quinol:oxygen oxidoreductases in E. coli and their proton translocation properties. Cyt, cytochrome; Q, quinone.Due to the differences in the H+/e ratios of the dehydrogenases involved, two-electron transfer from NADH to the quinone pool may be accompanied by the translocation of any number of protons between 0 and 4, and subsequent reoxidation of the quinol pool may contribute to proton translocation again with a stoichiometry that depends on the relative activities of the terminal oxidases. The loose coupling between energy conservation and electron flow in respiration has been interpreted as a physiological means for the cell to cope with sudden changes in the rate of electron influx into the respiratory chain and/or in the availability of terminal electron acceptors on its terminal side (10). The fact that this energetic efficiency can vary is of great interest, both for understanding the physiological adaptive responses of the microbial cell and for biotechnological applications (e.g., synthesis of any oxidized compound with minimal biomass production). For this, it is important to quantify the flux distribution over and the efficiencies of the components of the respiratory machinery in relation to environmental conditions.Previous studies (10) have shown that NDH-I, NDH-II, and the two well-characterized cytochrome oxidases contribute significantly to the overall electron flux and furthermore that the distribution of fluxes over these components depends on environmental conditions, such as the growth rate in glucose-limited chemostats (10). In addition, it has been suggested that the flux distribution over the terminal oxidases of E. coli is dependent on the culture pH (40). However, the cytochrome bd-II oxidase was not taken into account in these previous studies.Here we present data that show that cytochrome bd-II oxidase participates significantly in oxygen reduction both during nonlimited growth in batch cultures and in glucose-limited chemostat cultures. For further quantification of the contribution of the respiratory chain to oxidative phosphorylation, it is essential to assess the in vivo H+/2e stoichiometry of the cytochrome bd-II oxidase (4, 37). Essentially, the approach used in previous studies by Calhoun et al. (10) was followed: strains with respiratory chains that were modified such that their H+/2e stoichiometry was fixed and known were grown under identical, glucose-limited conditions in chemostat culture. A flux analysis with respect to glucose catabolism and respiration allowed calculation of the rate of ATP synthesis for these strains. The data were then used as reference flux data for a strain that contained the cytochrome bd-II oxidase as the sole terminal oxidase. This strain showed a decreased yield with respect to oxygen and glucose. In this way we demonstrated that electron flow through the cytochrome bd-II oxidase does not contribute to the generation of a proton motive force. The results are discussed in view of the biochemical characterization of the enzyme and its physiological importance to adaptive responses by E. coli to an ever-changing environment.  相似文献   

11.
Cytochrome bd is a prokaryotic respiratory quinol:O2 oxidoreductase, phylogenetically unrelated to the extensively studied heme–copper oxidases (HCOs). The enzyme contributes to energy conservation by generating a proton motive force, though working with a lower energetic efficiency as compared to HCOs. Relevant to patho-physiology, members of the bd-family were shown to promote virulence in some pathogenic bacteria, which makes these enzymes of interest also as potential drug targets. Beyond its role in cell bioenergetics, cytochrome bd accomplishes several additional physiological functions, being apparently implicated in the response of the bacterial cell to a number of stress conditions. Compelling experimental evidence suggests that the enzyme enhances bacterial tolerance to oxidative and nitrosative stress conditions, owing to its unusually high nitric oxide (NO) dissociation rate and a notable catalase activity; the latter has been recently documented in one of the two bd-type oxidases of Escherichia coli. Current knowledge on cytochrome bd and its reactivity with O2, NO and H2O2 is summarized in this review in the light of the hypothesis that the preferential (over HCOs) expression of cytochrome bd in pathogenic bacteria may represent a strategy to evade the host immune attack based on production of NO and reactive oxygen species (ROS). This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

12.
The organization of respiratory chain complexes in supercomplexes has been shown in the mitochondria of several eukaryotes and in the cell membranes of some bacteria. These supercomplexes are suggested to be important for oxidative phosphorylation efficiency and to prevent the formation of reactive oxygen species.Here we describe, for the first time, the identification of supramolecular organizations in the aerobic respiratory chain of Escherichia coli, including a trimer of succinate dehydrogenase. Furthermore, two heterooligomerizations have been shown: one resulting from the association of the NADH:quinone oxidoreductases NDH-1 and NDH-2, and another composed by the cytochrome bo3 quinol:oxygen reductase, cytochrome bd quinol:oxygen reductase and formate dehydrogenase (fdo). These results are supported by blue native-electrophoresis, mass spectrometry and kinetic data of wild type and mutant E . coli strains.  相似文献   

13.
Cytochrome bd is a terminal quinol oxidase in Escherichia coli. Mitochondrial respiration is inhibited at cytochrome bc1 (complex III) by myxothiazol. Mixing purified cytochrome bd oxidase with myxothiazol-inhibited bovine heart submitochondrial particles (SMP) restores up to 50% of the original rotenone-sensitive NADH oxidase and succinate oxidase activities in the absence of exogenous ubiquinone analogs. Complex III bypassed respiration and is saturated at amounts of added cytochrome bd similar to that of other natural respiratory components in SMP. The cytochrome bd tightly binds to the mitochondrial membrane and operates as an intrinsic component of the chimeric respiratory chain.  相似文献   

14.
《BBA》2023,1864(2):148952
Escherichia coli contains two cytochrome bd oxidases, bd-I and bd-II. The structure of both enzymes is highly similar, but they exhibit subtle differences such as the accessibility of the active site through a putative proton channel. Here, we demonstrate that the duroquinol:dioxygen oxidoreductase activity of bd-I increased with alkaline pH, whereas bd-II showed a broad activity maximum around pH 7. Likewise, the pH dependence of NO release from the reduced active site, an essential property of bd oxidases, differed between the two oxidases as detected by UV/vis spectroscopy. Both findings may be attributed to differences in the proton channel leading to the active site heme d. The channel comprises a titratable residue (Asp58B in bd-I and Glu58B in bd-II). Conservative mutations at this position drastically altered NO release demonstrating its contribution to the process.  相似文献   

15.

Background

Membrane proteins are an important class of proteins, playing a key role in many biological processes, and are a promising target in pharmaceutical development. However, membrane proteins are often difficult to produce in large quantities for the purpose of crystallographic or biochemical analyses.

Results

In this paper, we demonstrate that synthetic gene circuits designed specifically to overexpress certain genes can be applied to manipulate the expression kinetics of a model membrane protein, cytochrome bd quinol oxidase in E. coli, resulting in increased expression rates. The synthetic circuit involved is an engineered, autoinducer-independent variant of the lux operon activator LuxR from V. fischeri in an autoregulatory, positive feedback configuration.

Conclusions

Our proof-of-concept experiments indicate a statistically significant increase in the rate of production of the bd oxidase membrane protein. Synthetic gene networks provide a feasible solution for the problem of membrane protein production.  相似文献   

16.
The cytochrome b6f complex is an integral part of the photosynthetic and respiratory electron transfer chain of oxygenic photosynthetic bacteria. The core of this complex is composed of four subunits, cytochrome b, cytochrome f, subunit IV and the Rieske protein (PetC). In this study deletion mutants of all three petC genes of Synechocystis sp. PCC 6803 were constructed to investigate their localization, involvement in electron transfer, respiration and photohydrogen evolution. Immunoblots revealed that PetC1, PetC2, and all other core subunits were exclusively localized in the thylakoids, while the third Rieske protein (PetC3) was the only subunit found in the cytoplasmic membrane. Deletion of petC3 and both of the quinol oxidases failed to elicit a change in respiration rate, when compared to the respective oxidase mutant. This supports a different function of PetC3 other than respiratory electron transfer. We conclude that the cytoplasmic membrane of Synechocystis lacks both a cytochrome c oxidase and the cytochrome b6f complex and present a model for the major electron transfer pathways in the two membranes of Synechocystis. In this model there is no proton pumping electron transfer complex in the cytoplasmic membrane.Cyclic electron transfer was impaired in all petC1 mutants. Nonetheless, hydrogenase activity and photohydrogen evolution of all mutants were similar to wild type cells. A reduced linear electron transfer and an increased quinol oxidase activity seem to counteract an increased hydrogen evolution in this case. This adds further support to the close interplay between the cytochrome bd oxidase and the bidirectional hydrogenase.  相似文献   

17.
In order to sustain a persistent infection, Mycobacterium tuberculosis (Mtb) must adapt to a changing environment that is shaped by the developing immune response. This necessity to adapt is evident in the flexibility of many aspects of Mtb metabolism, including a respiratory chain that consists of two distinct terminal cytochrome oxidase complexes. Under the conditions tested thus far, the bc1/aa3 complex appears to play a dominant role, while the alternative bd oxidase is largely redundant. However, the presence of two terminal oxidases in this obligate pathogen implies that respiratory requirements might change during infection. We report that the cytochrome bd oxidase is specifically required for resisting the adaptive immune response. While the bd oxidase was dispensable for growth in resting macrophages and the establishment of infection in mice, this complex was necessary for optimal fitness after the initiation of adaptive immunity. This requirement was dependent on lymphocyte-derived interferon gamma (IFNγ), but did not involve nitrogen and oxygen radicals that are known to inhibit respiration in other contexts. Instead, we found that ΔcydA mutants were hypersusceptible to the low pH encountered in IFNγ-activated macrophages. Unlike wild type Mtb, cytochrome bd-deficient bacteria were unable to sustain a maximal oxygen consumption rate (OCR) at low pH, indicating that the remaining cytochrome bc1/aa3 complex is preferentially inhibited under acidic conditions. Consistent with this model, the potency of the cytochrome bc1/aa3 inhibitor, Q203, is dramatically enhanced at low pH. This work identifies a critical interaction between host immunity and pathogen respiration that influences both the progression of the infection and the efficacy of potential new TB drugs.  相似文献   

18.
Cytochrome bd oxidase operons from more than 50 species of bacteria contain a short gene encoding a small protein that ranges from ∼30 to 50 amino acids and is predicted to localize to the cell membrane. Although cytochrome bd oxidases have been studied for more than 70 years, little is known about the role of this small protein, denoted CydX, in oxidase activity. Here we report that Escherichia coli mutants lacking CydX exhibit phenotypes associated with reduced oxidase activity. In addition, cell membrane extracts from ΔcydX mutant strains have reduced oxidase activity in vitro. Consistent with data showing that CydX is required for cytochrome bd oxidase activity, copurification experiments indicate that CydX interacts with the CydAB cytochrome bd oxidase complex. Together, these data support the hypothesis that CydX is a subunit of the CydAB cytochrome bd oxidase complex that is required for complex activity. The results of mutation analysis of CydX suggest that few individual amino acids in the small protein are essential for function, at least in the context of protein overexpression. In addition, the results of analysis of the paralogous small transmembrane protein AppX show that the two proteins could have some overlapping functionality in the cell and that both have the potential to interact with the CydAB complex.  相似文献   

19.
Recent proteome studies on the Escherichia coli membrane proteins suggested that YhcB is a putative third subunit of cytochrome bd-type ubiquinol oxidase (CydAB) (F. Stenberg, P. Chovanec, S.L. Maslen, C.V. Robinson, L.L. Ilag, G. von Heijne, D.O. Daley, Protein complexes of the Escherichia coli cell envelope. J. Biol. Chem. 280 (2005) 34409-34419). We isolated and characterized cytochrome bd from the ΔyhcB strain, and found that the formation of the CydAB heterodimer, the spectroscopic properties of bound hemes, and kinetic parameters for the ubiquinol-1 oxidation were identical to those of cytochrome bd from the wild-type strain. Anion-exchange chromatography and SDS-polyacrylamide gel electrophoresis showed that YhcB was not associated with the cytochrome bd complex. We concluded that YhcB is dispensable for the assembly and function of cytochrome bd. YhcB, which is distributed only in γ-proteobacteria, may be a part of another membrane protein complex or may form a homo multimeric complex.  相似文献   

20.
In Escherichia coli, the biogenesis of both cytochrome bd-type quinol oxidases and periplasmic cytochromes requires the ATP-binding cassette-type cysteine/GSH transporter, CydDC. Recombinant CydDC was purified as a heterodimer and found to be an active ATPase both in soluble form with detergent and when reconstituted into a lipid environment. Two-dimensional crystals of CydDC were analyzed by electron cryomicroscopy, and the protein was shown to be made up of two non-identical domains corresponding to the putative CydD and CydC subunits, with dimensions characteristic of other ATP-binding cassette transporters. CydDC binds heme b. Detergent-solubilized CydDC appears to adopt at least two structural states, each associated with a characteristic level of bound heme. The purified protein in detergent showed a weak basal ATPase activity (approximately 100 nmol Pi/min/mg) that was stimulated ∼3-fold by various thiol compounds, suggesting that CydDC could act as a thiol transporter. The presence of heme (either intrinsic or added in the form of hemin) led to a further enhancement of thiol-stimulated ATPase activity, although a large excess of heme inhibited activity. Similar responses of the ATPase activity were observed with CydDC reconstituted into E. coli lipids. These results suggest that heme may have a regulatory role in CydDC-mediated transmembrane thiol transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号