首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Based on the excellent results of the clinical trials with ALK-inhibitors, the importance of accurately identifying ALK positive lung cancer has never been greater. However, there are increasing number of recent publications addressing discordances between FISH and IHC. The controversy is further fuelled by the different regulatory approvals. This situation prompted us to investigate two ALK IHC antibodies (using a novel ultrasensitive detection-amplification kit) and an automated ALK FISH scanning system (FDA-cleared) in a series of non-small cell lung cancer tumor samples.

Methods

Forty-seven ALK FISH-positive and 56 ALK FISH-negative NSCLC samples were studied. All specimens were screened for ALK expression by two IHC antibodies (clone 5A4 from Novocastra and clone D5F3 from Ventana) and for ALK rearrangement by FISH (Vysis ALK FISH break-apart kit), which was automatically captured and scored by using Bioview''s automated scanning system.

Results

All positive cases with the IHC antibodies were FISH-positive. There was only one IHC-negative case with both antibodies which showed a FISH-positive result. The overall sensitivity and specificity of the IHC in comparison with FISH were 98% and 100%, respectively.

Conclusions

The specificity of these ultrasensitive IHC assays may obviate the need for FISH confirmation in positive IHC cases. However, the likelihood of false negative IHC results strengthens the case for FISH testing, at least in some situations.  相似文献   

2.
3.

Background

This study aimed to elucidate clinical significance of anaplastic lymphoma kinase (ALK) rearrangement in selected advanced non-small cell lung cancer (NSCLC), to compare the application of different ALK detection methods, and especially evaluate a possible association between ALK expression and clinical outcomes in crizotinib-treated patients.

Methods

ALK status was assessed by fluorescent in situ hybridization (FISH), immunohistochemistry (IHC) and quantitative RT-PCR (qRT-PCR) in 173 selected advanced NSCLC patients. Clinicopathologic data, genotype status and survival outcomes were analyzed. Moreover, the association of ALK expression with clinical outcomes was evaluated in ALK FISH-positive crizotinib-treated patients including two patients with concurrent epidermal growth factor receptor (EGFR) mutation.

Results

The positivity detection rate of ALK rearrangement by FISH, IHC and qRT-PCR was 35.5% (59/166), 35.7% (61/171), and 27.9% (34/122), respectively. ALK rearrangement was observed predominantly in young patients, never or light smokers, and adenocarcinomas, especially with signet ring cell features and poor differentiation. Median progression-free survival (PFS) of crizotinib-treated patients was 7.6 months. The overall survival (OS) of these patients was longer compared with that of crizotinib-naive or wild-type cohorts, but there was no significant difference in OS compared with patients with EGFR mutation. ALK expression did not associate with PFS; but, when ALK expression was analyzed as a dichotomous variable, moderate and strong ALK expression had a decreased risk of death (P = 0.026). The two patients with concomitant EGFR and ALK alterations showed difference in ALK expression, response to EGFR and ALK inhibitors, and overall survival.

Conclusions

Selective enrichment according to clinicopathologic features in NSCLC patients could highly improve the positivity detection rate of ALK rearrangement for ALK-targeted therapy. IHC could provide more clues for clinical trial design and therapeutic strategies for ALK-positive NSCLC patients including patients with double genetic aberration of ALK and EGFR.  相似文献   

4.
5.

Background

Epidermal growth factor receptor (EGFR) mutation status is the most valuable indicator in the screening of non-small-cell lung cancer (NSCLC) patients for tyrosine kinase inhibitor (TKI) therapy. Accurate, rapid and economical methods of detecting EGFR mutations have become important. The use of two mutation-specific antibodies targeting the delE746-A750 mutation in exon 19 and L858R mutation in exon 21 makes this task possible, but the lack of consensually acceptable criteria for positive results limits the application of this antibody based mutation detection.

Methods

We collected 399 specimens from NSCLC patients (145 resection specimens, 220 biopsy specimens, and 34 cytology specimens) whose EGFR mutation status had been detected by TaqMan PCR assay. Immunohistochemical (IHC) analyses using EGFR mutation-specific antibodies were employed for all samples. After staining and scoring, the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated in accordance with different levels of positive grades in comparison with the results of PCR-based assay.

Results

In IHC-based analyses, 144 cases were scored 0, 104 cases were scored 1+, 103 cases were scored 2+, and 48 cases were scored 3+. With the molecular-based results were set as the “gold standard”, the prevalence of mutation was 6.94% (10/144), 23.08% (24/104), 67.96% (70/103) and 100% (48/48), respectively, for samples with scores 0, 1+, 2+ and 3+. When score 3+ was considered positive, the specificity and PPV were 100%; if only score 0 was considered negative, 93.06% NPV was obtained.

Conclusion

Patients with score 3+ have a perfect PPV (100%), and may accept TKI treatment directly without any molecular-based assays. Patients with score 0 had high NPV (93.06%), which could reach 97.22% when the detection of total EGFR was applied. However, samples with score 1+ or 2+ are unreliable and need further verification of EGFR mutation status by molecular-based assays.  相似文献   

6.

Background

The role of epidermal growth factor (EGF) and its receptor (EGFR) in the pathogenesis and progression of various malignant tumors has long been known, but there is still disagreement concerning prognostic significance of EGFR expression in clear cell renal cell carcinoma (CCRCC). The present study was designed to analyze more objectively the protein EGFR expression in CCRCC and to compare its value with EGFR gene copy number changes and clinicopathologic characteristics including patient survival.

Methods

The protein EGFR expression was analyzed immunohistochemically on 94 CCRCC, and gene copy number alterations of EGFR by FISH analysis on 41 CCRCC selected according to distinct membrane EGFR staining.

Results

Membrane EGFR expression in tumor cells was heterogeneous with respect to the proportion of positive cells and staining intensity. FISH analysis did not reveal EGFR gene amplification, while polysomy of chromosome 7 found in 41% was associated with higher EGFR membrane expression. Moreover, EGFR overexpression was associated with a higher nuclear grade, larger tumor size and shorter patient''s survival, while there was no connection with pathological stage.

Conclusion

In conclusion, the protein expression of EGFR had an impact on prognosis in patients with CCRCC, while an increased copy number of chromosome 7 could be the possible reason for EGFR protein overexpression in the absence of gene amplification.  相似文献   

7.

Introduction

In randomly assigned studies with EGFR TKI only a minor proportion of patients with NSCLC have genetically profiled biopsies. Guidelines provide evidence to perform EGFR and KRAS mutation analysis in non-squamous NSCLC. We explored tumor biopsy quality offered for mutation testing, different mutations distribution, and outcome with EGFR TKI.

Patient and Methods

Clinical data from 8 regional hospitals were studied for patient and tumor characteristics, treatment and overall survival. Biopsies sent to the central laboratory were evaluated for DNA quality and subsequently analyzed for mutations in exons 18–21 of EGFR and exon 2 of KRAS by bidirectional sequence analysis.

Results

Tumors from 442 subsequent patients were analyzed. For 74 patients (17%) tumors were unsuitable for mutation analysis. Thirty-eight patients (10.9%) had EGFR mutations with 79% known activating mutations. One hundred eight patients (30%) had functional KRAS mutations. The mutation spectrum was comparable to the Cosmic database. Following treatment in the first or second line with EGFR TKI median overall survival for patients with EGFR (n = 14), KRAS (n = 14) mutations and wild type EGFR/KRAS (n = 31) was not reached, 20 and 9 months, respectively.

Conclusion

One out of every 6 tumor samples was inadequate for mutation analysis. Patients with EGFR activating mutations treated with EGFR-TKI have the longest survival.  相似文献   

8.
9.

Background

Anaplastic lymphoma kinase (ALK) rearrangements define a subgroup of lung cancer which is eligible to targeted kinase inhibition. The aim of this study is to observe the incidence rate of ALK fusion in a large cohort of Chinese digestive tract cancer patients.

Patients and Methods

Tissue microarray (TMA) was constructed from 808 digestive tract cancer cases, including 169 esophageal squamous cell carcinoma, 182 gastric cancer and 457 colorectal cancer (CRC) cases. We tested all cases for ALK expression via a fully automated immunohistochemistry (IHC) assay. The IHC-positive cases were subjected to fluorescence in situ hybridization (FISH), real-time polymerase chain reaction (qRT-PCR), target gene enrichment and sequencing for confirmation of ALK gene rearrangement and discovery of novel fusion partner.

Results

Among the tested cases, 2 (0.44%) CRC cases showed positive both by IHC and FISH. By qRT-PCR, EML4–ALK fusion was found in one IHC-positive CRC case. In another IHC-positive CRC case, target gene enrichment and sequencing revealed ALK was fused to a novel partner, spectrin beta non-erythrocytic 1 (SPTBN1). One gastric cancer case showed partially positive IHC result, but no fusion was found by FISH and gene sequencing.

Conclusions

The incidence rate of ALK gene fusion in Chinese CRC patients was 0.44%,but not detectable in gastric and esophageal cancers. The novel SPTBN1 -ALK fusion, together with other ALK fusion genes, may become a potential target for anti-ALK therapy.  相似文献   

10.

Background

Various studies have assessed the diagnostic accuracy of EGFR mutation-specific antibodies in non-small cell lung cancer (NSCLC). We performed a meta-analysis of existing data to investigate the diagnostic value of mutation-specific antibodies for detection of EGFR mutations in NSCLC.

Methods

We systematically retrieved relevant studies from PubMed, Web of Knowledge, and Google Scholar. Data from studies that met the inclusion criteria were extracted for further exploration of heterogeneity, including calculation of the average sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and analysis of SROC(summary receiver operating characteristic) curves.

Results

Fifteen studies met our inclusion criteria. A summary of the meta-analysis of the efficacy of the anti-E746-A750 antibody was as follows: sensitivity, 0.60 (95% CI, 0.55–0.64); specificity, 0.98 (95% CI, 0.97–0.98); PLR, 33.50 (95% CI, 13.96–80.39); NLR, 0.39 (95% CI, 0.30–0.51) and DOR, 111.17 (95% CI, 62.22–198.63). A similar meta-analysis was performed for the anti-L858R antibody with results as follows: sensitivity, 0.76 (95% CI, 0.71–0.79); specificity, 0.96 (95% CI, 0.95–0.97); PLR, 24.42 (95% CI, 11.66–51.17); NLR, 0.22 (95% CI, 0.12–0.39) and DOR, 126.66 (95% CI, 54.60–293.82).

Conclusion

Immunohistochemistry alone is sufficient for the detection of EGFR mutations if the result is positive. Molecular-based analyses are necessary only if the anti-E746-A750 antibody results are negative. Immunohistochemistry seems more suitable for clinical screening for EGFR mutations prior to molecular-based analysis.  相似文献   

11.

Background

Inflammatory breast cancer (IBC) is the most aggressive form of breast cancer, and its molecular pathogenesis still remains to be elucidated. This study aimed to evaluate the prevalence and implication of anaplastic lymphoma kinase (ALK) copy number change in IBC patients.

Methods

We retrospectively collected formalin-fixed, paraffin-embedded tumor tissues and medical records of IBC patients from several institutes in Korea. ALK gene copy number change and rearrangement were assessed by fluorescence in situ hybridization (FISH) assay, and ALK expression status was evaluated by immunohistochemical (IHC) staining.

Results

Thirty-six IBC patients including those with HER2 (+) breast cancer (16/36, 44.4%) and triple-negative breast cancer (13/36, 36.1%) were enrolled in this study. ALK copy number gain (CNG) was observed in 47.2% (17/36) of patients, including one patient who harbored ALK gene amplification. ALK CNG (+) patients showed significantly worse overall survival compared to ALK CNG (-) patients in univariate analysis (24.9 months vs. 38.1 months, p = 0.033). Recurrence free survival (RFS) after curative mastectomy was also significantly shorter in ALK CNG (+) patients than in ALK CNG (-) patients (n = 22, 12.7 months vs. 43.3 months, p = 0.016). Multivariate Cox regression analysis with adjustment for HER2 and ER statuses showed significantly poorer RFS for ALK CNG (+) patients (HR 5.63, 95% CI 1.11–28.44, p = 0.037).

Conclusion

This study shows a significant presence of ALK CNG in IBC patients, and ALK CNG was associated with significantly poorer RFS.  相似文献   

12.

Background

In order to improve the outcome of patients with non-small cell lung cancer (NSCLC), a biomarker that can predict the efficacy of chemotherapy is needed. The aim of this study was to assess the role of EGFR mutations and ERCC1 in predicting the efficacy of platinum-based chemotherapy and the outcome of patients with NSCLC.

Methods

We conducted a retrospective study to analyze the relationships between EGFR mutations or ERCC1 expression and progression-free survival (PFS) in patients with NSCLC who received platinum-based chemotherapy. EGFR mutation status was determined using the peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp method, and immunohistochemistry was used to examine the expression of ERCC1 in tumor samples obtained from the patients.

Results

Among the NSCLC patients who received platinum-based chemotherapy, the median PFS was significantly better in those who had never smoked and those with exon 19 deletion, and the median overall survival (OS) was significantly better in those who had never smoked, those with exon 19 deletion, and women. Cox regression analysis revealed that exon 19 deletion and having never smoked were significantly associated with both PFS and OS. Subset analysis revealed a significant correlation between ERCC1 expression and EGFR mutation, and ERCC1-negative patients with exon 19 deletion had a longer PFS than the other patients; ERCC1-positive patients without exon 19 deletion had a shorter PFS than the other patients.

Conclusions

Our results indicate that among NSCLC patients receiving platinum-based chemotherapy, those with exon 19 deletion have a longer PFS and OS. Our findings suggest that platinum-based chemotherapy is more effective against ERCC1-negative and exon 19-positive NSCLC.  相似文献   

13.

Background

The prognostic value of epidermal growth factor receptor (EGFR) mutations in resected non-small cell lung cancer (NSCLC) remains controversial. We performed a systematic review with meta-analysis to assess its role.

Methods

Studies were identified via an electronic search on PubMed, Embase and Cochrane Library databases. Pooled hazard ratio (HR) for disease-free survival (DFS) and overall survival (OS) were calculated for meta-analysis.

Results

There were 16 evaluated studies (n = 3337) in the meta-analysis. The combined HR evaluating EGFR mutations on disease free survival was 0.96 (95% CI [0.79–1.16] P = 0.65). The combined HR evaluating EGFR mutations on overall survival was 0.86 (95% CI [0.72–1.04] P = 0.12). The subgroup analysis based on univariate and multivariate analyses in DFS and OS showed no statistically significant difference. There was also no statistically significant difference in DFS and OS of stage I NSCLC patients.

Conclusion

The systematic review with meta-analysis showed that EGFR mutations were not a prognostic factor in patients with surgically resected non-small cell lung cancer. Well designed prospective study is needed to confirm the result.  相似文献   

14.

Introduction

Although cetuximab and panitumumab show an increased efficacy for patients with KRAS-NRAS-BRAF and PI3KCA wild-type metastatic colorectal cancer, primary resistance occurs in a relevant subset of molecularly enriched populations.

Patients and Methods

We evaluated the outcome of 68 patients with advanced colorectal cancer and RAS, BRAF and PI3KCA status according to ALK gene status (disomic vs. gain of ALK gene copy number – defined as mean of 3 to 5 fusion signals in ≥10% of cells). All consecutive patients received cetuximab and irinotecan or panitumumab alone for chemorefractory disease.

Results

No ALK translocations or amplifications were detected. ALK gene copy number gain was found in 25 (37%) tumors. Response rate was significantly higher in patients with disomic ALK as compared to those with gain of gene copy number (70% vs. 32%; p = 0.0048). Similarly, progression-free survival was significantly different when comparing the two groups (6.7 vs. 5.3 months; p = 0.045). A trend was observed also for overall survival (18.5 vs. 15.6 months; p = 0.885).

Conclusion

Gain of ALK gene copy number might represent a negative prognostic factor in mCRC and may have a role in resistance to anti-EGFR therapy.  相似文献   

15.

Introduction

Lung cancer, the most prevalent malignant cancer in the world, remains a serious threat to public health. Recently, a large number of studies have shown that an epidermoid growth factor receptor-tyrosine kinase inhibitor (EGFR TKI), Erlotinib, has significantly better efficacy and is better tolerated in advanced non-small cell lung cancer (NSCLC) patients with a positive EGFR gene mutation. However, access to this drug is severely limited in China due to its high acquisition cost. Therefore, we decided to conduct a study to compare cost-effectiveness between erlotinib monotherapy and carboplatin-gemcitabine (CG) combination therapy in patients with advanced EGFR mutation-positive NSCLC.

Methods

A Markov model was developed from the perspective of the Chinese health care system to evaluate the cost-effectiveness of the two treatment strategies; this model was based on data from the OPTIMAL trial, which was undertaken at 22 centres in China. The 10-year quality-adjusted life years (QALYs), direct costs, and incremental cost-effectiveness ratio (ICER) were estimated. To allow for uncertainties within the parameters and to estimate the model robustness, one-way sensitivity analysis and probabilistic sensitivity analysis were performed.

Results

The median progression-free survival (PFS) obtained from Markov model was 13.2 months (13.1 months was reported in the trial) in the erlotinib group while and 4.64 months (4.6 months was reported in the trial) in the CG group. The QALYs were 1.4 years in the erlotinib group and 1.96 years in the CG group, indicating difference of 0.56 years. The ICER was most sensitive to the health utility of DP ranged from $58,584.57 to $336,404.2. At a threshold of $96,884, erlotinib had a 50%probability of being cost-effective.

Conclusions

Erlotinib monotherapy is more cost-effective compared with platinum-based doublets chemotherapy as a first-line therapy for advanced EGFR mutation- positive NSCLC patients from within the Chinese health care system.  相似文献   

16.

Purpose

This study evaluated occurrence and potential clinical significance of intratumoral EGFR mutational heterogeneity in Chinese patients with non-small cell lung cancer (NSCLC).

Materials and Methods

Eighty-five stage IIIa-IV NSCLC patients who had undergone palliative surgical resection were included in this study. Of these, 45 patients carried EGFR mutations (group-M) and 40 patients were wild-type (group-W). Each tumor sample was microdissected to yield 28–34 tumor foci and Intratumoral EGFR mutation were determined using Denaturing High Performance Liquid Chromatography (DHPLC) and Amplification Refractory Mutation System (ARMS). EGFR copy numbers were measured using fluorescence in situ hybridization (FISH).

Results

Microdissection yielded 1,431 tumor foci from EGFR mutant patients (group-M) and 1,238 foci from wild-type patients (group-W). The EGFR mutant frequencies in group-M were 80.6% (1,154/1,431) and 87.1% (1,247/1,431) using DHPLC and ARMS, respectively. A combination of EGFR-mutated and wild-type cells was detected in 32.9% (28/85) of samples by DHPLC and 28.2% (24/85) by ARMS, supporting the occurrence of intratumoral heterogeneity. Thirty-one patients (36.5%) were identified as EGFR FISH-positive. Patients harboring intratumoral mutational heterogeneity possessed lower EGFR copy numbers than those tumors contained mutant cells alone (16.7% vs. 71.0%, P<0.05). Among 26 patients who had received EGFR-TKIs, the mean EGFR mutation content was higher in patients showing partial response (86.1%) or stable disease (48.7%) compared with patients experiencing progressive disease (6.0%) (P = 0.001). There also showed relationship between progression-free survival (PFS) and different content of EGFR mutation groups (pure wild type EGFR, EGFR mutation with heterogeneity and pure mutated EGFR) (P = 0.001).

Conclusion

Approximately 30% of patients presented intratumoral EGFR mutational heterogeneity, accompanying with relatively low EGFR copy number. EGFR mutant content was correlated with the response and prognosis of EGFR-TKIs.  相似文献   

17.

Background

Analysis of key therapeutic targets such as epidermal growth factor receptor (EGFR) in clinical tissue samples is typically done by immunohistochemistry (IHC) and is only subjectively quantitative through a narrow dynamic range. The development of a standardized, highly-sensitive, linear, and quantitative assay for EGFR for use in patient tumor tissue carries high potential for identifying those patients most likely to benefit from EGFR-targeted therapies.

Methods

A mass spectrometry-based Selected Reaction Monitoring (SRM) assay for the EGFR protein (EGFR-SRM) was developed utilizing the Liquid Tissue®-SRM technology platform. Tissue culture cells (n = 4) were analyzed by enzyme-linked immunosorbent assay (ELISA) to establish quantitative EGFR levels. Matching formalin fixed cultures were analyzed by the EGFR-SRM assay and benchmarked against immunoassay of the non-fixed cultured cells. Xenograft human tumor tissue (n = 10) of non-small cell lung cancer (NSCLC) origin and NSCLC patient tumor tissue samples (n = 23) were microdissected and the EGFR-SRM assay performed on Liquid Tissue lysates prepared from microdissected tissue. Quantitative curves and linear regression curves for correlation between immunoassay and SRM methodology were developed in Excel.

Results

The assay was developed for quantitation of a single EGFR tryptic peptide for use in FFPE patient tissue with absolute specificity to uniquely distinguish EGFR from all other proteins including the receptor tyrosine kinases, IGF-1R, cMet, Her2, Her3, and Her4. The assay was analytically validated against a collection of tissue culture cell lines where SRM analysis of the formalin fixed cells accurately reflects EGFR protein levels in matching non-formalin fixed cultures as established by ELISA sandwich immunoassay (R2 = 0.9991). The SRM assay was applied to a collection of FFPE NSCLC xenograft tumors where SRM data range from 305amol/μg to 12,860amol/μg and are consistent with EGFR protein levels in these tumors as previously-reported by western blot and SRM analysis of the matched frozen tissue. In addition, the SRM assay was applied to a collection of histologically-characterized FFPE NSCLC patient tumor tissue where EGFR levels were quantitated from not detected (ND) to 670amol/μg.

Conclusions

This report describes and evaluates the performance of a robust and reproducible SRM assay designed for measuring EGFR directly in FFPE patient tumor tissue with accuracy at extremely low (attomolar) levels. This assay can be used as part of a complementary or companion diagnostic strategy to support novel therapies currently under development and demonstrates the potential to identify candidates for EGFR-inhibitor therapy, predict treatment outcome, and reveal mechanisms of therapeutic resistance.  相似文献   

18.

Aims

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have shown dramatic clinical benefits in advanced non-small cell lung cancer (NSCLC); however, resistance remains a serious problem in clinical practice. The present study analyzed mTOR-associated signaling-pathway differences between the EGFR TKI-sensitive and -resistant NSCLC cell lines and investigated the feasibility of targeting mTOR with specific mTOR inhibitor in EGFR TKI resistant NSCLC cells.

Methods

We selected four different types of EGFR TKI-sensitive and -resistant NSCLC cells: PC9, PC9GR, H1650 and H1975 cells as models to detect mTOR-associated signaling-pathway differences by western blot and Immunoprecipitation and evaluated the antiproliferative effect and cell cycle arrest of ku-0063794 by MTT method and flow cytometry.

Results

In the present study, we observed that mTORC2-associated Akt ser473-FOXO1 signaling pathway in a basal state was highly activated in resistant cells. In vitro mTORC1 and mTORC2 kinase activities assays showed that EGFR TKI-resistant NSCLC cell lines had higher mTORC2 kinase activity, whereas sensitive cells had higher mTORC1 kinase activity in the basal state. The ATP-competitive mTOR inhibitor ku-0063794 showed dramatic antiproliferative effects and G1-cell cycle arrest in both sensitive and resistant cells. Ku-0063794 at the IC50 concentration effectively inhibited both mTOR and p70S6K phosphorylation levels; the latter is an mTORC1 substrate and did not upregulate Akt ser473 phosphorylation which would be induced by rapamycin and resulted in partial inhibition of FOXO1 phosphorylation. We also observed that EGFR TKI-sensitive and -resistant clinical NSCLC tumor specimens had higher total and phosphorylated p70S6K expression levels.

Conclusion

Our results indicate mTORC2-associated signaling-pathway was hyperactivated in EGFR TKI-resistant cells and targeting mTOR with specific mTOR inhibitors is likely a good strategy for patients with EGFR mutant NSCLC who develop EGFR TKI resistance; the potential specific roles of mTORC2 in EGFR TKI-resistant NSCLC cells were still unknown and should be further investigated.  相似文献   

19.

Objective

To explore the relationship between TTF-1 and EGFR mutations in lung adenocarcinoma tissues to guide clinical treatment timely and effectively.

Materials and Methods

we collected 664 tissue samples from patients with histologically confirmed lung adenocarcinoma from May 2010 to April 2013. All tumor tissues were collected prior to administering therapy. TTF-1 was detected byimmunohistochemistry and EGFR mutations by DNA direct sequencing. Finally, the correlation between TTF-1 expression and the presence of EGFR mutations was analyzed using χ2 test or Fisher’s exact test with SPSS software version 18.0.

Results

Of the 664 lung adenocarcinoma tissue samples, 18 were partially positive for TTF-1 (+−), and 636 were positive for TTF-1 (+) resulting in a total positive rate of 98.49% (+,+−)(including partial positive). In only 10 cases was the TTF-1 negative (−); the negative rate was 1.51%. There were 402 cases without an EGFR mutation and 262 cases with EGFR mutations; the rate of mutations was 39.46%. The location of the EGFR mutation was exon 19 for 121 cases resulting in a mutation rate in exon 19 of 18.22%. The location of the EGFR mutation was exon 21 for 141 cases resulting in a mutation rate in exon 21 of 21.23%. Exon 18 and 20 detected by DNA direct sequencing no mutations.A Fisher’s exact test was used to determine the correlation between EGFR mutations and TTF-1 expression.for the whole, TTF-1 positive expression(including partial positive) has correlation with EGFR mutations (p<0.001),especially for Exon 21 expression,the correlation is significant (p = 0.008).

Conclusion

In lung adenocarcinomas, positive and partial positive TTF-1 expression has a significant positive correlation with EGFR mutations(exon 19 and 21). In clinical practice, TTF-1 expression combine with EGFR mutations, especially exon 21 mutation can guide clinical treatment timely for lung adenocarcinomas.  相似文献   

20.

Background

Conventional methods for lung cancer detection including computed tomography (CT) and bronchoscopy are expensive and invasive. Thus, there is still a need for an optimal lung cancer detection technique.

Methods

The exhaled breath of 50 patients with lung cancer histologically proven by bronchoscopic biopsy samples (32 adenocarcinomas, 10 squamous cell carcinomas, 8 small cell carcinomas), were analyzed using ion mobility spectrometry (IMS) and compared with 39 healthy volunteers. As a secondary assessment, we compared adenocarcinoma patients with and without epidermal growth factor receptor (EGFR) mutation.

Results

A decision tree algorithm could separate patients with lung cancer including adenocarcinoma, squamous cell carcinoma and small cell carcinoma. One hundred-fifteen separated volatile organic compound (VOC) peaks were analyzed. Peak-2 noted as n-Dodecane using the IMS database was able to separate values with a sensitivity of 70.0% and a specificity of 89.7%. Incorporating a decision tree algorithm starting with n-Dodecane, a sensitivity of 76% and specificity of 100% was achieved. Comparing VOC peaks between adenocarcinoma and healthy subjects, n-Dodecane was able to separate values with a sensitivity of 81.3% and a specificity of 89.7%. Fourteen patients positive for EGFR mutation displayed a significantly higher n-Dodecane than for the 14 patients negative for EGFR (p<0.01), with a sensitivity of 85.7% and a specificity of 78.6%.

Conclusion

In this prospective study, VOC peak patterns using a decision tree algorithm were useful in the detection of lung cancer. Moreover, n-Dodecane analysis from adenocarcinoma patients might be useful to discriminate the EGFR mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号