首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 681 毫秒
1.
Estradiol is a potent hypophagic agent that reduces food intake and body weight without a concomitant fall in plasma leptin levels. We investigated whether the hypophagic effect of estradiol is mediated by stimulating POMC and/or inhibiting NPY neuronal pathways in the hypothalamus, which respectively inhibit and stimulate feeding. We examined hypothalamic gene expression of Ob-Rb, NPY, POMC, MC4-R, and AgRP in intact Wistar rats treated with estradiol for 48 hours. Food intake and body weight were reduced in estradiol-treated rats but fat mass was unchanged; plasma leptin and insulin levels were not significantly different from untreated, freely fed controls. In untreated rats that were pair-fed to match the estradiol-treated group, body weight was also reduced without changes in fat mass, although leptin and insulin levels decreased significantly. Ob-Rb expression was increased in both hypophagic groups despite serum leptin were only decreased in pair-fed animals, suggesting an estradiol-stimulating effect on Ob-Rb expression. No significant differences were found in POMC, AgRP, or MC4-R expression among any of the experimental groups. A significant but small decrease in NPY expression was also found in both hypophagic groups; this was explained by the combined effect of both surgery and reduced food intake. These results indicate that estradiol mediated hypophagia in intact rats could be brought about by an enhanced hypothalamic leptin sensitivity but is unlikely to be driven by changes in NPY or melanocortin system.  相似文献   

2.
Acute exposure to bacterial lipopolysaccharide (LPS) is a potent inducer of immune response as well as hypophagia. Nevertheless, desensitization of responses to LPS occurs during long-term exposure to endotoxin. We induced endotoxin tolerance, injecting repeated (6LPS) LPS doses compared with single (1LPS) treatment. 1LPS, but not 6LPS group, showed decreased food intake and body weight, which was associated with an increased plasma leptin and higher mRNA expression of OB-Rb, MC4R, and SOCS3 in the hypothalamus. Hypophagia induced by 1LPS was associated with lower levels of 2-arachidonoylglycerol (2-AG), increased number of p-STAT3 neurons, and decreased AMP-activated protein kinase (AMPK) activity. Desensitization of hypophagia in the 6LPS group was related to high 2-AG, with no changes in p-STAT3 or increased p-AMPK. Leptin decreased food intake, body weight, 2-AG levels, and AMPK activity and enhanced p-STAT3 in control rats. However, leptin had no effects on 2-AG, p-STAT3, or p-AMPK in the 1LPS and 6LPS groups. Rats treated with HFD to induce leptin resistance showed neither hypophagia nor changes in p-STAT3 after 1LPS, suggesting that leptin and LPS recruit a common signaling pathway in the hypothalamus to modulate food intake reduction. Desensitization of hypophagia in response to repeated exposure to endotoxin is related to an inability of leptin to inhibit AMPK phosphorylation and 2-AG production and activate STAT3. SOCS3 is unlikely to underlie this resistance to leptin signaling in the endotoxin tolerance. The present model of prolonged inflammatory challenge may contribute to further investigations on mechanisms of leptin resistance.  相似文献   

3.
Anorexia and weight loss are frequent complications of acute and chronic infections and result from induction of cytokines, prostaglandins, and other inflammatory mediators that are critical for pathogen elimination. Selective attenuation of the hypophagic response to infection and maintenance of the production of factors essential for infection control would be a useful addition to antimicrobial therapy in the treatment of human disease. Here, we evaluate the relative contribution of cyclooxygenase (COX)-1- and COX-2-derived prostaglandins to anorexia and weight loss precipitated by systemic immune activation by lipopolysaccharide (LPS). Using COX isoform-selective pharmacological inhibitors and gene knockout mice, we found that COX-2 inhibition during LPS-induced inflammation results in preserved food intake and maintenance of body weight, whereas COX-1 inhibition results in augmented and prolonged weight loss. Regulation of neuropeptide Y, corticotropin-releasing hormone, leptin, and interleukin-6 does not change as a function of COX-2 inhibition after LPS administration. Our data implicate COX-2 inhibition as a therapeutic target to maintain nutritional status while still allowing a normal cytokine response during infection.  相似文献   

4.
We have investigated whether interactions between leptin and hypothalamic melanocortin-4 receptors (MC4-Rs) determine individual susceptibility to dietary obesity in rats. Animals with relatively high plasma leptin levels 1 week after presentation of palatable food, before weight increased significantly, subsequently showed lower food intake and weight gain after 8 weeks of palatable feeding than those with low early leptin levels. The rats with lesser weight gain also showed significantly greater down-regulation of MC4-Rs, which mediate hypophagia, in specific hypothalamic areas, namely, the arcuate, dorsomedial, and ventromedial (VMH) nuclei and the median eminence. We suggest that this reflects enhanced receptor exposure to endogenous alpha-melanocyte-stimulating hormone, an appetite-suppressing peptide produced by hypothalamic proopiomelanocortin neurones. It is striking that plasma leptin levels at 1 week were inversely correlated with MC4-R density in the VMH, suggesting that this is a key site of leptin action. The early leptin response to palatable feeding may therefore "program" subsequent feeding behaviour and weight gain by regulating neurones that project selectively to the VMH.  相似文献   

5.
Leptin, from fat to inflammation: old questions and new insights   总被引:21,自引:0,他引:21  
Leptin is 16 kDa adipokine that links nutritional status with neuroendocrine and immune functions. Initially thought to be a satiety factor that regulates body weight by inhibiting food intake and stimulating energy expenditure, leptin is a pleiotropic hormone whose multiple effects include regulation of endocrine function, reproduction, and immunity. Leptin can be considered as a pro-inflammatory cytokine that belongs to the family of long-chain helical cytokines and has structural similarity with interleukin-6, prolactin, growth hormone, IL-12, IL-15, granulocyte colony-stimulating factor and oncostatin M. Because of its dual nature as a hormone and cytokine, leptin links the neuroendocrine and the immune system. The role of leptin in the modulation of immune response and inflammation has recently become increasingly evident. The increase in leptin production that occurs during infection and inflammation strongly suggests that leptin is a part of the cytokine network which governs the inflammatory-immune response and the host defense mechanisms. Leptin plays an important role in inflammatory processes involving T cells and has been reported to modulate T-helper cells activity in the cellular immune response. Several studies have implicated leptin in the pathogenesis of autoimmune inflammatory conditions, such as experimental autoimmune encephalomyelitis, type 1 diabetes, rheumatoid arthritis, and intestinal inflammation. Very recently, a key role for leptin in osteoarthritis has been demonstrated: leptin indeed exhibits, in concert with other pro-inflammatory cytokines, a detrimental effect on articular cartilage by promoting nitric oxide synthesis in chondrocytes. Here, we review the recent advances regarding leptin biology with a special focus on those actions relevant to the role of leptin in the pathophysiology of inflammatory processes and immune responses.  相似文献   

6.
3-Carboxy-4-alkyl-2-methylenebutyrolactone (C75), an inhibitor of fatty acid synthase and stimulator of carnitine palmitoyltransferase-1, reduces food intake and body weight in rodents when given systemically or centrally. Intracellular molecular mechanisms involving changes in cellular energy status are proposed to initiate the feeding and body weight reductions. However, effectors that lie downstream of these initial steps are not yet fully identified. Present experiments characterize the time courses of hypophagia and weight loss after single injections of C75 into the lateral cerebroventicle in rats and go on to identify specific meal pattern changes and coinciding alterations in gene expression for feeding-related hypothalamic neuropeptides. C75 reduced chow intake and body weight dose dependently. Although the principal effects occurred on the first day, weight losses relative to vehicle control were maintained over multiple days. C75 did not affect generalized locomotor activity. C75 began to reduce feeding after a 6-h delay. The hypophagia was due primarily to decreased meal number during 6-12 h without a significant effect on meal size, suggesting that central C75 reduced the drive to initiate meals. C75 prevented the anticipated hypophagia-induced increases in mRNA for AgRP in the arcuate nucleus at 22 h and at 6 h when C75 begins to suppress feeding. Overall, the data suggest that gene expression changes leading to altered melanocortin signaling are important for the hypophagic response to intracerebroventricular C75.  相似文献   

7.

Introduction

It is well established that obesity-related hormones can have modulatory effects associated with the immune response. Ghrelin, a hormone mainly derived from endocrine cells of the gastric mucosa, regulates appetite, energy expenditure and body weight counteracting leptin, a hormone mainly derived from adipocytes. Additionally, receptors of both have been detected on immune cells and demonstrated an immune regulatory function during sepsis.

Methods

In the present study, the effect of peripheral ghrelin administration on early immune response and survival was investigated with lean mice and mice with diet-induced obesity using cecal ligation and puncture to induce sepsis.

Results

In the obese group, we found that ghrelin treatment improved survival, ameliorated hypothermia, and increased hyperleptinemia as compared to the lean controls. We also observed that ghrelin treatment divergently regulated serum IL-1ß and TNF-α concentrations in both lean and obese septic mice. Ghrelin treatment initially decreased but later resulted in increased bacteriaemia in lean mice while having no impact upon obese mice. Similarly, ghrelin treatment increased early neutrophil oxidative burst while causing a decrease 48 hours after sepsis inducement.

Conclusion

In conclusion, as the immune response to sepsis temporally changes, ghrelin treatment differentially mediates this response. Specifically, we observed that ghrelin conferred protective effects during the early phase of sepsis, but during the later phase deteriorated immune response and outcome. These adverse effects were more pronounced upon lean mice as compared to obese mice.  相似文献   

8.
Amphetamine (AMPH) releases monoamines, transiently stimulates locomotion, and inhibits feeding. Using a genetic approach, we show that mice lacking dopamine (DA-deficient, or DD, mice) are resistant to the hypophagic effects of a moderate dose of AMPH (2 microg/g) but manifest normal AMPH-induced hypophagia after restoration of DA signaling in the caudate putamen by viral gene therapy. By contrast, AMPH-induced hypophagia in response to the same dose of AMPH is not blunted in mice lacking the ability to make norepinephrine and epinephrine (Dbh(-/-)), dopamine D(2) receptors (D2r(-/-)), dopamine D(1) receptors (D1r(-/-)), serotonin 2C receptors (Htr2c(-/Y)), neuropeptide Y (Npy(-/-)), and in mice with compromised melanocortin signaling (A(y)). We suggest that, at this moderate dose of AMPH, dysregulation of striatal DA is the primary cause of AMPH-induced hypophagia and that regulated striatal dopaminergic signaling may be necessary for normal feeding behaviors.  相似文献   

9.
The influence of cholecystokinin octapeptide (CCK-8) on normal and insulin-induced feeding and expression of orexigenic hypothalamic neuropeptides was investigated in male rats. CCK-8, administered during meals (4 microg/kg) or continuously (32 microg/kg over 60 min), blunted the stimulating effect of insulin (50 IU/kg) on feeding by reducing meal size (-60%; P<0.05 or -86%; P<0.0001, respectively). Rats without access to food and injected with IP insulin (50 IU/kg) showed increased hypothalamic mRNA levels of orexin (+30%; P<0.05) and melanin-concentrating hormone (+52%; P<0.05), as compared with ad libitum-fed and saline-injected control rats. Continuous IP infusion of CCK-8 (32 microg/kg) blunted these increases. Our results suggest that both orexin and melanin-concentrating hormone participate in the response to insulin hypoglycemia without food being present; these neurons may be involved in mechanisms related to insulin-induced hyperphagia. Signals triggered by peripheral CCK-8 act to decrease the expression of orexin and melanin-concentrating hormone. This may be associated with a reduction in hyperphagia.  相似文献   

10.
Leptin, a 16 kDa non-glycosylated polypeptide produced primarily by adipocytes and released into the systemic circulation, exerts a multitude of regulatory functions including energy utilization and storage, regulation of various endocrine axes, bone metabolism, and thermoregulation. In addition to leptin's best known role as regulator of energy homeostasis, several studies indicate that leptin plays a pivotal role in immune and inflammatory response. Because of its dual nature as a hormone and cytokine, leptin can be nowadays considered the link between neuroendocrine and immune system. The increase in leptin production that occurs during infections and inflammatory processes strongly suggests that this adipokine is a part of the cytokines network which governs inflammatory/immune response and host defence mechanisms. Indeed, leptin plays a relevant role in inflammatory processes involving either innate or adaptive immune responses. Several studies have implicated leptin in the pathogenesis of autoimmune inflammatory conditions such as encephalomyelitis, type I diabetes, bowel inflammation and also articular degenerative diseases such as rheumatoid arthritis and osteoarthritis. Although the mechanisms by which leptin exerts its action as modulator of inflammatory/immune response are likely to be more complex than predicted and far to be completely depicted, there is a general consensus about its pivotal role as pro-inflammatory and immune-modulating agent. Here, we review the most recent advances on leptin biology with a particular attention to its adipokine facet, even though its role as metabolic hormone will be also addressed.  相似文献   

11.
12.
During an infection, a decrease in food intake together with elevated energy expenditure appears. Anorexia is one of the most common signs of illness and is often considered as an undesirable manifestation of sickness. However, compelling data demonstrate that anorexia constitutes an adaptative strategy systematically organised for pathogens elimination. Microbial products stimulate the production by immunocompetent cells of cytokines, which orchestrate the immune response. Since the administration of cytokines reduces food intake, it has been suggested that these agents play a key role in mediating anorexia during infection. This review details the mechanisms of cytokine-induced anorexia, focusing on the role of endogenously produced brain cytokines and more particularly interleukin-1 (IL-1). De novo synthesis of IL-1 occurs in the brain during peripheral infection mimicked by the administration of bacterial endotoxin lipopolysaccharide (LPS). Centrally produced IL-1 acts on its receptors to mediate anorexia as demonstrated by the use of knockout mice and specific IL-1 receptor antagonist. Functional neuroanatomy demonstrates further that LPS or IL-1 specifically activates the hypothalamic neurons that control food intake. Leptin is tightly regulated by IL-1, suggesting the involvement of this hormone in the anorexia of infection. The mechanisms by which hypothalamic arcuate nucleus neuropeptides, which are regulated by IL-1 and leptin, could mediate anorexia during infection are discussed.  相似文献   

13.
Growth hormone (GH) has been shown to be produced and secreted by peripheral immune cells. Therefore, we studied the release of GH by lymphocytes, during various stages of pregnancy and estrous cycle in the cow. The effect of leptin on the lymphocytic GH release was also investigated. Estradiol-17β and progesterone concentrations in plasma were measured in all animals to confirm their reproductive status. Growth hormone levels measured in cell cultures during early pregnancy (days 60-80) and during the luteal phase were greater (p ≤ 0.01) than levels during follicular phase or mid (days 100-160) and late (days 240-245) pregnancy. Leptin treatment stimulated (p ≤ 0.05) lymphocytic GH release during mid-pregnancy when the basal GH levels were low. Changes in lymphocytic GH release and elevation of lymphocytic GH secretion by leptin during pregnancy and the absence of such effects in estrous cycle may indicate that leptin modulation of lymphocytic GH plays a role in the regulation of immune response during pregnancy.  相似文献   

14.
The adiposity hormone leptin has been shown to decrease food intake and body weight by acting on neuropeptide circuits in the hypothalamus. However, it is not clear how this primary hypothalamic action of leptin is translated into a change in food intake. We hypothesize that the behavioral effect of leptin ultimately involves the integration of neuronal responses in the forebrain with those in the nucleus tractus solitarius in the caudal brainstem, where ingestive behavior signals are received from the gastrointestinal system and the blood. One example is the peptide cholecystokinin, which is released from the gut following ingestion of a meal and acts via vagal afferent nerve fibers to activate medial nucleus tractus solitarius neurons and thereby decrease meal size. While it is established that leptin acts in the arcuate nucleus in the hypothalamus to stimulate anorexigenic neurons that inhibit food intake while simulataneously inhibiting orexigenic neurons that increase food intake, the mechanisms linking these effects with regions of the caudal brainstem that integrate cues related to meal termination are unclear. Based on an increasing body of supportive data, we hypothesize that this integration involves a pathway comprising descending projections from neurons from the paraventricular nucleus to neurons within the nucleus tractus solitarius that are activated by meal-related satiety factors. Leptin's anorexic effect comprises primarily decreased meal size, and at subthreshold doses for eliciting an effect on food intake, leptin intensifies the satiety response to circulating cholecystokinin. The location of neurons subserving the effects of intracerebroventricular administration of leptin and intraperitoneal injection of cholecystokinin on food intake has been identified by analysis of Fos expression. These studies reveal a distribution that includes the paraventricular nucleus and regions within the caudal brainstem, with the medial nucleus tractus solitarius having the most pronounced Fos expression in response to leptin and cholecystokinin, and support the hypothesis that the long-term adiposity signal leptin and the short-term satiety signal cholecystokinin act in concert to maintain body weight homeostasis.  相似文献   

15.
The interaction of cholecystokinin-induced hypophagia with cancer anorexia was investigated within both acute (Walker 256 carcinosarcoma) and chronic (methylcholanthrene-induced sarcoma) animal models of cancer anorexia. Cholecystokinin octapeptide (CCK8) effectively reduced feeding for at least one hour in both groups of rats. However, this peptide was no more effective in inducing hypophagia in tumor-bearing rats than in nontumor-bearing control rats when tested at a variety of doses (0.5, 5.0 and 50.0 microgram/kg; IP) both prior to and after the development of anorexia. Therefore, these data do not support a role of cholecystokinin in the mediation of experimental cancer anorexia, since no synergism of CCK8-induced hypophagia with the anorexia was observed.  相似文献   

16.
Leptin is a pleiotropic hormone proposed to link nutritional status to the development of strong Th1 immunity. Because Mycobacterium tuberculosis control is affected by starvation and diabetes, we studied the role of the leptin receptor in regulating distinct immune cells during chronic infection. Infected db/db mice, bearing a natural mutation in the leptin receptor, have a markedly increased bacterial load in their lungs when compared with that of their wild-type counterparts. In response to M. tuberculosis infection, db/db mice exhibited disorganized granulomas, neutrophilia, and reduced B cell migration to the lungs, correlating with dysfunctional lung chemokine responses that include XCL1, CCL2, CXCL1, CXCL2, and CXCL13. In a db/db lung, myeloid cells were delayed in their production of inducible NO synthase and had reduced expression of MHC I and II. Although the Th1 cell response developed normally in the absence of leptin signaling, production of pulmonary IFN-γ was delayed and ineffective. Surprisingly, a proper immune response took place in bone marrow (BM) chimeras lacking leptin receptor exclusively in BM-derived cells, indicating that leptin acts indirectly on immune cells to modulate the antituberculosis response and bacterial control. Together, these findings suggest that the pulmonary response to M. tuberculosis is affected by the host's nutritional status via the regulation of non-BM-derived cells, not through direct action of leptin on Th1 immunity.  相似文献   

17.
The thyroid stimulating hormone beta-subunit (TSHβ) with TSHα form a glycoprotein hormone that is produced by the anterior pituitary in the hypothalamus-pituitary-thyroid (HPT) axis. Although TSHβ has been known for many years to be made by cells of the immune system, the role of immune system TSH has remained unclear. Recent studies demonstrated that cells of the immune system produce a novel splice variant isoform of TSHβ (TSHβv), but little if any native TSHβ. Here, we show that within three days of systemic infection of mice with Listeria monocytogenes, splenic leukocytes synthesized elevated levels of TSHβv. This was accompanied by an influx of CD14+, Ly6C+, Ly6G+ cells into the thyroid of infected mice, and increased levels of intrathyroidal TSHβv gene expression. Adoptive transfer of carboxyfluorescein succinimidyl ester (CFSE)-labeled splenic leukocytes from infected mice into non-infected mice migrated into the thyroid as early as forty-eight hours post-cell transfer, whereas CFSE-labeled cells from non-infected mice failed to traffic to the thyroid. These findings demonstrate for the first time that during bacterial infection peripheral leukocytes produce elevated levels of TSHβv, and that spleen cells traffic to the thyroid where they produce TSHβv intrathyroidally.  相似文献   

18.
Leptin is a new plausible candidate for the molecular link between nutritional status and the reproductive axis. In previous studies we described that continuous natural nematode infections in heifers retarded growth and delayed the onset of puberty, and that the insulin-like growth factor I (IGF-I) was involved. In the present study we monitored the leptin levels during development in heifers naturally parasitized versus those chronically treated with ivermectin and we investigated whether growth hormone (GH) accounted for the differences in IGF-I previously noted. Insulin levels were also measured. Prolactin hormone was recorded as an indicator of immune system activation. We found a direct correlation between leptin and body weight during development and a prepubertal surge of the hormone 2 weeks before the first progesterone peak that indicates the onset of puberty. This suggests that leptin may act as a signal for this event. Insulin did not vary during growth and prepuberty. On the other hand, GH as not responsible for diminished IGF-I levels in parasitized animals as levels were similar in both groups. The GH levels were high at birth and then diminished rapidly and remained constant during development and puberty. The last hormone studied, prolactin, followed seasonal changes of sunlight duration and presented sporadic bursts in infected animals. These were related to high nematode infection and are probably involved in the immune response of the host.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号