首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ordered assembly of the herpes simplex virus (HSV) type 1 replication apparatus leading to replication compartments likely involves the initial assembly of five viral replication proteins, ICP8, UL9, and the heterotrimeric helicase-primase complex (UL5-UL8-UL52), into replication foci. The polymerase and polymerase accessory protein are subsequently recruited to these foci. Four stages of viral infection (stages I to IV) have been described previously (J. Burkham, D. M. Coen, and S. K. Weller, J. Virol. 72:10100-10107, 1998). Of these, stage III foci are equivalent to the previously described promyelocytic leukemia protein (PML)-associated prereplicative sites and contain all seven replication proteins. We constructed a series of mutations in the putative primase subunit, UL52, of the helicase-primase and have analyzed the mutant proteins for their abilities to form intermediates leading to the formation of replication compartments. The results shown in this paper are consistent with the model that the five proteins, ICP8, UL5, UL8, UL9, and UL52, form a scaffold and that formation of this scaffold does not rely on enzymatic functions of the helicase and primase. Furthermore, we demonstrate that recruitment of polymerase to this scaffold requires the presence of an active primase subunit. These results suggest that polymerase recruitment to replication foci requires primer synthesis. Furthermore, they support the existence of two types of stage III intermediates in the formation of replication compartments: stage IIIa foci, which form the scaffold, and stage IIIb foci, which contain, in addition, HSV polymerase, the polymerase accessory subunit, and cellular factors such as PML.  相似文献   

2.
Recombination-dependent replication is an integral part of the process by which double-strand DNA breaks are repaired to maintain genome integrity. It also serves as a means to replicate genomic termini. We reported previously on the reconstitution of a recombination-dependent replication system using purified herpes simplex virus type 1 proteins (Nimonkar A. V., and Boehmer, P. E. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 10201-10206). In this system, homologous pairing by the viral single-strand DNA-binding protein (ICP8) is coupled to DNA synthesis by the viral DNA polymerase and helicase-primase in the presence of a DNA-relaxing enzyme. Here we show that DNA synthesis in this system is dependent on the viral polymerase processivity factor (UL42). Moreover, although DNA synthesis is strictly dependent on topoisomerase I, it is only stimulated by the viral helicase in a manner that requires the helicase-loading protein (UL8). Furthermore, we have examined the dependence of DNA synthesis in the viral system on species-specific protein-protein interactions. Optimal DNA synthesis was observed with the herpes simplex virus type 1 replication proteins, ICP8, DNA polymerase (UL30/UL42), and helicase-primase (UL5/UL52/UL8). Interestingly, substitution of each component with functional homologues from other systems for the most part did not drastically impede DNA synthesis. In contrast, recombination-dependent replication promoted by the bacteriophage T7 replisome was disrupted by substitution with the replication proteins from herpes simplex virus type 1. These results show that although DNA synthesis performed by the T7 replisome is dependent on cognate protein-protein interactions, such interactions are less important in the herpes simplex virus replisome.  相似文献   

3.
Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase catalytic subunit E9 associated with its heterodimeric co-factor A20·D4 required for processive genome synthesis. Although A20 has no known enzymatic activity, D4 is an active uracil-DNA glycosylase (UNG). The presence of a repair enzyme as a component of the viral replication machinery suggests that, for poxviruses, DNA synthesis and base excision repair is coupled. We present the 2.7 Å crystal structure of the complex formed by D4 and the first 50 amino acids of A20 (D4·A201–50) bound to a 10-mer DNA duplex containing an abasic site resulting from the cleavage of a uracil base. Comparison of the viral complex with its human counterpart revealed major divergences in the contacts between protein and DNA and in the enzyme orientation on the DNA. However, the conformation of the dsDNA within both structures is very similar, suggesting a dominant role of the DNA conformation for UNG function. In contrast to human UNG, D4 appears rigid, and we do not observe a conformational change upon DNA binding. We also studied the interaction of D4·A201–50 with different DNA oligomers by surface plasmon resonance. D4 binds weakly to nonspecific DNA and to uracil-containing substrates but binds abasic sites with a Kd of <1.4 μm. This second DNA complex structure of a family I UNG gives new insight into the role of D4 as a co-factor of vaccinia virus DNA polymerase and allows a better understanding of the structural determinants required for UNG action.  相似文献   

4.
The origin-specific replication of the herpes simplex virus 1 genome requires seven proteins: the helicase-primase (UL5-UL8-UL52), the DNA polymerase (UL30-UL42), the single-strand DNA binding protein (ICP8), and the origin-binding protein (UL9). We reconstituted these proteins, excluding UL9, on synthetic minicircular DNA templates and monitored leading and lagging strand DNA synthesis using the strand-specific incorporation of dTMP and dAMP. Critical features of the assays that led to efficient leading and lagging stand synthesis included high helicase-primase concentrations and a lagging strand template whose sequence resembled that of the viral DNA. Depending on the nature of the minicircle template, the replication complex synthesized leading and lagging strand products at molar ratios varying between 1:1 and 3:1. Lagging strand products (~0.2 to 0.6 kb) were significantly shorter than leading strand products (~2 to 10 kb), and conditions that stimulated primer synthesis led to shorter lagging strand products. ICP8 was not essential; however, its presence stimulated DNA synthesis and increased the length of both leading and lagging strand products. Curiously, human DNA polymerase α (p70-p180 or p49-p58-p70-p180), which improves the utilization of RNA primers synthesized by herpesvirus primase on linear DNA templates, had no effect on the replication of the minicircles. The lack of stimulation by polymerase α suggests the existence of a macromolecular assembly that enhances the utilization of RNA primers and may functionally couple leading and lagging strand synthesis. Evidence for functional coupling is further provided by our observations that (i) leading and lagging strand synthesis produce equal amounts of DNA, (ii) leading strand synthesis proceeds faster under conditions that disable primer synthesis on the lagging strand, and (iii) conditions that accelerate helicase-catalyzed DNA unwinding stimulate decoupled leading strand synthesis but not coordinated leading and lagging strand synthesis.  相似文献   

5.
Replication of herpes simplex virus takes place in the cell nucleus and is carried out by a replisome composed of six viral proteins: the UL30-UL42 DNA polymerase, the UL5-UL8-UL52 helicase-primase, and the UL29 single-stranded DNA-binding protein ICP8. The replisome is loaded on origins of replication by the UL9 initiator origin-binding protein. Virus replication is intimately coupled to recombination and repair, often performed by cellular proteins. Here, we review new significant developments: the three-dimensional structures for the DNA polymerase, the polymerase accessory factor, and the single-stranded DNA-binding protein; the reconstitution of a functional replisome in vitro; the elucidation of the mechanism for activation of origins of DNA replication; the identification of cellular proteins actively involved in or responding to viral DNA replication; and the elucidation of requirements for formation of replication foci in the nucleus and effects on protein localization.  相似文献   

6.
Genome replication is inefficient without processivity factors, which tether DNA polymerases to their templates. The vaccinia virus DNA polymerase E9 requires two viral proteins, A20 and D4, for processive DNA synthesis, yet the mechanism of how this tricomplex functions is unknown. This study confirms that these three proteins are necessary and sufficient for processivity, and it focuses on the role of D4, which also functions as a uracil DNA glycosylase (UDG) repair enzyme. A series of D4 mutants was generated to discover which sites are important for processivity. Three point mutants (K126V, K160V, and R187V) which did not function in processive DNA synthesis, though they retained UDG catalytic activity, were identified. The mutants were able to compete with wild-type D4 in processivity assays and retained binding to both A20 and DNA. The crystal structure of R187V was resolved and revealed that the local charge distribution around the substituted residue is altered. However, the mutant protein was shown to have no major structural distortions. This suggests that the positive charges of residues 126, 160, and 187 are required for D4 to function in processive DNA synthesis. Consistent with this is the ability of the conserved mutant K126R to function in processivity. These mutants may help unlock the mechanism by which D4 contributes to processive DNA synthesis.Poxviruses are large, double-stranded DNA viruses that replicate exclusively in the cell cytoplasm in granular structures known as virosomes (31). Separated from the host nucleus, they rely on their own encoded gene products for DNA synthesis and replication (43). To efficiently synthesize its ∼200,000-base genome, the poxvirus DNA polymerase must be tethered to the DNA template by its processivity factor. DNA processivity factors are proteins that stabilize polymerases onto their templates for effective genome replication (1, 22). Processivity factors are synthesized by nearly all replicating systems, ranging from bacteriophages to eukaryotes, yet each one is specific to its cognate polymerase. In the presence of these factors, polymerases are able to incorporate a great number of nucleotides per template binding event; in their absence, polymerases detach from their templates too frequently to successfully replicate the genome (14, 20). E9, the DNA polymerase of the prototypical poxvirus, vaccinia virus, synthesizes approximately 10 nucleotides before dissociating from the viral DNA template (28). However, it can incorporate thousands of nucleotides when it is associated with its processivity factor (29). This extended strand synthesis, known as processivity, is necessary for vaccinia virus to effectively replicate its 192-kb genome.The protein A20 was first reported to be a component of the vaccinia virus processive DNA polymerase (19, 37), yet we were unable to establish processivity in vitro using only A20 and E9. To identify which other proteins were required for processivity, we assessed six in vitro-synthesized proteins known to be involved in vaccinia virus replication (E9, A20, B1, D4, D5, and H5). We found that the protein D4, a uracil DNA glycosylase (UDG), was required in addition to A20 and E9 and that these three proteins are both necessary and sufficient for vaccinia virus processivity. Indeed, A20 and D4 have been shown to interact with each other (15, 26), and our finding supports a report identifying A20 and D4 as forming a heterodimeric processivity factor for E9 (41). Here, we use mutational analysis to examine the role of D4 in processive DNA synthesis. We report the finding of three D4 mutants which are unable to function in processivity yet retain their UDG enzymatic activity and their ability to bind both A20 and DNA.  相似文献   

7.
Herpes simplex virus type 1 DNA replication occurs in nuclear domains termed replication compartments, which are areas of viral single-stranded DNA-binding protein (UL29) localization (M.P. Quinlan, L. B. Chen, and D. M. Knipe, Cell 36:857-868). In the presence of herpesvirus-specific polymerase inhibitors, UL29 localizes to punctate nuclear foci called prereplicative sites. Using versions of the helicase-primase complex proteins containing short peptide epitopes which can be detected in an immunofluorescence assay, we have found that the helicase-primase complex localizes to prereplicative sites and replication compartments. To determine if prereplicative site formation is dependent upon these and other essential viral replication proteins, we have studied UL29 localization in cells infected with replication-defective viruses. Cells infected with viruses that fail to express one of the three helicase-primase subunits or the origin-binding protein show a diffuse nuclear staining for UL29. However, in the presence of polymerase inhibitors, mutant-infected cells contain UL29 in prereplicative sites. Replication-defective viruses containing subtle mutations in the helicase or origin-binding proteins behaved identically to their null mutant counterparts. In contrast, cells infected with viral mutants which fail to express the polymerase protein contain prereplicative sites in the absence and presence of polymerase inhibitors. We propose that active viral polymerase prevents the formation of prereplicative sites. Models of the requirement of essential viral replication proteins in the assembly of prereplicative sites are presented.  相似文献   

8.
The vaccinia virus E9 protein, the catalytic subunit of the DNA polymerase holoenzyme, is inherently distributive under physiological conditions, although infected cells contain a highly processive form of the enzyme. The viral A20 protein was previously characterized as a stoichiometric component of the processivity factor, and an interaction between A20 and E9 was documented in vivo. A20 has been shown to interact with D4, the virally encoded uracil DNA glycosylase (UDG), by yeast-two hybrid and in vitro analysis. Here we confirm that UDG and A20 interact in vivo and show that temperature-sensitive viruses with lesions in the D4R gene show a profound defect in DNA synthesis at the non-permissive temperature. Moreover, cytoplasmic extracts prepared from these infections lack processive polymerase activity in vitro, implicating D4 in the assembly or activity of the processive polymerase. Upon overexpression of 3xFLAG-UDG, A20, and E9 in various combinations, we purified dimeric and trimeric UDG-A20 and UDG-A20-polymerase complexes, respectively. These complexes are stable in 750 mm NaCl and can be further purified by Mono Q chromatography. Notably, the trimeric complex displays robust processive polymerase activity, and the dimeric complex can confer processivity on purified E9. Consistent with previous reports that the catalytic activity of UDG is dispensable for virus replication in tissue culture, we find that the role of UDG role in the polymerase complex is not diminished by mutations targeting residues involved in uracil recognition or excision. Our cumulative data support the conclusion that A20 and UDG form a heterodimeric processivity factor that associates with E9 to comprise the processive polymerase holoenzyme.  相似文献   

9.
Herpes simplex virus replicates its DNA within nuclear structures called replication compartments. In contrast, in cells in which viral DNA replication is inhibited, viral replication proteins localize to punctate structures called prereplicative sites. We have utilized viruses individually mutated in each of the seven essential replication genes to assess the function of each replication protein in the assembly of these proteins into prereplicative sites. We observed that four replication proteins, UL5, UL8 UL52, and UL9, are necessary for the localization of ICP8 (UL29) to prereplicative sites natural infection conditions. Likewise, four of the seven viral DNA replication proteins, UL5, UL52, UL9, and ICP8, are necessary for the localization of the viral DNA polymerase to prereplicative sites. On the basis of these results, we present a model for prereplicative site formation in infected cells in which the helicase-primase components (UL5, UL8, and UL52), the origin-binding protein (UL9), and the viral single-stranded DNA-binding protein (ICP8) assemble together to initiate the process. This is followed by the recruitment of the viral polymerase into the structures, a step facilitated by the polymerase accessory protein, UL42. Host cell factors can apparently substitute for some of these viral proteins under certain conditions, because the viral protein requirements for prereplicative site formation are reduced in transfected cells and in infected cells treated with drugs that inhibit DNA synthesis.  相似文献   

10.
Although the vaccinia virus DNA polymerase is inherently distributive, a highly processive form of the enzyme exists within the cytoplasm of infected cells (W. F. McDonald, N. Klemperer, and P. Traktman, Virology 234:168-175, 1997). In the accompanying report we outline the purification of the 49-kDa A20 protein as a stoichiometric component of the processive polymerase complex (N. Klemperer, W. McDonald, K. Boyle, B. Unger, and P. Traktman, J. Virol. 75:12298-12307, 2001). To complement this biochemical analysis, we undertook a genetic approach to the analysis of the structure and function of the A20 protein. Here we report the application of clustered charge-to-alanine mutagenesis of the A20 gene. Eight mutant viruses containing altered A20 alleles were isolated using this approach; two of these, tsA20-6 and tsA20-ER5, have tight temperature-sensitive phenotypes. At the nonpermissive temperature, neither virus forms macroscopic plaques and the yield of infectious virus is <1% of that obtained at the permissive temperature. Both viruses show a profound defect in the accumulation of viral DNA at the nonpermissive temperature, although both the A20 protein and DNA polymerase accumulate to wild-type levels. Cytoplasmic extracts prepared from cells infected with the tsA20 viruses show a defect in processive polymerase activity; they are unable to direct the formation of RFII product using a singly primed M13 template. In sum, these data indicate that the A20 protein plays an essential role in the viral life cycle and that viruses with A20 lesions exhibit a DNA(-) phenotype that is correlated with a loss in processive polymerase activity as assayed in vitro. The vaccinia virus A20 protein can, therefore, be considered a new member of the family of proteins (E9, B1, D4, and D5) with essential roles in vaccinia virus DNA replication.  相似文献   

11.
The treatment of mammalian cells with genotoxic substances can trigger DNA damage responses that include the hyperphosphorylation of replication protein A (RPA), a protein that plays key roles in the recognition, signaling, and repair of damaged DNA. We have previously reported that in the presence of a viral polymerase inhibitor, herpes simplex virus type 1 (HSV-1) infection induces the hyperphosphorylation of RPA (D. E. Wilkinson and S. K. Weller, J. Virol. 78:4783-4796, 2004). We initiated the present study to further characterize this genotoxic response to HSV-1 infection. Here we report that infection in the presence of polymerase inhibitors triggers an S-phase-specific response to DNA damage, as demonstrated by induction of the hyperphosphorylation of RPA and its accumulation within viral foci specific to the S phase of the cell cycle. This DNA damage response occurred in the presence of viral polymerase inhibitors and required the HSV-1 polymerase holoenzyme as well as the viral single-stranded-DNA binding protein. Treatment with an inhibitor of the viral helicase-primase did not induce the hyperphosphorylation of RPA or its accumulation in infected cells. Taken together, these results suggest that the S-phase-specific DNA damage response to infection is dependent on the specific inhibition of the polymerase. Finally, RPA hyperphosphorylation was not induced during productive infection, indicating that active viral replication does not trigger this potentially detrimental stress response.  相似文献   

12.
13.
R13-1 is an intertypic recombinant virus in which the left-hand 18% of the herpes simplex virus type 1 (HSV-1) genome is replaced by homologous sequences from HSV-2. R13-1 is nonneurovirulent and defective in DNA replication in neurons. The defect was localized to the UL5 open reading frame by using marker rescue analysis (D. C. Bloom and J. G. Stevens, J. Virol. 68:3761–3772, 1994). To provide conclusive evidence that UL5 is the only HSV-2 gene involved in the restricted replication phenotype of R13-1, we have characterized the phenotype of a recombinant virus (IB1) in which only the UL5 gene of HSV-1 was replaced by HSV-2 UL5. Data from 50% lethal dose determinations and the in vivo yields of virus suggested that IB1 has the same phenotypic characteristics as R13-1. UL5 is the helicase component of a complex with helicase and primase activities. All three subunits of this complex (UL5, UL8, and UL52) are required for viral DNA replication in all cell types. The intertypic complex HSV-2 UL5–HSV-1 UL8–HSV-1 UL52 was purified and biochemically characterized. The primase activity of the intertypic complex was 10-fold lower than that of HSV-1 UL5–HSV-1 UL8–HSV-1 UL52. The ATPase activity was comparable to that of the HSV-1 enzyme complex, and although the helicase activity was threefold lower, this did not interfere with the synthesis of leading strands by the HSV polymerase. One explanation for these findings is that the interactions between the subunits of the helicase-primase intertypic complex that are important for the full function of each subunit are inappropriate or weak.  相似文献   

14.
Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase   总被引:8,自引:0,他引:8  
Viruses depend on host-derived factors for their efficient genome replication. Here, we demonstrate that a cellular peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin B (CyPB), is critical for the efficient replication of the hepatitis C virus (HCV) genome. CyPB interacted with the HCV RNA polymerase NS5B to directly stimulate its RNA binding activity. Both the RNA interference (RNAi)-mediated reduction of endogenous CyPB expression and the induced loss of NS5B binding to CyPB decreased the levels of HCV replication. Thus, CyPB functions as a stimulatory regulator of NS5B in HCV replication machinery. This regulation mechanism for viral replication identifies CyPB as a target for antiviral therapeutic strategies.  相似文献   

15.
16.
Herpes simplex virus-1 helicase-primase. Physical and catalytic properties.   总被引:10,自引:0,他引:10  
Herpes simplex virus type 1 (HSV-1) encodes a helicase-primase that consists of the products of the UL5, UL8, and UL52 genes (Crute, J. J., Tsurumi, T., Zhu, L., Weller, S. K., Olivo, P. D., Challberg, M. D., Mocarski, E. S. and Lehman, I. R. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 2186-2189). Further characterization of the three-subunit enzyme isolated from HSV-1-infected CV-1 cells shows it to be a heterotrimer, consisting of one polypeptide encoded by each of the UL5, UL8, and UL52 genes. Analysis of the primase and helicase components of the HSV-1 helicase-primase has shown that the primase component synthesizes oligoribonucleotide primers 8-12 nucleotides in length. The helicase component unwinds duplex DNA substrates at the rate of about two nucleotides/s, but only in the presence of the HSV-1-encoded single-stranded DNA binding protein. Thus, the HSV-1 helicase-primase contains the requisite enzymatic activities that permit it to function at the viral replication fork.  相似文献   

17.
The vaccinia virus DNA polymerase is inherently distributive but acquires processivity by associating with a heterodimeric processivity factor comprised of the viral A20 and D4 proteins. D4 is also an enzymatically active uracil DNA glycosylase (UDG). The presence of an active repair protein as an essential component of the polymerase holoenzyme is a unique feature of the replication machinery. We have shown previously that the A20-UDG complex has a stoichiometry of ~1:1, and our data suggest that A20 serves as a bridge between polymerase and UDG. Here we show that conserved hydrophobic residues in the N' terminus of A20 are important for its binding to UDG. Our data argue against the assembly of D4 into higher order multimers, suggesting that the processivity factor does not form a toroidal ring around the DNA. Instead, we hypothesize that the intrinsic, processive DNA scanning activity of UDG tethers the holoenzyme to the DNA template. The inclusion of UDG as an essential holoenzyme component suggests that replication and base excision repair may be coupled. Here we show that the DNA polymerase can utilize dUTP as a substrate in vitro. Moreover, uracil moieties incorporated into the nascent strand during holoenzyme-mediated DNA synthesis can be excised by the viral UDG present within this holoenzyme, leaving abasic sites. Finally, we show that the polymerase stalls upon encountering an abasic site in the template strand, indicating that, like many replicative polymerases, the poxviral holoenzyme cannot perform translesion synthesis across an abasic site.  相似文献   

18.
The UL5 protein of herpes simplex virus type 1, one component of the viral helicase-primase complex, contains six sequence motifs found in all members of a superfamily of DNA and RNA helicases. Although this superfamily contains more than 20 members ranging from bacteria to mammalian cells and their viruses, the importance of these motifs has not been addressed experimentally for any one of them. In this study, we have examined the functional significance of these six motifs for the UL5 protein through the introduction of site-specific mutations resulting in single amino acid substitutions of the most highly conserved residues within each motif. A transient replication complementation assay was used to test the effect of each mutation on the function of the UL5 protein in viral DNA replication. In this assay, a mutant UL5 protein expressed from an expression clone is used to complement a replication-deficient null mutant with a mutation in the UL5 gene for the amplification of herpes simplex virus origin-containing plasmids. Eight mutations in conserved regions and three similar mutations in nonconserved regions of the UL5 gene were analyzed, and the results indicate that all six conserved motifs are essential to the function of UL5 protein in viral DNA replication; on the other hand, mutations in nonconserved regions are tolerated. These data provide the first direct evidence for the importance of these conserved regions in any member of the superfamily of DNA and RNA helicases. In addition, three motif mutations were introduced into the viral genome, and the phenotypic analyses of these mutants are consistent with results from the transient replication complementation assay. The ability of these three mutant UL5 proteins to form specific interactions with other members of the helicase-primase complex, UL8 and UL52, indicates that the functional domains required for replication activity of UL5 are separable from domains responsible for protein-protein interactions. It is anticipated that this type of structure-function analysis will lead to the identification of protein domains that contribute not only to the enzymatic activities of helicase or primase but also to protein-protein interactions within members of the complex.  相似文献   

19.
Herpes simplex virus type 1 (HSV-1) DNA replication is associated with nuclear domains called ND10, which contain host recombination proteins such as RPA, RAD51, and NBS1 and participate in the cell's response to DNA damage. The stages of HSV-1 infection have been described previously. Infected cells at stage IIIa are observed after the initial disruption of ND10 and display nuclear foci, or prereplicative sites, containing the viral single-stranded-DNA-binding protein (UL29), the origin-binding protein (UL9), and the heterotrimeric helicase-primase. At stage IIIb, the viral polymerase, its processivity factor, and the ND10, protein PML, are also recruited to these sites. In this work, RPA, RAD51, and NBS1 were observed predominantly in stage IIIb but not stage IIIa prereplicative sites, suggesting that the efficient recruitment of these recombination proteins is dependent on the presence of the viral polymerase and other replication proteins within these sites. On the other hand, Ku86 was not found in any of the precursors to replication compartments, suggesting that it is excluded from the early stages of HSV-1 replication. Western blot analysis showed that RPA and NBS1 were (hyper)phosphorylated during infection, indicating that infection induces the host response to DNA damage. Finally, RPA, RAD51, and NBS1 were found to be associated with UL29 foci observed in transfected cells expressing UL29 and the helicase-primase heterotrimer and containing intact ND10. The ability to recruit recombination and repair proteins to various subassemblies of viral replication proteins thus appears to depend on several factors, including the presence of the viral polymerase and/or UL9 within prereplicative sites and the integrity of ND10.  相似文献   

20.
Ishii K  Moss B 《Journal of virology》2001,75(4):1656-1663
Previous analyses of randomly generated, temperature-sensitive vaccinia virus mutants led to the mapping of DNA synthesis negative complementation groups to the B1R, D4R, D5R, and E9L genes. Evidence from the yeast two-hybrid system that the D4R and D5R proteins can interact with the A20R protein suggested that A20R was also involved in DNA replication. We found that the A20R gene was transcribed early after infection, consistent with such a role. To investigate the function of the A20R protein, targeted mutations were made by substituting alanines for charged amino acids occurring in 11 different clusters. Four mutants were not isolated, suggesting that they were lethal, two mutants exhibited no temperature sensitivity, two mutants exhibited partial temperature sensitivity, and two mutants formed no plaques or infectious virus at 39 degrees C. The two mutants with stringent phenotypes were further characterized. Temperature shift-up experiments indicated that the crucial period was between 6 and 12 h after infection, making it unlikely that the defect was in virus entry, early gene expression, or a late stage of virus assembly. Similar patterns of metabolically labeled viral early proteins were detected at permissive and nonpermissive temperatures, but one mutant showed an absence of late proteins under the latter conditions. Moreover, no viral DNA synthesis was detected when cells were infected with either stringent mutant at 39 degrees C. The previous yeast two-hybrid analysis together with the present characterization of A20R temperature-sensitive mutants suggested that the A20R, D4R, and D5R proteins are components of a multiprotein DNA replication complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号