首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
炎症反应是缺血性脑损伤的重要机制之一,过度的炎症免疫反应会加剧脑损伤的程度。作为先天免疫系统的重要组成部分,Toll样受体9(Toll like receptor 9,TLR9)通过识别其特异性的配体Cp G-DNA,从而激活先天免疫系统,释放大量前炎症细胞因子,参与缺血性脑损伤的炎症反应过程。近年来,有学者提出将TLR9作为一个新的缺血预处理靶点,即通过启动TLR9信号转导通路增加体内炎症细胞因子的水平来对抗缺血损伤。本文通过对近年TLR9信号通路介导的炎症反应与缺血性脑损伤相关研究进展作一综述,为寻求临床安全高效的缺血性脑损伤防治措施提供理论依据。  相似文献   

2.
3.
The EphA2 receptor tyrosine kinase promotes cell migration and cancer malignancy through a ligand- and kinase-independent distinctive mechanism that has been linked to high Ser-897 phosphorylation and low tyrosine phosphorylation. Here, we demonstrate that EphA2 forms dimers in the plasma membrane of HEK293T cells in the absence of ephrin ligand binding, suggesting that the current seeding mechanism model of EphA2 activation is incomplete. We also characterize a dimerization-deficient EphA2 mutant that shows enhanced ability to promote cell migration, concomitant with increased Ser-897 phosphorylation and decreased tyrosine phosphorylation compared with EphA2 wild type. Our data reveal a correlation between unliganded dimerization and tumorigenic signaling and suggest that EphA2 pro-tumorigenic activity is mediated by the EphA2 monomer. Thus, a therapeutic strategy that aims at the stabilization of EphA2 dimers may be beneficial for the treatment of cancers linked to EphA2 overexpression.  相似文献   

4.
5.
Pekna  Marcela  Stokowska  Anna  Pekny  Milos 《Neurochemical research》2021,46(10):2626-2637
Neurochemical Research - Ischemic stroke is a major cause of disability. No efficient therapy is currently available, except for the removal of the occluding blood clot during the first hours after...  相似文献   

6.
The Ca2+ sensor calmodulin (CaM) regulates numerous proteins involved in G protein-coupled receptor (GPCR) signaling. CaM binds directly to some GPCRs, including the dopamine D2 receptor. We confirmed that the third intracellular loop of the D2 receptor is a direct contact point for CaM binding using coimmunoprecipitation and a polyHis pull-down assay, and we determined that the D2-like receptor agonist 7-OH-DPAT increased the colocalization of the D2 receptor and endogenous CaM in both 293 cells and in primary neostriatal cultures. The N-terminal three or four residues of D2-IC3 were required for the binding of CaM; mutation of three of these residues in the full-length receptor (I210C/K211C/I212C) decreased the coprecipitation of the D2 receptor and CaM and also significantly decreased D2 receptor signaling, without altering the coupling of the receptor to G proteins. Taken together, these findings suggest that binding of CaM to the dopamine D2 receptor enhances D2 receptor signaling.  相似文献   

7.
Phospholipases A2 in Ischemic and Toxic Brain Injury   总被引:3,自引:0,他引:3  
Phospholipases A2 (PLA2s) regulate hydrolysis of fatty acids, including arachidonic acid, from the sn-2 position of phospholipid membranes. PLA2 activity has been implicated in neurotoxicity and neurodegenerative processes secondary to ischemia and reperfusion and other oxidative stresses. The PLA2s constitute a superfamily whose members have diverse functions and patterns of expression. A large number of PLA2s have been identified within the central nervous systems of rodents and humans. We postulated that group IV large molecular weight, cytosolic phospholipase A2 (cPLA2) has a unique role in neurotoxicity associated with ischemic or toxin stress. We created mice deficient in cPLA2 and tested this hypothesis in two injury models, ischemia/reperfusion and MPTP neurotoxicity. In each model cPLA2 deficient mice are protected against neuronal injury when compared to their wild type littermate controls. These experiments support the hypothesis that cPLA2 is an important mediator of ischemic and oxidative injuries in the brain.  相似文献   

8.
9.
急性脑梗死约占全部脑卒中的70%,病死率和致残率高,且极易复发。但目前针对急性脑梗死在时间窗内溶栓、抗凝等治疗手段不能从根本上切实有效地修复受损脑组织,且伴有出血等风险。寻找脑梗死形成发展的原因并予以治疗迫在眉睫。酸中毒是引起缺血性脑损伤的重要机制。大量实验研究表明,酸中毒能加重神经元的缺血性损伤,且其梗死面积与酸中毒的程度直接相关。但缺血产生的酸中毒如何引起神经元损伤的确切机制尚不明确。最近研究发现酸中毒能激活一种在中枢及周围神经中广泛存在的膜通道,即酸敏感离子通道,它对Ca2+通透,能引起细胞内Ca2+超载,同时能激活胞内酶引起细胞内蛋白质、脂类及核酸的降解,加重缺血后脑损伤。本文就酸敏感离子通道1a与脑梗死做一综述。  相似文献   

10.
张映  刘颖异  胡玲琴  马驰  潘玉君 《生物磁学》2014,(13):2566-2568
急性脑梗死约占全部脑卒中的70%,病死率和致残率高,且极易复发。但目前针对急性脑梗死在时间窗内溶栓、抗凝等治疗手段不能从根本上切实有效地修复受损脑组织,且伴有出血等风险。寻找脑梗死形成发展的原因并予以治疗迫在眉睫。酸中毒是引起缺血性脑损伤的重要机制。大量实验研究表明,酸中毒能加重神经元的缺血性损伤,且其梗死面积与酸中毒的程度直接相关。但缺血产生的酸中毒如何引起神经元损伤的确切机制尚不明确。最近研究发现酸中毒能激活一种在中枢及周围神经中广泛存在的膜通道,即酸敏感离子通道,它对Ca^2+通透,能引起细胞内Ca^2+超载,同时能激活胞内酶引起细胞内蛋白质、脂类及核酸的降解,加重缺血后脑损伤。本文就酸敏感离子通道1a与脑梗死做一综述。  相似文献   

11.
Acidosis is a common feature of brain in acute neurological injury, particularly in ischemia where low pH has been assumed to play an important role in the pathological process. However, the cellular and molecular mechanisms underlying acidosis-induced injury remain unclear. Recent studies have demonstrated that activation of Ca2+-permeable acid-sensing ion channels (ASIC1a) is largely responsible for acidosis-mediated, glutamate receptor-independent, neuronal injury. In cultured mouse cortical neurons, lowering extracellular pH to the level commonly seen in ischemic brain activates amiloride-sensitive ASIC currents. In the majority of these neurons, ASICs are permeable to Ca2+, and an activation of these channels induces increases in the concentration of intracellular Ca2+ ([Ca2+]i). Activation of ASICs with resultant [Ca2+]i loading induces time-dependent neuronal injury occurring in the presence of the blockers for voltage-gated Ca2+ channels and the glutamate receptors. This acid-induced injury is, however, inhibited by the blockers of ASICs, and by reducing [Ca2+]o. In focal ischemia, intracerebroventricular administration of ASIC1a blockers, or knockout of the ASIC1a gene protects brain from injury and does so more potently than glutamate antagonism. Furthermore, pharmacological blockade of ASICs has up to a 5 h therapeutic time window, far beyond that of glutamate antagonists. Thus, targeting the Ca2+-permeable acid-sensing ion channels may prove to be a novel neuroprotective strategy for stroke patients.  相似文献   

12.
Brain injuries promote upregulation of so-called proinflammatory prostaglandins, notably prostaglandin E2 (PGE2), leading to overactivation of a class of its cognate G-protein-coupled receptors, including EP1, which is considered a promising target for treatment of ischemic stroke. However, the role of the EP1 receptor is complex and depends on the type of brain injury. This study is focused on the investigation of the role of the EP1 receptor in a controlled cortical impact (CCI) model, a preclinical model of traumatic brain injury (TBI). The therapeutic effects of post-treatments with a widely studied EP1 receptor antagonist, SC-51089, were examined in wildtype and EP1 receptor knockout C57BL/6 mice. Neurological deficit scores (NDS) were assessed 24 and 48 h following CCI or sham surgery, and brain immunohistochemical pathology was assessed 48 h after surgery. In wildtype mice, CCI resulted in an obvious cortical lesion and localized hippocampal edema with an associated significant increase in NDS compared to sham-operated animals. Post-treatments with the selective EP1 receptor antagonist SC-51089 or genetic knockout of EP1 receptor had no significant effects on cortical lesions and hippocampal swelling or on the NDS 24 and 48 h after CCI. Immunohistochemistry studies revealed CCI-induced gliosis and microglial activation in selected ipsilateral brain regions that were not affected by SC-51089 or in the EP1 receptor-deleted mice. This study provides further clarification on the respective contribution of the EP1 receptor in TBI and suggests that, under this experimental paradigm, the EP1 receptor would have limited effects in modulating acute neurological and anatomical pathologies following contusive brain trauma. Findings from this protocol, in combination with previous studies demonstrating differential roles of EP1 receptor in ischemic, neurotoxic, and hemorrhagic conditions, provide scientific background and further clarification of potential therapeutic application of prospective prostaglandin G-protein-coupled receptor drugs in the clinic for treatment of TBI and other acute brain injuries.  相似文献   

13.
Ischemia-reperfusion (I/R) is a model of acute kidney injury (AKI) that is characterized by vasoconstriction, oxidative stress, apoptosis and inflammation. Previous studies have shown that activation of the renin-angiotensin system (RAS) may contribute to these processes. Angiotensin converting enzyme 2 (ACE2) metabolizes angiotensin II (Ang II) to angiotensin-(1–7), and recent studies support a beneficial role for ACE2 in models of chronic kidney disease. However, the role of ACE2 in models of AKI has not been fully elucidated. In order to test the hypothesis that ACE2 plays a protective role in AKI we assessed I/R injury in wild-type (WT) mice and ACE2 knock-out (ACE2 KO) mice. ACE2 KO and WT mice exhibited similar histologic injury scores and measures of kidney function at 48 hours after reperfusion. Loss of ACE2 was associated with increased neutrophil, macrophage, and T cell infiltration in the kidney. mRNA levels for pro-inflammatory cytokines, interleukin-1β, interleukin-6 and tumour necrosis factor-α, as well as chemokines macrophage inflammatory protein 2 and monocyte chemoattractant protein-1, were increased in ACE2 KO mice compared to WT mice. Changes in inflammatory cell infiltrates and cytokine expression were also associated with greater apoptosis and oxidative stress in ACE2 KO mice compared to WT mice. These data demonstrate a protective effect of ACE2 in I/R AKI.  相似文献   

14.
Oxidative damage plays a critical role in many diseases of the central nervous system. This study was conducted to determine the molecular mechanisms involved in the putative anti-oxidative effects of curcumin against experimental stroke. Oxygen and glucose deprivation/reoxygenation (OGD/R) was used to mimic ischemic insult in primary cultured cortical neurons. A rapid increase in the intracellular expression of NAD(P)H: quinone oxidoreductase1 (NQO1) induced by OGD was counteracted by curcumin post-treatment, which paralleled attenuated cell injury. The reduction of phosphorylation Akt induced by OGD was restored by curcumin. Consequently, NQO1 expression and the binding activity of nuclear factor-erythroid 2-related factor 2 (Nrf2) to antioxidant response element (ARE) were increased. LY294002 blocked the increase in phospho-Akt evoked by curcumin and abolished the associated protective effect. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion for 60 minutes. Curcumin administration significantly reduced infarct size. Curcumin also markedly reduced oxidative stress levels in middle cerebral artery occlusion (MCAO) rats; hence, these effects were all suppressed by LY294002. Taken together, these findings provide evidence that curcumin protects neurons against ischemic injury, and this neuroprotective effect involves the Akt/Nrf2 pathway. In addition, Nrf2 is involved in the neuroprotective effects of curcumin against oxidative damage.  相似文献   

15.
Research on ischemic brain injury has established a central role of mitochondria in neuron death. Astrocytes are also damaged by ischemia, although the participation of mitochondria in their injury is ill defined. As astrocytes are responsible for neuronal metabolic and trophic support, astrocyte dysfunction will compromise postischemic neuronal survival. Ischemic alterations to astrocyte energy metabolism and the uptake and metabolism of the excitatory amino acid transmitter glutamate may be particularly important. Despite the significance of ischemic astrocyte injury, little is known of the mechanisms responsible for astrocyte death and dysfunction. This review focuses on differences between astrocyte and neuronal metabolism and mitochondrial function, and on neuronal-glial interactions. The potential for astrocyte mitochondria to serve as targets of neuroprotective interventions is also discussed.  相似文献   

16.
Neurochemical Research - A new era for neuroprotective strategies is emerging in ischemia/reperfusion. This has forced to review the studies existing to date based in neuroprotection against...  相似文献   

17.
Ischemic stroke is a major cause of morbidity and mortality, yet lacks effective neuroprotective treatments. The aim of this work was to investigate whether treatment with isorhamnetin protected the brain against ischemic injury in mice. Experimental stroke mice underwent the filament model of middle cerebral artery occlusion with reperfusion. Treatment with isorhamnetin or vehicle was initiated immediately at the onset of reperfusion. It was found that treatment of experimental stroke mice with isorhamnetin reduced infarct volume and caspase-3 activity (a biomarker of apoptosis), and improved neurological function recovery. Treatment of experimental stroke mice with isorhamnetin attenuated cerebral edema, improved blood–brain barrier function, and upregulated gene expression of tight junction proteins including occludin, ZO-1, and claudin-5. Treatment of experimental stroke mice with isorhamnetin activated Nrf2/HO-1, suppressed iNOS/NO, and led to reduced formation of MDA and 3-NT in ipsilateral cortex. In addition, treatment of experimental stroke mice with isorhamnetin suppressed activity of MPO (a biomarker of neutrophil infiltration) and reduced protein levels of IL-1β, IL-6, and TNF-α in ipsilateral cortex. Furthermore, it was found that treatment of experimental stroke mice with isorhamnetin reduced mRNA and protein expression of NMDA receptor subunit NR1 in ipsilateral cortex. In conclusion, treatment with isorhamnetin protected the brain against ischemic injury in mice. Isorhamnetin could thus be envisaged as a countermeasure for ischemic stroke but remains to be tested in humans.  相似文献   

18.
The EphA2 receptor is a promising drug target for cancer treatment, since EphA2 activation can inhibit metastasis and tumor progression. It has been recently described that the TYPE7 peptide activates EphA2 using a novel mechanism that involves binding to the single transmembrane domain of the receptor. TYPE7 is a conditional transmembrane (TM) ligand, which only inserts into membranes at neutral pH in the presence of the TM region of EphA2. However, how membrane interactions can activate EphA2 is not known. We systematically altered the sequence of TYPE7 to identify the binding motif used to activate EphA2. With the resulting six peptides, we performed biophysical and cell migration assays that identified a new potent peptide variant. We also performed a mutational screen that determined the helical interface that mediates dimerization of the TM domain of EphA2 in cells. These results, together with molecular dynamic simulations, allowed to elucidate the molecular mechanism that TYPE7 uses to activate EphA2, where the membrane peptide acts as a molecular clamp that wraps around the TM dimer of the receptor. We propose that this binding mode stabilizes the active conformation of EphA2. Our data, additionally, provide clues into the properties that TM ligands need to have in order to achieve activation of membrane receptors.  相似文献   

19.
c Cbl最近被证明是泛素 蛋白酶体 (ubiquitin proteasome)通路中的一个新的RINGFinger型泛素连接酶 (ubiquitinligase ,E3) .c Cbl可以介导受体酪氨酸激酶和非受体酪氨酸受体激酶的降解 .利用内源性表达较高EphA2的大肠癌细胞株HCT1 1 6 ,通过转染野生型c Cbl和显性负变异体(dominantnegativemutant)c Cbl 70Z ,探讨c Cbl在EphA2降解中的作用 .结果显示 ,c Cbl可促进磷酸化EphA2的降解 ,EphA2的降解必须依赖其配体ephrin A1的刺激 ;利用蛋白酶体 (proteasome)抑制剂MG1 32可抑制磷酸化的EphA2降解 ,提示EphA2的最终降解部位是在蛋白酶体 .研究的结果提示 ,c Cbl作为泛素连接酶诱导磷酸化后的EphA2在蛋白酶体中降解  相似文献   

20.
Traumatic brain injury (TBI) remains a significant clinical problem and contributes to one-third of all injury-related deaths. Activated microglia-mediated inflammatory response is a distinct characteristic underlying pathophysiology of TBI. Here, we evaluated the effect and possible mechanisms of the selective Sigma-1 receptor agonist 2-(4-morpholinethyl)-1-phenylcyclohexanecarboxylate (PRE-084) in mice TBI model. A single intraperitoneal injection 10 μg/g PRE-084, given 15 min after TBI significantly reduced lesion volume, lessened brain edema, attenuated modified neurological severity score, increased the latency time in wire hang test, and accelerated body weight recovery. Moreover, immunohistochemical analysis with Iba1 staining showed that PRE-084 lessened microglia activation. Meanwhile, PRE-084 reduced nitrosative and oxidative stress to proteins. Thus, Sigma-1 receptors play a major role in inflammatory response after TBI and may serve as useful target for TBI treatment in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号