首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuroinflammation is critical in the neural cell death seen in stroke. It has been shown that CNS and peripheral responses drive this neuroinflammatory response in the brain. The Toll-like receptors (TLRs) are important regulators of inflammation in response to both exogenous and endogenous stressors. Taking advantage of a downstream adapter molecule that controls the majority of TLR signalling, this study investigated the role of the TLR adaptor protein myeloid differentiation factor 88 (MyD88) in the control of CNS and peripheral inflammation. Reversible middle-cerebral artery occlusion was used as the model of stroke in vivo; in vitro primary cultured neurons and glia were subject to four hours of oxygen and glucose deprivation (OGD). Both in vitro and in vivo Myd88−/− animals or cells were compared with wild type (WT). We found that after stroke Myd88−/− animals have a larger infarct volume compared to WT animals. Interestingly, in vitro there was no difference between the survival of Myd88−/− and WT cells following OGD, suggesting that peripheral responses were influencing stroke outcome. We therefore generated bone marrow chimeras and found that Myd88−/− animals have a smaller stroke infarct than their radiation naive counterparts if their hematopoietic cells are WT. Furthermore, WT animals have a larger stroke than their radiation naive counterparts if the hematopoietic cells are Myd88−/−. We have demonstrated that MyD88-dependent signalling in the hematopoietic cell lineage reduces infarct size following stroke and that infiltrating cells to the site of neuroinflammation are neuroprotective following stroke.  相似文献   

2.
Prion diseases are fatal neurodegenerative disorders characterized by accumulation of PrPSc, vacuolation of neurons and neuropil, astrocytosis, and microglial activation. Upregulation of gene expressions of innate immunity-related factors, including complement factors and CD14, is observed in the brains of mice infected with prions even in the early stage of infections. When CD14 knockout (CD14−/−) mice were infected intracerebrally with the Chandler and Obihiro prion strains, the mice survived longer than wild-type (WT) mice, suggesting that CD14 influences the progression of the prion disease. Immunofluorescence staining that can distinguish normal prion protein from the disease-specific form of prion protein (PrPSc) revealed that deposition of PrPSc was delayed in CD14−/− mice compared with WT mice by the middle stage of the infection. Immunohistochemical staining with Iba1, a marker for activated microglia, showed an increased microglial activation in prion-infected CD14−/− mice compared to WT mice. Interestingly, accompanied by the increased microglial activation, anti-inflammatory cytokines interleukin-10 (IL-10) and transforming growth factor β (TGF-β) appeared to be expressed earlier in prion-infected CD14−/− mice. In contrast, IL-1β expression appeared to be reduced in the CD14−/− mice in the early stage of infection. Double immunofluorescence staining demonstrated that CD11b- and Iba1-positive microglia mainly produced the anti-inflammatory cytokines, suggesting anti-inflammatory status of microglia in the CD14−/− mice in the early stage of infection. These results imply that CD14 plays a role in the disease progression by suppressing anti-inflammatory responses in the brain in the early stage of infection.  相似文献   

3.
Intracerebral hemorrhage (ICH) is a devastating type of stroke characterized by bleeding into the brain parenchyma and secondary brain injury resulting from strong neuroinflammatory responses to blood components. Production of prostaglandin E2 (PGE2) is significantly upregulated following ICH and contributes to this inflammatory response in part through its E prostanoid receptor subtype 2 (EP2). Signaling through the EP2 receptor has been shown to affect outcomes of many acute and chronic neurological disorders; although, not yet explored in the context of ICH. Wildtype (WT) and EP2 receptor knockout (EP2−/−) mice were subjected to ICH, and various anatomical and functional outcomes were assessed by histology and neurobehavioral testing, respectively. When compared with age-matched WT controls, EP2−/− mice had 41.9 ± 4.7% smaller ICH-induced brain lesions and displayed significantly less ipsilateral hemispheric enlargement and incidence of intraventricular hemorrhage. Anatomical outcomes correlated with improved functional recovery as identified by neurological deficit scoring. Histological staining was performed to begin investigating the mechanisms involved in EP2-mediated neurotoxicity after ICH. EP2−/− mice exhibited 45.5 ± 5.8% and 41.4 ± 8.1% less blood and ferric iron accumulation, respectively. Furthermore, significantly less striatal and cortical microgliosis, striatal and cortical astrogliosis, blood–brain barrier breakdown, and peripheral neutrophil infiltration were seen in EP2−/− mice. This study is the first to suggest a deleterious role for the PGE2-EP2 signaling axis in modulating brain injury, inflammation, and functional recovery following ICH. Targeting the EP2 G protein-coupled receptor may represent a new therapeutic avenue for the treatment of hemorrhagic stroke.  相似文献   

4.
The inflammatory responses accompanying stroke are recognized to contribute to secondary ischemic injury. TIPE2 is a very recently identified negative regulator of inflammation that maintains immune homeostasis. However, it is unknown whether TIPE2 is expressed in the brain and contributes to the regulation of cerebral diseases. In this study, we explored the potential roles of TIPE2 in cerebral ischemia/reperfusion injury. TIPE2−/− mice were used to assess whether TIPE2 provides neuroprotection following cerebral ischemia/reperfusion induced by middle cerebral artery occlusion (MCAO), and in vitro primary cerebral cell cultures were used to investigate the expression and regulation of TIPE2. Our results show that genetic ablation of the Tipe2 gene significantly increased the cerebral volume of infarction and neurological dysfunction in mice subjected to MCAO. Flow cytometric analysis revealed more infiltrating macrophages, neutrophils, and lymphocytes in the ischemic hemisphere of TIPE2−/− mice. The responses to inflammatory cytokines and chemokines were significantly increased in TIPE2−/− mouse brain after MCAO. We further observed that TIPE2 was highly induced in WT mice after cerebral ischemia and was expressed mainly in microglia/macrophages, but not in neurons and astrocytes. Finally, we found that regulation of TIPE2 expression was associated with NADPH oxidase activity. These findings demonstrate, for the first time, that TIPE2 is involved in the pathogenesis of stroke and suggest that TIPE2 plays an essential role in a signal transduction pathway that links the inflammatory immune response to specific conditions after cerebral ischemia. Targeting TIPE2 may be a new therapeutic strategy for stroke treatment.  相似文献   

5.
Hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) regulate the hypoxic induction of >300 genes required for survival and adaptation under oxygen deprivation. Inhibition of HIF-P4H-2 has been shown to be protective in focal cerebral ischemia rodent models, while that of HIF-P4H-1 has no effects and inactivation of HIF-P4H-3 has adverse effects. A transmembrane prolyl 4-hydroxylase (P4H-TM) is highly expressed in the brain and contributes to the regulation of HIF, but the outcome of its inhibition on stroke is yet unknown. To study this, we subjected WT and P4htm−/− mice to permanent middle cerebral artery occlusion (pMCAO). Lack of P4H-TM had no effect on lesion size following pMCAO, but increased inflammatory microgliosis and neutrophil infiltration was observed in the P4htm−/− cortex. Furthermore, both the permeability of blood brain barrier and ultrastructure of cerebral tight junctions were compromised in P4htm−/− mice. At the molecular level, P4H-TM deficiency led to increased expression of proinflammatory genes and robust activation of protein kinases in the cortex, while expression of tight junction proteins and the neuroprotective growth factors erythropoietin and vascular endothelial growth factor was reduced. Our data provide the first evidence that P4H-TM inactivation has no protective effect on infarct size and increases inflammatory microgliosis and neutrophil infiltration in the cortex at early stage after pMCAO. When considering HIF-P4H inhibitors as potential therapeutics in stroke, the current data support that isoenzyme-selective inhibitors that do not target P4H-TM or HIF-P4H-3 would be preferred.  相似文献   

6.
The ubiquitous efflux transporter ABCC5 (ATP-binding cassette subfamily C member 5) is present at high levels in the blood-brain barrier, neurons, and glia, but its in vivo substrates and function are not known. Using untargeted metabolomic screens, we show that Abcc5−/− mice accumulate endogenous glutamate conjugates in several tissues, but brain in particular. The abundant neurotransmitter N-acetylaspartylglutamate was 2.4-fold higher in Abcc5−/− brain. The metabolites that accumulated in Abcc5−/− tissues were depleted in cultured cells that overexpressed human ABCC5. In a vesicular membrane transport assay, ABCC5 also transported exogenous glutamate analogs, like the classic excitotoxic neurotoxins kainic acid, domoic acid, and NMDA; the therapeutic glutamate analog ZJ43; and, as previously shown, the anti-cancer drug methotrexate. Glutamate conjugates and analogs are of physiological relevance because they can affect the function of glutamate, the principal excitatory neurotransmitter in the brain. After CO2 asphyxiation, several immediate early genes were expressed at lower levels in Abcc5−/− brains than in wild type brains, suggesting altered glutamate signaling. Our results show that ABCC5 is a general glutamate conjugate and analog transporter that affects the disposition of endogenous metabolites, toxins, and drugs.  相似文献   

7.
Toll-like receptors (TLRs) and RNA helicases (RLHs) are important cell sensors involved in the immunological control of viral infections through production of type I interferon (IFN). The impact of a deficiency in the TRIF and IPS-1 adaptor proteins, respectively, implicated in TLR3 and RLH signaling pathways, was investigated during herpes simplex virus 1 (HSV-1) encephalitis. TRIF−/−, IPS-1−/−, and C57BL/6 wild-type (WT) mice were infected intranasally with 7.5 × 105 PFU of HSV-1. Mice were monitored for neurological signs and survival over 20 days. Groups of mice were sacrificed on days 3, 5, 7, 9, and 11 postinfection for determination of brain viral replication by quantitative PCR (qPCR), plaque assay, and immunohistochemistry and for alpha/beta interferon (IFN-α/β) levels and phosphorylation of interferon regulatory factors 3 and 7 (IRF-3 and -7) in brain homogenates by enzyme-linked immunosorbent assay (ELISA) and Western blotting, respectively. TRIF−/− and IPS-1−/− mice had higher mortality rates than WT mice (P = 0.02 and P = 0.09, respectively). Viral antigens were more disseminated throughout the brain, correlating with a significant increase in brain viral load for TRIF−/− (days 5 to 9) and IPS-1−/− (days 7 and 9) mice compared to results for the WT. IFN-β production was reduced in brain homogenates of TRIF−/− and IPS-1−/− mice on day 5 compared to results for the WT, whereas IFN-α levels were increased on day 7 in TRIF−/− mice. Phosphorylation levels of IRF-3 and IRF-7 were decreased in TRIF−/− and IPS-1−/− mice, respectively. These data suggest that both the TRIF and IPS-1 signaling pathways are important for the control of HSV replication in the brain and survival through IFN-β production.  相似文献   

8.

Background and Purpose

The Down syndrome candidate region 1 (DSCR1) gene is located on human chromosome 21 and its protein is over-expressed in brains of Down syndrome individuals. DSCR1 can modulate the activity of calcineurin, a phosphatase abundant in the brain, but its influence on stroke outcome is not clear. We compared stroke outcome in wildtype (WT) and transgenic (DSCR1-TG) mice which over-express isoform 1 of human DSCR1.

Methods

Transient cerebral ischemia was produced by occlusion of the middle cerebral artery for 0.5 h. After 23.5 h reperfusion, we assessed neurological impairment, brain infarct and edema volume, leukocyte infiltration and markers of inflammation. Intrinsic resistance to apoptosis following glucose deprivation was also assessed in primary cultures of WT and DSCR1-TG neurons.

Results

In contrast to WT, DSCR1-TG mice had an improved neurological deficit score, greater grip strength, attenuated infarct volume and brain swelling, and lacked hippocampal lesions after stroke. Expression of mouse DSCR1-1, but not DSCR1-4, mRNA and protein was increased by ischemia in both WT and DSCR1-TG. Brain calcineurin activity was increased to a similar degree after ischemia in each genotype. DSCR1-TG mice had fewer infiltrating neutrophils and activated microglia compared with WT, in association with an attenuated upregulation of several pro-inflammatory genes. Neurons from DSCR1-TG mice were more resistant than WT neurons to apoptotic cell death following 24 h of glucose deprivation.

Conclusions

Over-expression of DSCR1 in mice improves outcome following stroke. Mechanisms underlying this protection may involve calcineurin-independent, anti-inflammatory and anti-apoptotic effects mediated by DSCR1 in neurons.  相似文献   

9.
Hypoxia-ischemia (HI) and excitotoxicity are validated causes of neonatal brain injuries and tissue plasminogen activator (t-PA) participates in the processes through proteolytic and receptor-mediated pathways. Brain microvascular endothelial cells from neonates in culture, contain and release more t-PA and gelatinases upon glutamate challenge than adult cells. We have studied t-PA to gelatinase (MMP-2 and MMP-9) activity links in HI and excitotoxicity lesion models in 5 day–old pups in wild type and in t-PA or its inhibitor (PAI-1) genes inactivated mice. Gelatinolytic activities were detected in SDS-PAGE zymograms and by in situ fluorescent DQ-gelatin microscopic zymographies. HI was achieved by unilateral carotid ligature followed by a 40 min hypoxia (8%O2). Excitotoxic lesions were produced by intra parenchymal cortical (i.c.) injections of 10 µg ibotenate (Ibo). Gel zymograms in WT cortex revealed progressive extinction of MMP-2 and MMP-9 activities near day 15 or day 8 respectively. MMP-2 expression was the same in all strains while MMP-9 activity was barely detectable in t-PA−/− and enhanced in PAI-1−/− mice. HI or Ibo produced activation of MMP-2 activities 6 hours post-insult, in cortices of WT mice but not in t-PA−/− mice. In PAI-1−/− mice, HI or vehicle i.c. injection increased MMP-2 and MMP-9 activities. In situ zymograms using DQ-gelatin revealed vessel associated gelatinolytic activity in lesioned areas in PAI-1−/− and in WT mice. In WT brain slices incubated ex vivo, glutamate (200 µM) induced DQ-gelatin activation in vessels. The effect was not detected in t-PA−/−mice, but was restored by concomitant exposure to recombinant t-PA (20 µg/mL). In summary, neonatal brain lesion paradigms and ex vivo excitotoxic glutamate evoked t-PA-dependent gelatinases activation in vessels. Both MMP-2 and MMP-9 activities appeared t-PA-dependent. The data suggest that vascular directed protease inhibition may have neuroprotection potential against neonatal brain injuries.  相似文献   

10.
Functional modulation of the non-AT1R arm of the renin-angiotensin system, such as via AT2R activation, is known to improve stroke outcome. However, the relevance of the Mas receptor, which along with the AT2R forms the protective arm of the renin-angiotensin system, as a target in stroke is unclear. Here we tested the efficacy of a selective MasR agonist, AVE0991, in in vitro and in vivo models of ischemic stroke. Primary cortical neurons were cultured from E15-17 mouse embryos for 7–9 d, subjected to glucose deprivation for 24 h alone or with test drugs, and percentage cell death was determined using trypan blue exclusion assay. Additionally, adult male mice were subjected to 1 h middle cerebral artery occlusion and were administered either vehicle or AVE0991 (20 mg/kg i.p.) at the commencement of 23 h reperfusion. Some animals were also treated with the MasR antagonist, A779 (80 mg/kg i.p.) 1 h prior to surgery. Twenty-four h after MCAo, neurological deficits, locomotor activity and motor coordination were assessed in vivo, and infarct and edema volumes estimated from brain sections. Following glucose deprivation, application of AVE0991 (10−8 M to 10−6 M) reduced neuronal cell death by ~60% (P<0.05), an effect prevented by the MasR antagonist. By contrast, AVE0991 administration in vivo had no effect on functional or histological outcomes at 24 h following stroke. These findings indicate that the classical MasR agonist, AVE0991, can directly protect neurons from injury following glucose-deprivation. However, this effect does not translate into an improved outcome in vivo when administered systemically following stroke.  相似文献   

11.
BACE1 is the β-secretase enzyme that initiates production of the β-amyloid peptide involved in Alzheimer disease. However, little is known about the functions of BACE1. BACE1-deficient mice exhibit mild but complex neurological phenotypes suggesting therapeutic BACE1 inhibition may not be completely free of mechanism-based side effects. Recently, we have reported that BACE1 null mice have axon guidance defects in olfactory sensory neuron projections to glomeruli in the olfactory bulb. Here, we show that BACE1 deficiency also causes an axon guidance defect in the hippocampus, a shortened and disorganized infrapyramidal bundle of the mossy fiber projection from the dentate gyrus to CA3. Although we observed that a classical axon guidance molecule, EphA4, was cleaved by BACE1 when co-expressed with BACE1 in HEK293 cells, we could find no evidence of BACE1 processing of EphA4 in the brain. Remarkably, we discovered that the axon guidance defects of BACE1−/− mice were strikingly similar to those of mice deficient in a recently identified BACE1 substrate, the neural cell adhesion molecule close homolog of L1 (CHL1) that is involved in neurite outgrowth. CHL1 undergoes BACE1-dependent processing in BACE1+/+, but not BACE1−/−, hippocampus, and olfactory bulb, indicating that CHL1 is a BACE1 substrate in vivo. Finally, BACE1 and CHL1 co-localize in the terminals of hippocampal mossy fibers, olfactory sensory neuron axons, and growth cones of primary hippocampal neurons. We conclude that BACE1−/− axon guidance defects are likely the result of abrogated BACE1 processing of CHL1 and that BACE1 deficiency produces a CHL1 loss-of-function phenotype. Our results imply the possibility that axon mis-targeting may occur in adult neurogenic and/or regenerating neurons as a result of chronic BACE1 inhibition and add a note of caution to BACE1 inhibitor development.  相似文献   

12.
Recent evidence suggests that interleukin-1β (IL-1β), which was originally identified as a proinflammatory cytokine, is also required in the brain for memory processes. We have previously shown that IL-1β synthesis in the hippocampus is dependent on P2X7 receptor (P2X7R), which is an ionotropic receptor of ATP. To substantiate the role of P2X7R in both brain IL-1β expression and memory processes, we examined the induction of IL-1β mRNA expression in the hippocampus of wild-type (WT) and homozygous P2X7 receptor knockout mice (P2X7R−/−) following a spatial memory task. The spatial recognition task induced both IL-1β mRNA expression and c-Fos protein activation in the hippocampus of WT but not of P2X7R−/− mice. Remarkably, P2X7R−/− mice displayed spatial memory impairment in a hippocampal-dependant task, while their performances in an object recognition task were unaltered. Taken together, our results show that P2X7R plays a critical role in spatial memory processes and the associated hippocampal IL-1β mRNA synthesis and c-Fos activation.  相似文献   

13.
Intracellular Cl concentrations ([Cl]i) of sensory neurons regulate signal transmission and signal amplification. In dorsal root ganglion (DRG) and olfactory sensory neurons (OSNs), Cl is accumulated by the Na+-K+-2Cl cotransporter 1 (NKCC1), resulting in a [Cl]i above electrochemical equilibrium and a depolarizing Cl efflux upon Cl channel opening. Here, we investigate the [Cl]i and function of Cl in primary sensory neurons of trigeminal ganglia (TG) of wild type (WT) and NKCC1−/− mice using pharmacological and imaging approaches, patch-clamping, as well as behavioral testing. The [Cl]i of WT TG neurons indicated active NKCC1-dependent Cl accumulation. Gamma-aminobutyric acid (GABA)A receptor activation induced a reduction of [Cl]i as well as Ca2+ transients in a corresponding fraction of TG neurons. Ca2+ transients were sensitive to inhibition of NKCC1 and voltage-gated Ca2+ channels (VGCCs). Ca2+ responses induced by capsaicin, a prototypical stimulus of transient receptor potential vanilloid subfamily member-1 (TRPV1) were diminished in NKCC1−/− TG neurons, but elevated under conditions of a lowered [Cl]o suggesting a Cl-dependent amplification of capsaicin-induced responses. Using next generation sequencing (NGS), we found expression of different Ca2+-activated Cl channels (CaCCs) in TGs of mice. Pharmacological inhibition of CaCCs reduced the amplitude of capsaicin-induced responses of TG neurons in Ca2+ imaging and electrophysiological recordings. In a behavioral paradigm, NKCC1−/− mice showed less avoidance of the aversive stimulus capsaicin. In summary, our results strongly argue for a Ca2+-activated Cl-dependent signal amplification mechanism in TG neurons that requires intracellular Cl accumulation by NKCC1 and the activation of CaCCs.  相似文献   

14.
Traumatic brain injury (TBI) is a leading cause of death and disability with no specific effective therapy, in part because disease driving mechanisms remain to be elucidated. Receptor interacting protein kinases (RIPKs) are serine/threonine kinases that assemble multi-molecular complexes that induce apoptosis, necroptosis, inflammasome and nuclear factor kappa B activation. Prior studies using pharmacological inhibitors implicated necroptosis in the pathogenesis of TBI and stroke, but these studies cannot be used to conclusively demonstrate a role for necroptosis because of the possibility of off target effects. Using a model of cerebral contusion and RIPK3 and mixed lineage kinase like knockout (MLKL−/−) mice, we found evidence for activation of RIPK3 and MLKL and assembly of a RIPK1-RIPK3-MLKL necrosome complex in pericontusional brain tissue. Phosphorylated forms of RIPK3 and MLKL were detected in endothelium, CD11b + immune cells, and neurons, and RIPK3 was upregulated and activated in three-dimensional human endothelial cell cultures subjected to CCI. RIPK3−/− and MLKL−/− mice had reduced blood-brain barrier damage at 24 h (p < 0.05), but no differences in neuronal death (6 h, p = ns in CA1, CA3 and DG), brain edema (24 h, p = ns), or lesion size (4 weeks, p = ns) after CCI. RIPK3−/−, but not MLKL−/− mice, were protected against postinjury motor and cognitive deficits at 1–4 weeks (RIPK3−/− vs WT: p < 0.05 for group in wire grip, Morris water maze hidden platform trials, p < 0.05 for novel object recognition test, p < 0.01 for rotarod test). RIPK3−/− mice had reduced infiltrating leukocytes (p < 0.05 vs WT in CD11b + cells, microglia and macrophages), HMGB1 release and interleukin-1 beta activation at 24–48 h (p < 0.01) after CCI. Our data indicate that RIPK3 contributes to functional outcome after cerebral contusion by mechanisms involving inflammation but independent of necroptosis.Subject terms: Molecular neuroscience, Brain injuries  相似文献   

15.
Binge drinking has been associated with cerebral dysfunction. Ethanol induced microglial activation initiates an inflammatory process that causes upregulation of proinflammatory cytokines which in turn creates neuronal inflammation and damage. However, the molecular mechanism is not fully understood. We postulate that cold-inducible RNA-binding protein (CIRP), a novel proinflammatory molecule, can contribute to alcohol-induced neuroinflammation. To test this theory male wild-type (WT) mice were exposed to alcohol at concentrations consistent to binge drinking and blood and brain tissues were collected. At 5 h after alcohol, a significant increase of 53% in the brain of CIRP mRNA was observed and its expression remained elevated at 10 h and 15 h. Brain CIRP protein levels were increased by 184% at 10 h and remained high at 15 h. We then exposed male WT and CIRP knockout (CIRP−/−) mice to alcohol, and blood and brain tissues were collected at 15 h post-alcohol infusion. Serum levels of tissue injury markers (AST, ALT and LDH) were significantly elevated in alcohol-exposed WT mice while they were less increased in the CIRP−/− mice. Brain TNF-α mRNA and protein expressions along with IL-1β protein levels were significantly increased in WT mice, which was not seen in the CIRP−/− mice. In cultured BV2 cells (mouse microglia), ethanol at 100 mM showed an increase of CIRP mRNA by 274% and 408% at 24 h and 48 h respectively. Corresponding increases in TNF-α and IL-1β were also observed. CIRP protein levels were markedly increased in the medium, suggesting that CIRP was secreted by the BV2 cells. From this we conclude that alcohol exposure activates microglia to produce and secrete CIRP and possibly induce pro-inflammatory response and thereby causing neuroinflammation. CIRP could be a novel mediator of alcohol-induced brain inflammation.  相似文献   

16.
L-isoaspartyl (D-aspartyl) O-methyltransferase deficient mice (Pcmt1−/−) accumulate isomerized aspartyl residues in intracellular proteins until their death due to seizures at approximately 45 days. Previous studies have shown that these mice have constitutively activated insulin signaling in their brains, and that these brains are 20–30% larger than those from age-matched wild-type animals. To determine whether insulin pathway activation and brain enlargement is responsible for the fatal seizures, we administered wortmannin, an inhibitor of the phosphoinositide 3-kinase that catalyzes an early step in the insulin pathway. Oral wortmannin reduced the average brain size in the Pcmt1−/− animals to within 6% of the wild-type DMSO administered controls, and nearly doubled the lifespan of Pcmt1−/− at 60% survival of the original population. Immunoblotting revealed significant decreases in phosphorylation of Akt, PDK1, and mTOR in Pcmt1−/− mice and Akt and PDK1 in wild-type animals upon treatment with wortmannin. These data suggest activation of the insulin pathway and its resulting brain enlargement contributes to the early death of Pcmt1−/− mice, but is not solely responsible for the early death observed in these animals.  相似文献   

17.
One of the family of voltage-gated calcium channels (VGCC), the N-type Ca2+ channel, is located predominantly in neurons and is associated with a variety of neuronal responses, including neurodegeneration. A precise mechanism for how the N-type Ca2+ channel plays a role in neurodegenerative disease, however, is unknown. In this study, we immunized N-type Ca2+ channel α1B-deficient (α1B−/−) mice and their wild type (WT) littermates with myelin oligodendrocyte glycoprotein 35–55 and analyzed the progression of experimental autoimmune encephalomyelitis (EAE). The neurological symptoms of EAE in the α1B−/− mice were less severe than in the WT mice. In conjunction with these results, sections of the spinal cord (SC) from α1B−/− mice revealed a reduction in both leukocytic infiltration and demyelination compared with WT mice. No differences were observed in the delayed-type hypersensitivity response, spleen cell proliferation, or cytokine production from splenocytes between the two genotypes. On the other hand, Western blot array analysis and RT-PCR revealed that a typical increase in the expression of MCP-1 in the SC showed a good correlation with the infiltration of leukocytes into the SC. Likewise, immunohistochemical analysis showed that the predominant source of MCP-1 was activated microglia. The cytokine-induced production of MCP-1 in primary cultured microglia from WT mice was significantly higher than that from α1B−/− mice and was significantly inhibited by a selective N-type Ca2+ channel antagonist, ω-conotoxin GVIA or a withdrawal of extracellular Ca2+. These results suggest that the N-type Ca2+ channel is involved in the pathogenesis of EAE at least in part by regulating MCP-1 production by microglia.  相似文献   

18.
Although females suffer twice as much as males from stress-related disorders, sex-specific participating and pathogenic cellular stress mechanisms remain uncharacterized. Using corticotropin-releasing factor receptor 2–deficient (Crhr2−/− ) and wild-type (WT) mice, we show that CRF receptor type 2 (CRF2) and its high-affinity ligand, urocortin 1 (Ucn1), are key mediators of the endoplasmic reticulum (ER) stress response in a murine model of acute pancreatic inflammation. Ucn1 was expressed de novo in acinar cells of male, but not female WT mice during acute inflammation. Upon insult, acinar Ucn1 induction was markedly attenuated in male but not female Crhr2−/− mice. Crhr2−/− mice of both sexes show exacerbated acinar cell inflammation and necrosis. Electron microscopy showed mild ER damage in WT male mice and markedly distorted ER structure in Crhr2−/− male mice during pancreatitis. WT and Crhr2−/− female mice showed similarly distorted ER ultrastructure that was less severe than distortion seen in Crhr2−/− male mice. Damage in ER structure was accompanied by increased ubiquitination, peIF2, and mistargeted localization of vimentin in WT mice that was further exacerbated in Crhr2−/− mice of both sexes during pancreatitis. Exogenous Ucn1 rescued many aspects of histological damage and cellular stress response, including restoration of ER structure in male WT and Crhr2−/−mice, but not in females. Instead, females often showed increased damage. Thus, specific cellular pathways involved in coping and resolution seem to be distinct to each sex. Our results demonstrate the importance of identifying sex-specific pathogenic mechanisms and their value in designing effective therapeutics.  相似文献   

19.
Microbial sensing plays essential roles in the innate immune response to pathogens. In particular, NLRP3 forms a multiprotein inflammasome complex responsible for the maturation of interleukin (IL)-1β. Our aim was to delineate the role of the NLRP3 inflammasome in macrophages, and the contribution of IL-1β to the host defense against Citrobacter rodentium acute infection in mice. Nlrp3−/− and background C57BL/6 (WT) mice were infected by orogastric gavage, received IL-1β (0.5 µg/mouse; ip) on 0, 2, and 4 days post-infection (DPI), and assessed on 6 and 10 DPI. Infected Nlrp3−/− mice developed severe colitis; IL-1β treatments reduced colonization, abrogated dissemination of bacteria to mesenteric lymph nodes, and protected epithelial integrity of infected Nlrp3−/− mice. In contrast, IL-1β treatments of WT mice had an opposite effect with increased penetration of bacteria and barrier disruption. Microscopy showed reduced damage in Nlrp3−/− mice, and increased severity of disease in WT mice with IL-1β treatments, in particular on 10 DPI. Secretion of some pro-inflammatory plasma cytokines was dissipated in Nlrp3−/− compared to WT mice. IL-1β treatments elevated macrophage infiltration into infected crypts in Nlrp3−/− mice, suggesting that IL-1β may improve macrophage function, as exogenous administration of IL-1β increased phagocytosis of C. rodentium by peritoneal Nlrp3−/− macrophages in vitro. As well, the exogenous administration of IL-1β to WT peritoneal macrophages damaged the epithelial barrier of C. rodentium-infected polarized CMT-93 cells. Treatment of Nlrp3−/− mice with IL-1β seems to confer protection against C. rodentium infection by reducing colonization, protecting epithelial integrity, and improving macrophage activity, while extraneous IL-1β appeared to be detrimental to WT mice. Together, these findings highlight the importance of balanced cytokine responses as IL-1β improved bacterial clearance in Nlrp3−/− mice but increased tissue damage when given to WT mice.  相似文献   

20.
Interleukin-1 (IL-1) is a key pro-inflammatory cytokine, produced predominantly by peripheral immune cells but also by glia and some neuronal populations within the brain. Its signalling is mediated via the binding of IL-1α or IL-1β to the interleukin-1 type one receptor (IL-1RI). IL-1 plays a key role in inflammation-induced sickness behaviour, resulting in depressed locomotor activity, decreased exploration, reduced food and water intake and acute cognitive deficits. Conversely, IL-1 has also been suggested to facilitate hippocampal-dependent learning and memory: IL-1RI−/− mice have been reported to show deficits on tasks of visuospatial learning and memory. We sought to investigate whether there is a generalised hippocampal deficit in IL-1RI−/− animals. Therefore, in the current study we compared wildtype (WT) mice to IL-1RI−/− mice using a variety of hippocampal-dependent learning and memory tasks, as well as tests of anxiety and locomotor activity. We found no difference in performance of the IL-1RI−/− mice compared to WT mice in a T-maze working memory task. In addition, the IL-1RI−/− mice showed normal learning in various spatial reference memory tasks including the Y-maze and Morris mater maze, although there was a subtle deficit in choice behaviour in a spatial discrimination, beacon watermaze task. IL-1RI−/− mice also showed normal memory for visuospatial context in the contextual fear conditioning paradigm. In the open field, IL-1RI−/− mice showed a significant increase in distance travelled and rearing behaviour compared to the WT mice and in the elevated plus-maze spent more time in the open arms than did the WT animals. The data suggest that, contrary to prior studies, IL-1RI−/− mice are not robustly impaired on hippocampal-dependent memory and learning but do display open field hyperactivity and decreased anxiety compared to WT mice. The results argue for a careful evaluation of the roles of endogenous IL-1 in hippocampal and limbic system function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号