首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The continuous assembly and disassembly of focal adhesions is required for efficient cell spreading and migration. The G-protein-coupled receptor kinase-interacting protein 1 (GIT1) is a multidomain protein whose dynamic localization to sites of cytoskeletal remodeling is critically involved in the regulation of these processes. Here we provide evidence that the subcellular localization of GIT1 is regulated by protein kinase D3 (PKD3) through direct phosphorylation on serine 46. GIT1 phosphorylation on serine 46 was abrograted by PKD3 depletion, thereby identifying GIT1 as the first specific substrate for this kinase. A GIT1 S46D phosphomimetic mutant localized to motile, paxillin-positive cytoplasmic complexes, whereas the phosphorylation-deficient GIT1 S46A was enriched in focal adhesions. We propose that phosphorylation of GIT1 on serine 46 by PKD3 represents a molecular switch by which GIT1 localization, paxillin trafficking, and cellular protrusive activity are regulated.  相似文献   

2.
 Cell migration is a highly complex process that requires the coordinated formation of membrane protrusion and focal adhesions (FAs). Focal adhesion kinase (FAK), a major signaling component of FAs, is involved in the disassembly process of FAs through phosphorylation and dephosphorylation of its tyrosine residues, but the role of such phosphorylations in nascent FA formation and turnover near the cell front and in cell protrusion is less well understood. In the present study, we demonstrate that, depending on the phosphorylation status of Tyr-925 residue, FAK modulates cell migration via two specific mechanisms. FAK−/− mouse embryonic fibroblasts (MEFs) expressing nonphosphorylatable Y925F-FAK show increased interactions between FAK and unphosphorylated paxillin, which lead to FA stabilization and thus decreased FA turnover and reduced cell migration. Conversely, MEFs expressing phosphomimetic Y925E-FAK display unchanged FA disassembly rates, show increase in phosphorylated paxillin in FAs, and exhibit increased formation of nascent FAs at the cell leading edges. Moreover, Y925E-FAK cells present enhanced cell protrusion together with activation of the p130CAS/Dock180/Rac1 signaling pathway. Together, our results demonstrate that phosphorylation of FAK at Tyr-925 is required for FAK-mediated cell migration and cell protrusion.  相似文献   

3.
The docking protein p130Cas is a prominent Src substrate found in focal adhesions (FAs) and is implicated in regulating critical aspects of cell motility including FA disassembly and protrusion of the leading edge plasma membrane. To better understand how p130Cas acts to promote these events we examined requirements for established p130Cas signaling motifs including the SH3-binding site of the Src binding domain (SBD) and the tyrosine phosphorylation sites within the substrate domain (SD). Expression of wild type p130Cas in Cas -/- mouse embryo fibroblasts resulted in enhanced cell migration associated with increased leading-edge actin flux, increased rates of FA assembly/disassembly, and uninterrupted FA turnover. Variants lacking either the SD phosphorylation sites or the SBD SH3-binding motif were able to partially restore the migration response, while only a variant lacking both signaling functions was fully defective. Notably, the migration defects associated with p130Cas signaling-deficient variants correlated with longer FA lifetimes resulting from aborted FA disassembly attempts. However the SD mutational variant was fully defective in increasing actin assembly at the protruding leading edge and FA assembly/disassembly rates, indicating that SD phosphorylation is the sole p130Cas signaling function in regulating these processes. Our results provide the first quantitative evidence supporting roles for p130Cas SD tyrosine phosphorylation in promoting both leading edge actin flux and FA turnover during cell migration, while further revealing that the p130Cas SBD has a function in cell migration and sustained FA disassembly that is distinct from its known role of promoting SD tyrosine phosphorylation.  相似文献   

4.
Endothelial cell migration is critical for vascular angiogenesis and is compromised to facilitate tumor metastasis. The migratory process requires the coordinated assembly and disassembly of focal adhesions (FA), actin, and microtubules (MT). MT dynamics at FAs deliver vesicular cargoes and enhance actomyosin contractility to promote FA turnover and facilitate cell advance. Noncentrosomal (NC) MTs regulate FA dynamics and are sufficient to drive cell polarity, but how NC MTs target FAs to control FA turnover is not understood. Here, we show that Rac1 induces the assembly of FA-proximal septin filaments that promote NC MT growth into FAs and inhibit mitotic centromere-associated kinesin (MCAK)-associated MT disassembly, thereby maintaining intact MT plus ends proximal to FAs. Septin-associated MT rescue is coupled with accumulation of Aurora-A kinase and cytoplasmic linker-associated protein (CLASP) localization to the MT between septin and FAs. In this way, NC MTs are strategically positioned to undergo MCAK- and CLASP-regulated bouts of assembly and disassembly into FAs, thereby regulating FA turnover and cell migration.  相似文献   

5.
Cell adhesion and migration are complex processes that require integrin activation, the formation and dissolution of focal adhesion (FAs), and linkage of actin cytoskeleton to the FAs. The IPP (ILK, PINCH, Parvin) complex regulates FA formation via binding of the adaptor protein ILK to β1 integrin, PINCH and parvin. The signaling protein Rsu1 is linked to the complex via binding PINCH1. The role of Rsu1 and PINCH1 in adhesion and migration was examined in non-transformed mammary epithelial cells. Confocal microscopy revealed that the depletion of either Rsu1 or PINCH1 by siRNA in MCF10A cells decreased the number of focal adhesions and altered the distribution and localization of β1 integrin, vinculin, talin and paxillin without affecting the levels of FA protein expression. This correlated with reduced adhesion, failure to spread or migrate in response to EGF and a loss of actin stress fibers and caveolae. In addition, constitutive phosphorylation of actin regulatory proteins occurred in the absence of PINCH1. The depletion of Rsu1 caused significant reduction in PINCH1 implying that Rsu1 may function by regulating levels of PINCH1. However, while both Rsu1- or PINCH1-depleted cells retained the ability to activate adhesion signaling in response to EGF stimulation, only Rsu1 was required for EGF-induced p38 Map Kinase phosphorylation and ATF2 activation, suggesting an Rsu1 function independent from the IPP complex. Reconstitution of Rsu1-depleted cells with an Rsu1 mutant that does not bind to PINCH1 failed to restore FAs or migration but did promote spreading and constitutive p38 activation. These data show that Rsu1-PINCH1 association with ILK and the IPP complex is required for regulation of adhesion and migration but that Rsu1 has a critical role in linking integrin-induced adhesion to activation of p38 Map kinase signaling and cell spreading. Moreover, it suggests that Rsu1 may regulate p38 signaling from the IPP complex affecting other functions including survival.  相似文献   

6.
Nitric oxide (NO) regulates the function of perivascular cells (pericytes), including hepatic stellate cells (HSC), mainly by activating cGMP and cGMP-dependent kinase (PKG) via NO/cGMP paracrine signaling. Although PKG is implicated in integrin-mediated cell adhesion to extracellular matrix, whether or how PKG signaling regulates the assembly of focal adhesion complexes (FA) and migration of HSC is not known. With the help of complementary molecular and cell biological approaches, we demonstrate here that activation of PKG signaling in HSC inhibits vascular tubulogenesis, migration/chemotaxis, and assembly of mature FA plaques, as assessed by vascular tubulogenesis assays and immunofluorescence localization of FA markers such as vinculin and vasodilator-stimulated phosphoprotein (VASP). To determine whether PKG inhibits FA assembly by phosphorylation of VASP at Ser-157, Ser-239, and Thr-278, we mutated these putative phosphorylation sites to alanine (VASP3A, phosphoresistant mutant) or aspartic acid (VASP3D, phosphomimetic), respectively. Data generated from these two mutants suggest that the effect of PKG on FA is independent of these three phosphorylation sites. In contrast, activation of PKG inhibits the activity of small GTPase Rac1 and its association with the effector protein IQGAP1. Moreover, PKG activation inhibits the formation of a trimeric protein complex containing Rac1, IQGAP1, and VASP. Finally, we found that expression of a constitutively active Rac1 mutant abolishes the inhibitory effects of PKG on FA formation. In summary, our data suggest that activation of PKG signaling in pericytes inhibits FA formation by inhibiting Rac1.  相似文献   

7.
Cellular events like cell adhesion and migration involve complex rearrangements of the actin cytoskeleton. We have previously shown that the multidomain adaptor protein c-Cbl facilitates actin cytoskeletal reorganizations that result in the adhesion of v-Abl-transformed NIH 3T3 fibroblasts. In this report, we demonstrate that c-Cbl also enhances migration of v-Abl-transformed NIH 3T3 fibroblasts. This effect of c-Cbl depends on its tyrosine phosphorylation, specifically on phosphorylation of its Tyr-731, which is required for binding of PI-3' kinase to c-Cbl. Furthermore, we demonstrate that the effect of c-Cbl on migration of v-Abl-transformed fibroblasts is mediated by active PI-3' kinase and the small GTPase Rac1. Our results also indicate that ubiquitin ligase activity of c-Cbl is required, while spatial localization of c-Cbl to the pseudopodia is not required for the observed effects of c-Cbl on cell migration.  相似文献   

8.
Nonmuscle myosin II plays fundamental roles in cell body translocation during migration and is typically depleted or absent from actin-based cell protrusions such as lamellipodia, but the mechanisms preventing myosin II assembly in such structures have not been identified [1-3]. In Dictyostelium discoideum, myosin II filament assembly is controlled primarily through myosin heavy chain (MHC) phosphorylation. The phosphorylation of sites in the myosin tail domain by myosin heavy chain kinase A (MHCK A) drives the disassembly of myosin II filaments in vitro and in vivo [4]. To better understand the cellular regulation of MHCK A activity, and thus the regulation of myosin II filament assembly, we studied the in vivo localization of native and green fluorescent protein (GFP)-tagged MHCK A. MHCK A redistributes from the cytosol to the cell cortex in response to stimulation of Dictyostelium cells with chemoattractant in an F-actin-dependent manner. During chemotaxis, random migration, and phagocytic/endocytic events, MHCK A is recruited preferentially to actin-rich leading-edge extensions. Given the ability of MHCK A to disassemble myosin II filaments, this localization may represent a fundamental mechanism for disassembling myosin II filaments and preventing localized filament assembly at sites of actin-based protrusion.  相似文献   

9.
Cell migration is an integrated process requiring the continuous coordinated assembly and disassembly of adhesion structures. How cells orchestrate adhesion turnover is only partially understood. We provide evidence for a novel mechanistic insight into focal adhesion (FA) dynamics by demonstrating that integrin cytoplasmic domain-associated protein 1 (ICAP-1) slows down FA assembly. Live cell imaging, which was performed in both Icap-1-deficient mouse embryonic fibroblasts and cells expressing active beta(1) integrin, shows that the integrin high affinity state favored by talin is antagonistically controlled by ICAP-1. This affinity switch results in modulation in the speed of FA assembly and, consequently, of cell spreading and migration. Unexpectedly, the ICAP-1-dependent decrease in integrin affinity allows cell sensing of matrix surface density, suggesting that integrin conformational changes are important in mechanotransduction. Our results clarify the function of ICAP-1 in cell adhesion and highlight the central role it plays in the cell's integrated response to the extracellular microenvironment.  相似文献   

10.
Wu W  Sun Z  Wu J  Peng X  Gan H  Zhang C  Ji L  Xie J  Zhu H  Ren S  Gu J  Zhang S 《PloS one》2012,7(1):e29920
c-Src activates Ras-MAPK/ERK signaling pathway and regulates cell migration, while trihydrophobin 1 (TH1) inhibits MAPK/ERK activation and cell migration through interaction with A-Raf and PAK1 and inhibiting their kinase activities. Here we show that c-Src interacts with TH1 by GST-pull down assay, coimmunoprecipitation and confocal microscopy assay. The interaction leads to phosphorylation of TH1 at Tyr-6 in vivo and in vitro. Phosphorylation of TH1 decreases its association with A-Raf and PAK1. Further study reveals that Tyr-6 phosphorylation of TH1 reduces its inhibition on MAPK/ERK signaling, enhances c-Src mediated cell migration. Moreover, induced tyrosine phosphorylation of TH1 has been found by EGF and estrogen treatments. Taken together, our findings demonstrate a novel mechanism for the comprehensive regulation of Ras/Raf/MEK/ERK signaling and cell migration involving tyrosine phosphorylation of TH1 by c-Src.  相似文献   

11.
Multiple stimuli promote the tyrosine phosphorylation and activation of focal adhesion kinase (FAK), which ultimately facilitates migration. Little is known about the effect of adhesion-dependent signals and cytoskeleton organization on the regulation of FAK phosphorylation at serine sites, or about the role of FAK serine phosphorylation in cell migration. Here, we show that FAK phosphorylation at Ser-843 is strikingly increased when adherent cells are removed from the substratum and held in suspension or by treatment of adherent cells with cytochalasin D, conditions that disrupt the F-actin cytoskeleton and promote focal adhesion disassembly. Notably, the increase in Ser-843 phosphorylation was accompanied by a concomitant sharp decrease in Tyr-397 phosphorylation. To further examine the cause-effect relationship between these two phosphorylation sites we generated Ser-843 phosphorylation-deficient and phosphorylation-mimicking FAK mutants. We found that mutation of Ser-843 to aspartic acid (FAK[S843D]) markedly decreased FAK Tyr-397 phosphorylation in integrin-stimulated cells. While the migratory defect of FAK-deficient fibroblasts was rescued by stable re-expression of WT FAK or FAK[S843A], stable re-expression of FAK[S843D] failed to restore the ability of the cells to migrate into the denuded area of a wound. Our results indicate that increased FAK phosphorylation at Ser-843 represses FAK phosphorylation at Tyr-397, thus suggesting a mechanism of cross-talk between these phosphorylation sites that could regulate FAK-mediated cell shape and migration.  相似文献   

12.
Integrin-associated focal adhesions not only provide adhesive links between cellular actin and extracellular matrix but also are sites of signal transmission into the cell interior. Many cell responses signal through focal adhesion kinase (FAK), often by integrin-induced autophosphorylation of FAK or phosphorylation by Src family kinases. Here, we used an interfering FAK mutant (4-9F-FAK) to show that Src-dependent FAK phosphorylation is required for focal adhesion turnover and cell migration, by controlling assembly of a calpain 2/FAK/Src/p42ERK complex, calpain activation, and proteolysis of FAK. Expression of 4-9F-FAK in FAK-deficient fibroblasts also disrupts F-actin assembly associated with normal adhesion and spreading. In addition, we found that FAK's ability to regulate both assembly and disassembly of the actin and adhesion networks may be linked to regulation of the protease calpain. Surprisingly, we also found that the same interfering 4-9F-FAK mutant protein causes apoptosis of serum-deprived, transformed cells and suppresses anchorage-independent growth. These data show that Src-mediated phosphorylation of FAK acts as a pivotal regulator of both actin and adhesion dynamics and survival signaling, which, in turn, control apparently distinct processes such as cell migration and anchorage-independent growth. This also highlights that dynamic regulation of actin and adhesions (which include the integrin matrix receptors) is critical to signaling output and biological responses.  相似文献   

13.
Focal adhesions (FA) are bidirectional mechanical biosensors that allow cells to integrate intracellular and extracellular cues. Their function is tightly regulated by changes in molecular composition and also by variation in the spatio-temporal dynamics of FA components within this structure. A closely regulated turnover of FA proteins within FA sites allows cells to respond appropriately to their environment, thereby impacting on cell shape and function. FA protein dynamics are linked to FA maturation and rates of assembly and disassembly, and have a significant influence on tumor cell migration. Using the FRAP technique to investigate the hidden internal dynamics of FA, we identified two new regulators of FA dynamics and cell migration: the Mgat5/galectin-3 lattice and tyrosine phosphorylated caveolin-1 (pY14Cav1). In this short review we first introduce FA and their complex dynamic behavior. We then present the Mgat5/galectin-3 lattice and caveolin-1 and discuss their concerted role in FA dynamics, which defines previously unknown, interdependent roles in tumor cell migration. We conclude with a discussion of interesting unexplored avenues that might lead to a better understanding of the complex mechanism of FA dynamics.Key words: focal adhesion, migration, caveolin-1, tyrosine 14, galectin-3, Mgat5, turnover, dynamics  相似文献   

14.
Cell division, in addition to an accurate transmission of genetic information to daughter cells, also requires the temporal and spatial coordination of several biological processes without which cell division would not be feasible. These processes include the temporal coordination of DNA replication and chromosome segregation, regulation of nuclear envelope disassembly and assembly, chromatin condensation and Golgi fragmentation for its redistribution into daughter cells, among others. However, little is known regarding regulatory proteins and signalling pathways that might participate in the coordination of all these different biological functions. Such regulatory players should directly have a role in the processes leading to cell division. VRK1 (Vaccinia-related kinase 1) is an early response gene required for cyclin D1 expression, regulates p53 by a specific Thr18 phosphorylation, controls chromatin condensation by histone phosphorylation, nuclear envelope assembly by phosphorylation of BANF1, and participates in signalling required for Golgi fragmentation late in the G2 phase. We propose that VRK1, a Ser-Thr kinase, might be a candidate to play an important coordinator role in these cell division processes as part of a novel signalling pathway.  相似文献   

15.
Accurate chromosome segregation requires assembly of the multiprotein kinetochore complex. Prior work has identified more than 100 different kinetochore components in human cells. However, little is known about the regulatory processes that specify their assembly upon mitotic entry and disassembly at mitotic exit. In this paper, we used a live-cell imaging–based assay to quantify kinetochore disassembly kinetics and systematically analyze the role of potential regulatory mechanisms in controlling kinetochore assembly state. We find that kinetochore assembly and disassembly was driven primarily by mitotic phosphorylation downstream of cyclin-dependent kinase (CDK). In addition, we demonstrate that nuclear exclusion of the Ndc80 complex helped restrict kinetochore formation to mitosis. Combining constitutive CDK-dependent phosphorylation of CENP-T and forced nuclear localization of the Ndc80 complex partially prevented kinetochore disassembly at mitotic exit and led to chromosome segregation defects in subsequent divisions. In total, we find that the coordinated temporal regulation of outer kinetochore assembly is essential for accurate cell division.  相似文献   

16.
The hep I peptide of thrombospondin-1 is known to induce the disassembly of focal adhesions, a critical step in regulating cellular adhesive changes needed for cell motility. Fibroblasts that are heterogeneous with respect to the surface expression of Thy-1 differ markedly in morphology, cytoskeletal organization, and migration, suggesting differential regulation of focal adhesion dynamics. Here we demonstrate that disassembly of focal adhesions mediated by both full-length thrombospondin-1 and the hep I peptide in fibroblasts requires the expression of Thy-1, although it does not appear to function as a stable member of the hep I receptor complex. Consistent with a known function of Thy-1 in regulating lipid raft-associated signaling, intact lipid rafts are necessary for hep I-mediated focal adhesion disassembly. Furthermore, we establish Src family kinase (SFK) activation as a novel component required for hep I-induced signaling leading to focal adhesion disassembly. hep I induces transient phosphorylation of SFKs in Thy-1-expressing fibroblasts only. Therefore, we conclude that Thy-1 surface expression is required for thrombospondin-1-induced focal adhesion disassembly in fibroblasts through an SFK-dependent mechanism. This represents a novel role for Thy-1 in the regulation of fibroblast-matrix interactions critical to tissue homeostasis and remodeling.  相似文献   

17.
Ziheng Xu 《Autophagy》2016,12(10):1685-1686
In eukaryotic cells, cell migration is a dynamic and complex process that involves finely tuned orchestration of a multitude of proteins including, for example, those involved in focal adhesions (FAs). Cell migration plays an indispensable role in particular stages of development and its proper regulation is crucial in various biological processes, from wound healing to the immune response. FAs are transmembrane protein complexes that traverse cytoskeletal infrastructures all the way to the extracellular matrix, producing traction at the leading edge of the cell, thus allowing for motility. The assembly of FAs has been extensively studied, whereas disassembly remains poorly understood. Here, we highlight 2 recent studies (see the corresponding puncta in the previous and current issues of the journal) that demonstrate a requirement for macroautophagy/autophagy in FA disassembly. These studies also provide a deeper understanding of how autophagy can contribute to cell migration among multiple cell types.  相似文献   

18.
Integrin-mediated adhesion to extracellular matrix proteins is dynamically regulated during morphological changes and cell migration. Upon cell adhesion, protein-protein interactions among molecules at focal adhesions (FAs) play major roles in the regulation of cell morphogenesis and migration. Although tyrosine phosphorylation of paxillin is critically involved in adhesion-mediated signaling, the significance of paxillin phosphorylation at Ser-85 and the mechanism by which it regulates cell migration remain unclear. In this study, we examined how Ser-85 phosphorylation of paxillin affects FA formation and cell migration. We found that paxillin phosphorylation at Ser-85 occurred during HeLa cell adhesion to collagen I and was concomitant with tyrosine phosphorylation of both focal adhesion kinase and talin. However, the non-phosphorylatable S85A mutant of paxillin impaired cell spreading, FA turnover, and migration toward collagen I but not toward serum. Furthermore, whereas the (presumably indirect) interaction between paxillin and the C-terminal tail of talin led to dynamic FAs at the cell boundary, S85A paxillin did not bind talin and caused stabilized FAs in the central region of cells. Together, these observations suggest that cell adhesion-dependent Ser-85 phosphorylation of paxillin is important for its interaction with talin and regulation of dynamic FAs and cell migration.  相似文献   

19.
Previous studies suggested that heavy chain phosphorylation regulates non-muscle myosin-II assembly in an isoform-specific manner, affecting the assembly of myosin-IIB, but not myosin-IIA. We re-examined the effects of heavy chain phosphorylation on myosin-IIA filament formation and also examined mts1 binding. We demonstrated that heavy chain phosphorylation by either protein kinase C (PKC) or casein kinase 2 (CK2) inhibits the assembly of myosin-IIA into filaments. PKC phosphorylation had no affect on mts1 binding, but CK2 phosphorylation decreased the affinity of mts1 for the myosin-IIA rod by approximately 6.5-fold. Mts1 destabilized PKC-phosphorylated myosin-IIA filaments and inhibited the assembly of myosin-IIA monomers with maximal inhibition of assembly and promotion of disassembly occurring at a molar ratio of one mts1 dimer per myosin-IIA rod. At this molar ratio, mts1 only weakly disassembled CK2-phosphorylated myosin-IIA filaments and weakly inhibited the assembly of CK2-phosphorylated myosin-IIA monomers. These observations demonstrate that CK2 phosphorylation of the myosin-IIA heavy chain protects against mts1-induced filament disassembly and inhibition of assembly, and suggest that heavy chain phosphorylation provides an additional level of regulation for the mts1-myosin-IIA interaction.  相似文献   

20.
Y1 adrenocortical cells respond to ACTH with a characteristic rounding-up that facilitates cAMP signaling, critical for transport of cholesterol to the mitochondria and increase in steroid secretion. We here demonstrate that caveolin-1 participates in coupling activation of protein kinase A (PKA) to the control of cell shape. ACTH/8-Br-cAMP induced reorganization of caveolin-1-positive structures in correlation with the cellular rounding-up. Concomitant with this change, there was an increase in the phosphorylation of caveolin-1 (Tyr-14) localized at focal adhesions (FA) with reorganization of FA to rounded, ringlike structures. Colocalization with phalloidin showed that phosphocaveolin is present at the edge of actin filaments and that after ACTH stimulation F-actin dots at the cell periphery become surrounded by phosphocaveolin-1. These observations along with electron microscopy studies revealed these structures as podosomes. Podosome assembly was dependent on both PKA and tyrosine kinase activities because their formation was impaired after treatment with specific inhibitors [myristoylated PKI (mPKI) or PP2, respectively] previous to ACTH/8-Br-cAMP stimulation. These results show for the first time that ACTH induces caveolin-1 phosphorylation and podosome assembly in Y1 cells and support the view that the morphological and functional responses to PKA activation in steroidogenic cells are related to cytoskeleton dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号