首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Most active biopolymers are dynamic structures; thus, ensembles of such molecules should be characterized by distributions of intra- or intermolecular distances and their fast fluctuations. A method of choice to determine intramolecular distances is based on Förster resonance energy transfer (FRET) measurements. Major advances in such measurements were achieved by single molecule FRET measurements. Here, we show that by global analysis of the decay of the emission of both the donor and the acceptor it is also possible to resolve two sub-populations in a mixture of two ensembles of biopolymers by time resolved FRET (trFRET) measurements at the ensemble level. We show that two individual intramolecular distance distributions can be determined and characterized in terms of their individual means, full width at half maximum (FWHM), and two corresponding diffusion coefficients which reflect the rates of fast ns fluctuations within each sub-population. An important advantage of the ensemble level trFRET measurements is the ability to use low molecular weight small-sized probes and to determine nanosecond fluctuations of the distance between the probes. The limits of the possible resolution were first tested by simulation and then by preparation of mixtures of two model peptides. The first labeled polypeptide was a relatively rigid Pro7 and the second polypeptide was a flexible molecule consisting of (Gly-Ser)7 repeats. The end to end distance distributions and the diffusion coefficients of each peptide were determined. Global analysis of trFRET measurements of a series of mixtures of polypeptides recovered two end-to-end distance distributions and associated intramolecular diffusion coefficients, which were very close to those determined from each of the pure samples. This study is a proof of concept study demonstrating the power of ensemble level trFRET based methods in resolution of subpopulations in ensembles of flexible macromolecules.  相似文献   

2.
Summary A genetic algorithm (GA) based method for docking ensembles of small, flexible ligands to receptor proteins using NMR-derived constraints is described. In this method, three translations and rotations of the ligand and the dihedral angles of the ligand are represented by binary strings and evolve under the genetic operators of cross-over, mutation, migration and selection. The fitness function for the selection process includes distance and dihedral restraints and a repulsive van der Waals term. The GA was applied to a three-atom model system as well as to the streptavidin-biotin complex using simulated intermolecular distance restraints. In both systems, the GA was able to obtain low-energy conformations when only a single binding site was simulated. Calculations were also performed using distance restraints from two distinct binding sites. In these simulations, the GA was able to obtain low-energy conformations corresponding to ligand molecules in each of the two sites. The inclusion of additional ligands in the ensemble did not result in an energetic benefit, confirming that only two ligand conformations were necessary to fulfill the distance restraints. This method allows for a direct investigation of the minimum number of ligand orientations necessary to fulfill experimental distance restraints, and simultaneously yields detailed structural information about each site.  相似文献   

3.
Superpositioning of atoms in an ensemble of biomolecules is a common task in a variety of fields in structural biology. Although several automated tools exist based on previously established methods, manual operations to define the atoms in the ordered regions are usually preferred. The task is difficult and lacks output efficiency for multi-core proteins having complicated folding topology. The new method presented here can systematically and quantitatively achieve the identification of ordered cores even for molecules containing multiple cores linked with flexible loops. In contrast to established methods, this method treats the variance of inter-atomic distances in an ensemble as information content using a non-linear (NL) function, and then subjects it to multi-dimensional scaling (MDS) to embed the row vectors in the inter-atomic distance variance matrix into a lower dimensional matrix. The plots of the identified atom groups in a one or two-dimensional map enables users to visually and intuitively infer well-ordered atoms in an ensemble, as well as to automatically identify them by the standard clustering methods. The performance of the NL-MDS method has been examined for number of structure ensembles studied by nuclear magnetic resonance, demonstrating that the method can be more suitable for structural analysis of multi-core proteins in comparison to previously established methods.  相似文献   

4.
Abstract

Tertiary contact distance information of varying resolution for large biological molecules abounds in the literature. The results provided herein develop a framework by which information of this type can be used to reduce the allowable configuration space of a macromolecule. The approach combines graph theory and distance geometry. Large molecules are represented as simple, undirected graphs, with atoms, or groups, as vertices, and distances between them as edges. It is shown that determination of the exact structure of a molecule in three dimensions only requires the specification of all the distances in a single tetrahedron, and four distances to every other atom. This is 4N-10 distances which is a subset of the total N(N-l)/2 unique distances in a molecule consisting of N atoms. This requirement for only 4N-10 distances has serious implications for distance geometry implementations in which all N(N-l)/2 distances are specified by bounded random numbers. Such distance matrices represent overspecified systems which when solved lead to non-obvious distribution of any error caused by inherent contradictions in the input data. It is also shown that numerous valid subsets of 4N-10 distances can be constructed. It is thus possible to tailor a subset of distances using all known distances as degrees of freedom, and thereby reduce the configuration space of the molecule. Simple algebraic relationships are derived that relate sets of distances, and complicated rotations are avoided. These relationships are used to construct minimum, complete sets of distances necessary to specify the exact structure of the entire molecule in three dimensions from incomplete distance information, and to identify sets of inconsistent distances. The method is illustrated for the flexible structural types present in large ribosomal RNAs: 1.) A five-membered ring; 2.) a chemically bonded chain with its ends in contact (i.e., a hairpin loop); 3.) the spatial orientation of two separate molecules, and; 4.) an RNA helix that can have variation in individual base pairs, giving rise to global deviation from standardized helical forms.  相似文献   

5.
《Proteins》2018,86(5):501-514
The structural variations of multidomain proteins with flexible parts mediate many biological processes, and a structure ensemble can be determined by selecting a weighted combination of representative structures from a simulated structure pool, producing the best fit to experimental constraints such as interatomic distance. In this study, a hybrid structure‐based and physics‐based atomistic force field with an efficient sampling strategy is adopted to simulate a model di‐domain protein against experimental paramagnetic relaxation enhancement (PRE) data that correspond to distance constraints. The molecular dynamics simulations produce a wide range of conformations depicted on a protein energy landscape. Subsequently, a conformational ensemble recovered with low‐energy structures and the minimum‐size restraint is identified in good agreement with experimental PRE rates, and the result is also supported by chemical shift perturbations and small‐angle X‐ray scattering data. It is illustrated that the regularizations of energy and ensemble‐size prevent an arbitrary interpretation of protein conformations. Moreover, energy is found to serve as a critical control to refine the structure pool and prevent data overfitting, because the absence of energy regularization exposes ensemble construction to the noise from high‐energy structures and causes a more ambiguous representation of protein conformations. Finally, we perform structure‐ensemble optimizations with a topology‐based structure pool, to enhance the understanding on the ensemble results from different sources of pool candidates.  相似文献   

6.
Tertiary contact distance information of varying resolution for large biological molecules abounds in the literature. The results provided herein develop a framework by which information of this type can be used to reduce the allowable configuration space of a macromolecule. The approach combines graph theory and distance geometry. Large molecules are represented as simple, undirected graphs, with atoms, or groups, as vertices, and distances between them as edges. It is shown that determination of the exact structure of a molecule in three dimensions only requires the specification of all the distances in a single tetrahedron, and four distances to every other atom. This is 4N-10 distances which is a subset of the total N(N-1)/2 unique distances in a molecule consisting of N atoms. This requirement for only 4N-10 distances has serious implications for distance geometry implementations in which all N(N-1)/2 distances are specified by bounded random numbers. Such distance matrices represent overspecified systems which when solved lead to non-obvious distribution of any error caused by inherent contradictions in the input data. It is also shown that numerous valid subsets of 4N-10 distances can be constructed. It is thus possible to tailor a subset of distances using all known distances as degrees of freedom, and thereby reduce the configuration space of the molecule. Simple algebraic relationships are derived that relate sets of distances, and complicated rotations are avoided. These relationships are used to construct minimum, complete sets of distances necessary to specify the exact structure of the entire molecule in three dimensions from incomplete distance information, and to identify sets of inconsistent distances. The method is illustrated for the flexible structural types present in large ribosomal RNAs: 1.) A five-membered ring; 2.) a chemically bonded chain with its ends in contact (i.e., a hairpin loop); 3.) the spatial orientation of two separate molecules, and; 4.) an RNA helix that can have variation in individual base pairs, giving rise to global deviation from standardized helical forms.  相似文献   

7.
DNA sequence analysis by oligonucleotide binding is often affected by interference with the secondary structure of the target DNA. Here we describe an approach that improves DNA secondary structure prediction by combining enzymatic probing of DNA by structure-specific 5′-nucleases with an energy minimization algorithm that utilizes the 5′-nuclease cleavage sites as constraints. The method can identify structural differences between two DNA molecules caused by minor sequence variations such as a single nucleotide mutation. It also demonstrates the existence of long-range interactions between DNA regions separated by >300 nt and the formation of multiple alternative structures by a 244 nt DNA molecule. The differences in the secondary structure of DNA molecules revealed by 5′-nuclease probing were used to design structure-specific probes for mutation discrimination that target the regions of structural, rather than sequence, differences. We also demonstrate the performance of structure-specific ‘bridge’ probes complementary to non-contiguous regions of the target molecule. The structure-specific probes do not require the high stringency binding conditions necessary for methods based on mismatch formation and permit mutation detection at temperatures from 4 to 37°C. Structure-specific sequence analysis is applied for mutation detection in the Mycobacterium tuberculosis katG gene and for genotyping of the hepatitis C virus.  相似文献   

8.
Grimme S  Bahlmann A  Haufe G 《Chirality》2002,14(10):793-797
Based on the time-dependent density functional response theory, an approach for the prediction of optical rotations of enantiomers of conformationally flexible molecules was developed. The method was applied successfully for the determination of the absolute configuration of trans-2-fluorocycloalkanol acetates with different ring sizes. The largest deviations between experimental and theoretical [alpha](D) values are 10 deg x [dm x (g/cc)](-1) (about 20% error). These theoretical results suggest that the optical rotation in these molecules is dominated by the local (1R;2R) configuration of the two substituents and that different ring and even axial/equatorial orientations play a less important role.  相似文献   

9.
The peptide hormone ghrelin activates the growth hormone secretagogue receptor 1a, also known as the ghrelin receptor. This 28-residue peptide is acylated at Ser3 and is the only peptide hormone in the human body that is lipid-modified by an octanoyl group. Little is known about the structure and dynamics of membrane-associated ghrelin. We carried out solid-state NMR studies of ghrelin in lipid vesicles, followed by computational modeling of the peptide using Rosetta. Isotropic chemical shift data of isotopically labeled ghrelin provide information about the peptide’s secondary structure. Spin diffusion experiments indicate that ghrelin binds to membranes via its lipidated Ser3. Further, Phe4, as well as electrostatics involving the peptide’s positively charged residues and lipid polar headgroups, contribute to the binding energy. Other than the lipid anchor, ghrelin is highly flexible and mobile at the membrane surface. This observation is supported by our predicted model ensemble, which is in good agreement with experimentally determined chemical shifts. In the final ensemble of models, residues 8–17 form an α-helix, while residues 21–23 and 26–27 often adopt a polyproline II helical conformation. These helices appear to assist the peptide in forming an amphipathic conformation so that it can bind to the membrane.  相似文献   

10.
For the first time a consistent catalytic mechanism of phospholipase C from Bacillus cereus is reported based on molecular mechanics calculations. We have identified the position of the nucleophilic water molecule, which is directly involved in the hydrolysis of the natural substrate, phosphatidylcholine, in phospholipase C. This catalytically essential water molecule, after being activated by an acidic residue (Asp55), performs the nucleophilic attack on the phosphorus atom in the substrate, leading to a trigonal bipyramidal pentacoordinated intermediate (and structurally similar transition state). The subsequent collapse of the intermediate, regeneration of the enzyme, and release of the products has to involve a not yet identified second water molecule. The catalytic mechanism reported here is based on a series of molecular mechanics calculations. First, the x-ray structure of phospholipase C from B. cereus including a docked substrate molecule was subjected to a stepwise molecular mechanics energy minimization. Second, the location of the nucleophilic water molecule in the active site of the fully relaxed enzyme–substrate complex was determined by evaluation of nonbonded interaction energies between the complex and a water molecule. The nucleophilic water molecule is positioned at a distance (3.8 Å) from the phosphorus atom in the substrate, which is in good agreement with experimentally observed distances. Finally, the stability of the complex between phospholipase C, the substrate, and the nucleophilic water molecule was verified during a 100 ps molecular dynamics simulation. During the simulation the substrate undergoes a conformational change, but retains its localization in the active site. The contacts between the enzyme, the substrate, and the nucleophilic water molecule display some fluctuations, but remain within reasonable limits, thereby confirming the stability of the enzyme–substrate–water complex. The protocol developed for energy minimization of phospholipase C containing three zinc ions located closely together at the bottom of the active site cleft is reported in detail. In order to handle the strong electrostatic interactions in the active site realistically during energy minimization, delocalization of the charges from the three zinc ions was considered. Therefore, quantum mechanics calculations on the zinc ions and the zinc-coordinating residues were carried out prior to the molecular mechanics calculations, and two different sets of partial atomic charges (MNDO-Mulliken and AM1-ESP) were applied. After careful assignment of partial atomic charges, a complete energy minimization of the protein was carried out by a stepwise procedure without explicit solvent molecules. Energy minimization with either set of charges yielded structures, which were very similar both to the x-ray structure and to each other, although using AM1-ESP partial atomic charges and a dielectric constant of 4, yielded the best protein structure. © 1997 John Wiley and Sons, Inc. Biopoly 42: 319–336, 1997  相似文献   

11.
Summary Fluorescence quenching is the loss of fluorescence intensity which is observed when a fluorescent molecule or group interacts with another molecule or group, called the quencher. By use of tryptophan residues of proteins, together with specific probe molecules, quenching can be applied to problems of biological and model membrane structure. Quenching interactions are short range (<50 Å) so that structure on the scale of molecular dimensions can be examined. This review summarizes the recent applications of fluorescence quenching by spin (nitroxide)-labeled molecules to problems of membrane structure, including determination of the distance of membrane-bound molecules from the membrane surface, the strength of lipid-protein interactions and the strength of protein-protein interactions within membranes. The unique advantages and the limitations of this powerful method are examined.  相似文献   

12.
T-cell receptors (TCR) play an important role in the adaptive immune system as they recognize pathogen- or cancer-based epitopes and thus initiate the cell-mediated immune response. Therefore there exists a growing interest in the optimization of TCRs for medical purposes like adoptive T-cell therapy. However, the molecular mechanisms behind T-cell signaling are still predominantly unknown. For small sets of TCRs it was observed that the angle between their Vα- and Vβ-domains, which bind the epitope, can vary and might be important for epitope recognition. Here we present a comprehensive, quantitative study of the variation in the Vα/Vβ interdomain-angle and its influence on epitope recognition, performing a systematic bioinformatics analysis based on a representative set of experimental TCR structures. For this purpose we developed a new, cuboid-based superpositioning method, which allows a unique, quantitative analysis of the Vα/Vβ-angles. Angle-based clustering led to six significantly different clusters. Analysis of these clusters revealed the unexpected result that the angle is predominantly influenced by the TCR-clonotype, whereas the bound epitope has only a minor influence. Furthermore we could identify a previously unknown center of rotation (CoR), which is shared by all TCRs. All TCR geometries can be obtained by rotation around this center, rendering it a new, common TCR feature with the potential of improving the accuracy of TCR structure prediction considerably. The importance of Vα/Vβ rotation for signaling was confirmed as we observed larger variances in the Vα/Vβ-angles in unbound TCRs compared to epitope-bound TCRs. Our results strongly support a two-step mechanism for TCR-epitope: First, preformation of a flexible TCR geometry in the unbound state and second, locking of the Vα/Vβ-angle in a TCR-type specific geometry upon epitope-MHC association, the latter being driven by rotation around the unique center of rotation.  相似文献   

13.
Protein-peptide interactions are vital for the cell. They mediate, inhibit or serve as structural components in nearly 40% of all macromolecular interactions, and are often associated with diseases, making them interesting leads for protein drug design. In recent years, large-scale technologies have enabled exhaustive studies on the peptide recognition preferences for a number of peptide-binding domain families. Yet, the paucity of data regarding their molecular binding mechanisms together with their inherent flexibility makes the structural prediction of protein-peptide interactions very challenging. This leaves flexible docking as one of the few amenable computational techniques to model these complexes. We present here an ensemble, flexible protein-peptide docking protocol that combines conformational selection and induced fit mechanisms. Starting from an ensemble of three peptide conformations (extended, a-helix, polyproline-II), flexible docking with HADDOCK generates 79.4% of high quality models for bound/unbound and 69.4% for unbound/unbound docking when tested against the largest protein-peptide complexes benchmark dataset available to date. Conformational selection at the rigid-body docking stage successfully recovers the most relevant conformation for a given protein-peptide complex and the subsequent flexible refinement further improves the interface by up to 4.5 Å interface RMSD. Cluster-based scoring of the models results in a selection of near-native solutions in the top three for ∼75% of the successfully predicted cases. This unified conformational selection and induced fit approach to protein-peptide docking should open the route to the modeling of challenging systems such as disorder-order transitions taking place upon binding, significantly expanding the applicability limit of biomolecular interaction modeling by docking.  相似文献   

14.
The solution conformation of the antibiotic peptide alamethicin was investigated using multi-nuclear spectroscopy and the distance geometry/simulated annealing algorithms from the program DSPACE. 1H-, 13C-, and 15N-nmr chemical shifts and homonuclear 1H coupling constants suggest that the molecule is flexible in the vicinity of Gly-11 and Leu-12. The temperature dependence of the amide proton chemical shifts indicates that there is flexibility in the middle of the 20 residue peptide and provides evidence that, at the very N-terminus, the molecule adopts a 310-helical conformation. The large differences in the 13C chemical shifts of the pro-R and pro-S methyls of the α-aminoisobutyric acid residues were used to constrain those residues to the right-handed helical conformation in the distance geometry/simulated annealing algorithms. A family of 24 structures was generated but did not converge to a common conformation when superimposed over the entire polypeptide sequence. The molecules did converge to a helical conformation over residues 1–10 and residues 13–18. The lack of convergence when the entire lengths of the molecules are superimposed is explained by the flexibility of the peptide near Gly-11/Leu-12. The results suggest that the protein consists of two helices connected by a flexible “hinge.” The flexibility of the molecule is discussed with respect to the macrodipole model of voltage gating. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
Considerable clinical interest in neuropeptides and peptide hormones has stimulated recent research and development of peptide-based drugs. This process differs from most classical drug discovery procedures because peptide molecules have considerable inherent flexibility. In the present paper, to identify lowest energy and metastable conformers for drug design, and to develop protocols for such studies, conformational search algorithms, incorporating empirical energy calculations, have been applied in the analysis of the peptide oxytocin. Energy minimization in torsion angle space was carried out from a variety of starting conformations, including published structures, in all-atom mode and all with distance constraints for disulphide bond formation. The energy-minimized conformations have been further optimized by a mapping method. Complementary simulations have been performed in united-atom mode and a model representing the effects of water using dummy sites has been developed and tested for this representation. Several of the preferred conformers together with de novo conformations have been used as starting points in molecular dynamics simulations; 28 low potential energy conformations were located at a temperature of 4 K. Conformations are analysed to identify hydrogen bonds, phi-psi angle distributions and the RMS values relative to the X-ray structure of deamino-oxytocin. The modelled structure of lowest energy in the molecular mechanics calculations was also that of least RMS deviation from the crystal structure; whilst structures of lower energy but larger deviation were identified by molecular dynamics techniques. A metastable structure has been identified which satisfies existing criteria for the "active form", and this model is tested by a theoretical residue-substitution technique, to provide clues on the agonist/antagonist relationship at the atomic level.  相似文献   

16.
We have developed a method to determine the three-dimensional structure of a protein molecule from such a set of distance constraints as can be determined by nuclear magnetic resonance studies. The currently popular methods for distance geometry based on the use of the metric matrix are applicable only to small systems. The method developed here is applicable to large molecules, such as proteins, with all atoms treated explicitly. This method works in the space of variable dihedral angles and determines a three-dimensional structure by minimization of a target function. We avoid difficulties hitherto inherent in this type of approach by two new devices: the use of variable target functions; and a method of rapid calculation of the gradient of the target functions. The method is applied to the determination of the structures of a small globular protein, bovine pancreatic trypsin inhibitor, from several artificial sets of distance constraints extracted from the X-ray crystal structure of this molecule. When a good set of constraints was available for both short- and long-range distances, the crystal structure was regenerated nearly exactly. When some ambiguities, such as those expected in experimental information, are allowed, the protein conformation can be determined up to a few local deformations. These ambiguities are mainly associated with the low resolving power of the short-range information.  相似文献   

17.
A cyclic peptide analogue of somatostatin, including the o-aminomethylphenylacetic acid spacer, was studied by the combined use of two-dimensional nmr spectroscopy, distance geometry, and restrained molecular dynamics. Analysis of distances determined from nuclear Overhauser effect (NOE) buildup rates revealed that these were inconsistent with a unique backbone conformation near the spacer. Assuming that the conformational heterogeneity is localized to the spacer, the NOE distances measured for the remaining part of the molecule were used to generate a large number of structures with the distance geometry algorithm, which were then refined by restrained energy minimization. Four classes of structures emerged, which together account for all observed NOEs. A representative structure of each class was further refined with the restrained molecular dynamics technique, and shown to be stable on a 20-ps time scale. The flexibility of the spacer was examined by simulating interconversions induced by an appropriate restraining potential. As a result, the explanation for the lack of somatostatin activity of the analogue studied was reconsidered.  相似文献   

18.
Dwyer DS 《Biopolymers》1999,49(7):635-645
The effects of alcohols on local protein structure have been simulated using computational approaches and model peptides. Molecular simulations were carried out on a 7-residue peptide created in both an extended conformation and an alpha-helix to explore alcohol-induced changes in peptide structure. It was assumed that alcohols hydrogen bond at peptide carbonyl groups with an optimum geometry and compete with water molecules at these site. Energy minimization of the peptide/alcohol assemblies revealed that alcohols induced a twist in the peptide backbone as a function of (1) the methylene chain length, (2) the hydrogen-bond geometry, (3) halogenation of the molecule, (4) concentration, and (5) the dielectric constant. The rank ordering of the potencies of the alcohols was hexafluoroisopropanol > trifluoroethanol approximately pentanol > butanol > ethanol > methanol. Helix destabilization by cosolvent was measured by examining the hydrogen-bond lengths in peptide structures that resulted from a combination of energy minimization and molecular dynamics simulations. Destabilization was also found to be dependent upon the chemical nature of the alcohol and the hydrogen-bond geometry. The data suggest that alcohols at low concentrations affect protein structure mainly through a combination of hydrogen-bonding and hydrophobic interactions that are influenced by the properties of the solvent.  相似文献   

19.
The structure in solution of crambin, a small protein of 46 residues, has been determined from 2D NMR data using an iterative relaxation matrix approach (IRMA) together with distance geometry, distance bound driven dynamics, molecular dynamics, and energy minimization. A new protocol based on an “ensemble” approach is proposed and compared to the more standard initial rate analysis approach and a “single structure” relaxation matrix approach. The effects of fast local motions are included and R-factor calculations are performed on NOE build-ups to describe the quality of agreement between theory and experiment. A new method for stereospecific assignment of prochiral groups, based on a comparison of theoretical and experimental NOE intensities, has been applied. The solution structure of crambin could be determined with a precision (rmsd from the average structure) of 0.7 Å on backbone atoms and 1.1 Å on all heavy atoms and is largely similar to the crystal structure with a small difference observed in the position of the side chain of Tyr-29 which is determined in solution by both J-coupling and NOE data. Regions of higher structural variability (suggesting higher mobility) are found hi the solution structure, in particular for the loop between the two helices (Gly-20 to Pro-22). © 1993 Wiley-Liss, Inc.  相似文献   

20.
Abstract

The conformational sub-space oriented on early-stage protein folding is applied to lysozyme folding. The part of the Ramachandran map distinguished on the basis of a geometrical model of the polypeptide chain limited to the mutual orientation of the peptide bond planes is shown to deliver the initial structure of the polypeptide for the energy minimization procedure in the ab initio model of protein folding prediction. Two forms of energy minimization and molecular dynamics simulation procedures were applied to the assumed early-stage protein folding of lysozyme. One of them included the disulphide bond system and the other excluded it. The post-energy-minimization and post-dynamics structures were compared using RMS-D and non-bonding contact maps to estimate the degree of approach to the native, target structure of the protein molecule obtained using the limited conformational sub-space for the early stage of folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号