首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tracking of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles-labeled embryonic stem cells, neural stem cells, or adult mesenchymal stem cells in vitro and in vivo by using magnetic resonance (MR) imaging have been reported. However, whether the transdifferentiated cells can be effectively labeled by USPIO has not yet been investigated. The requirement for nerve donor material evokes additional morbidity and inability to generate a sufficiently large number of cells in a short time to hamper the clinic application of Schwann cells (SCs) transplantation. These limitations may be avoided if SCs can be generated from clinically accessible sources, such as bone marrow and umbilical cord. However, a reliable means of inducing the selective differentiation of human mesenchymal stromal cells isolated from the umbilical cord (HUMSCs) into SCs in vitro has not yet been established. In this study, we induce HUMSCs into Schwann-like cells in terms of morphology, phenotype, and function by an improved protocol basing on our previous studies. Furthermore, HUMSCs-derived SCs are labeled efficiently in vitro with ultrasmall superparamagnetic iron oxide contrast agent (USPIO) Sinerem and poly-l-lysine (PLL) without affecting morphology, cell cycle, proliferation, and differentiation ability of the labeled cells between the concentration of 200 to 800 μg/ml. Importantly, when grafted into the intact cerebral cortex and striatum, the survival and migration of these Sinerem-labeled cells were observed using MRI. Our study suggest the effective concentration field for Sinerem use in tracking transdifferentiated HUMSCs, and Sinerem labeling transdifferentiated HUMSCs is feasible, efficient, and safe for MRI tracing following grafting into nervous system.  相似文献   

2.
Development of human embryonic stem cell (hESC)-based therapy requires derivation of in vitro expandable cell populations that can readily differentiate to specified cell types and engraft upon transplantation. Here, we report that hESCs can differentiate into skeletal muscle cells without genetic manipulation. This is achieved through the isolation of cells expressing a mesodermal marker, platelet-derived growth factor receptor-α (PDGFRA), following embryoid body (EB) formation. The ESC-derived cells differentiated into myoblasts in vitro as evident by upregulation of various myogenic genes, irrespective of the presence of serum in the medium. This result is further corroborated by the presence of sarcomeric myosin and desmin, markers for terminally differentiated cells. When transplanted in vivo, these pre-myogenically committed cells were viable in tibialis anterior muscles 14 days post-implantation. These hESC-derived cells, which readily undergo myogenic differentiation in culture medium containing serum, could be a viable cell source for skeletal muscle repair and tissue engineering to ameliorate various muscle wasting diseases.  相似文献   

3.
4.

Background

Many patients with ischemic heart disease have cardiovascular risk factors such as cigarette smoking. We tested the effect of nicotine (a key component of cigarette smoking) on the therapeutic effects of human embryonic stem cell-derived endothelial cells (hESC-ECs).

Methods and Results

To induce endothelial cell differentiation, undifferentiated hESCs (H9 line) underwent 4-day floating EB formation and 8-day outgrowth differentiation in EGM-2 media. After 12 days, CD31+ cells (13.7±2.5%) were sorted by FACScan and maintained in EGM-2 media for further differentiation. After isolation, these hESC-ECs expressed endothelial specific markers such as vWF (96.3±1.4%), CD31 (97.2±2.5%), and VE-cadherin (93.7±2.8%), form vascular-like channels, and incorporated DiI-labeled acetylated low-density lipoprotein (DiI-Ac-LDL). Afterward, 5×106 hESC-ECs treated for 24 hours with nicotine (10−8 M) or PBS (as control) were injected into the hearts of mice undergoing LAD ligation followed by administration for two weeks of vehicle or nicotine (100 µg/ml) in the drinking water. Surprisingly, bioluminescence imaging (BLI) showed significant improvement in the survival of transplanted hESC-ECs in the nicotine treated group at 6 weeks. Postmortem analysis confirmed increased presence of small capillaries in the infarcted zones. Finally, in vitro mechanistic analysis suggests activation of the MAPK and Akt pathways following activation of nicotinic acetylcholine receptors (nAChRs).

Conclusions

This study shows for the first time that short-term systemic administrations of low dose nicotine can improve the survival of transplanted hESC-ECs, and enhance their angiogenic effects in vivo. Furthermore, activation of nAChRs has anti-apoptotic, angiogenic, and proliferative effects through MAPK and Akt signaling pathways.  相似文献   

5.
6.

Background

Mesenchymal stem cells have prominent immune modulatory properties, which may have clinical applications; however their major source, bone marrow, is of limited availability. On the other hand, mesenchymal stem cells derived from human exfoliated deciduous teeth (SHEDs) are readily accessible, but their immune regulatory properties have not been completely investigated. This study was designed, therefore, to evaluate the SHEDs influence on DCs differentiation, maturation, ability to activate T cells and to expand CD4+Foxp3+ T cells.

Methodology/Principal Findings

The experiments were based in cellular co-culture during differentiation and maturation of monocyte derived-DCs (moDCs), with, or not, presence of SHEDs. After co-culture with SHEDs, (moDCs) presented lower expression of BDCA-1 and CD11c, in comparison to DC cultivated without SHEDs. CD40, CD80, CD83 and CD86 levels were also decreased in mature DCs (mDCs) after co-cultivation with SHEDs. To assess the ability of SHEDs-exposed moDCs to modulate T cell responses, the former were separated from SHEDs, and co-cultured with peripheral blood lymphocytes. After 5 days, the proliferation of CD4+ and CD8+ T cells was evaluated and found to be lower than that induced by moDCs cultivated without SHEDs. In addition, an increase in the proportion of CD4+Foxp3+IL-10+ T cells was observed among cells stimulated by mature moDCs that were previously cultivated with SHEDs. Soluble factors released during co-cultures also showed a reduction in the pro-inflammatory cytokines (IL-2, TNF-α and IFN-γ), and an increase in the anti-inflammatory molecule IL-10.

Conclusion/Significance

This study shows that SHEDs induce an immune regulatory phenotype in moDCs cells, evidenced by changes in maturation and differentiation rates, inhibition of lymphocyte stimulation and ability to expand CD4+Foxp3+ T cells. Further characterization and validation of this phenomenon could support the use of SHEDs, directly or indirectly for immune modulation in the clinical practice.  相似文献   

7.
8.
Urinary incontinence, defined as the complaint of any involuntary loss of urine, is a pathological condition, which affects 30% females and 15% males over 60, often following a progressive decrease of rhabdosphincter cells due to increasing age or secondary to damage to the pelvic floor musculature, connective tissue and/or nerves. Recently, stem cell therapy has been proposed as a source for cell replacement and for trophic support to the sphincter. To develop new therapeutic strategies for urinary incontinence, we studied the interaction between mesenchymal stem cells (MSCs) and muscle cells in vitro; thereafter, aiming at a clinical usage, we analyzed the supporting role of MSCs for muscle cells in vitro and in in vivo xenotransplantation. MSCs can express markers of the myogenic cell lineages and give rise, under specific cell culture conditions, to myotube-like structures. Nevertheless, we failed to obtain mixed myotubes both in vitro and in vivo. For in vivo transplantation, we tested a new protocol to collect human MSCs from whole bone marrow, to get larger numbers of cells. MSCs, when transplanted into the pelvic muscles close to the external urethral sphincter, survived for a long time in absence of immunosuppression, and migrated into the muscle among fibers, and towards neuromuscular endplates. Moreover, they showed low levels of cycling cells, and did not infiltrate blood vessels. We never observed formation of cell masses suggestive of tumorigenesis. Those which remained close to the injection site showed an immature phenotype, whereas those in the muscle had more elongated morphologies. Therefore, MSCs are safe and can be easily transplanted without risk of side effects in the pelvic muscles. Further studies are needed to elucidate their integration into muscle fibers, and to promote their muscular transdifferentiation either before or after transplantation.  相似文献   

9.
The low efficiency of differentiation into male germ cell (GC)-like cells and haploid germ cells from human embryonic stem cells (hESCs) reflects the culture method employed in the two-dimensional (2D)-microenvironment. In this study, we applied a three-step media and calcium alginate-based 3D-culture system for enhancing the differentiation of hESCs into male germ stem cell (GSC)-like cells and haploid germ cells. In the first step, embryoid bodies (EBs) were derived from hESCs cultured in EB medium for 3 days and re-cultured for 4 additional days in EB medium with BMP4 and RA to specify GSC-like cells. In the second step, the resultant cells were cultured in GC-proliferation medium for 7 days. The GSC-like cells were then propagated after selection using GFR-α1 and were further cultured in GC-proliferation medium for 3 weeks. In the final step, a 3D-co-culture system using calcium alginate encapsulation and testicular somatic cells was applied to induce differentiation into haploid germ cells, and a culture containing approximately 3% male haploid germ cells was obtained after 2 weeks of culture. These results demonstrated that this culture system could be used to efficiently induce GSC-like cells in an EB population and to promote the differentiation of ESCs into haploid male germ cells.  相似文献   

10.
Renovascular hypertension induced by 2 Kidney-1 Clip (2K-1C) is a renin-angiotensin-system (RAS)-dependent model, leading to renal vascular rarefaction and renal failure. RAS inhibitors are not able to reduce arterial pressure (AP) and/or preserve the renal function, and thus, alternative therapies are needed. Three weeks after left renal artery occlusion, fluorescently tagged mesenchymal stem cells (MSC) (2×105 cells/animal) were injected weekly into the tail vein in 2K-1C hypertensive rats. Flow cytometry showed labeled MSC in the cortex and medulla of the clipped kidney. MSC prevented a further increase in the AP, significantly reduced proteinuria and decreased sympathetic hyperactivity in 2K-1C rats. Renal function parameters were unchanged, except for an increase in urinary volume observed in 2K-1C rats, which was not corrected by MSC. The treatment improved the morphology and decreased the fibrotic areas in the clipped kidney and also significantly reduced renal vascular rarefaction typical of 2K-1C model. Expression levels of IL-1β, TNF-α angiotensinogen, ACE, and Ang II receptor AT1 were elevated, whereas AT2 levels were decreased in the medulla of the clipped kidney. MSC normalized these expression levels. In conclusion, MSC therapy in the 2K-1C model (i) prevented the progressive increase of AP, (ii) improved renal morphology and microvascular rarefaction, (iii) reduced fibrosis, proteinuria and inflammatory cytokines, (iv) suppressed the intrarenal RAS, iv) decreased sympathetic hyperactivity in anesthetized animals and v) MSC were detected at the CNS suggesting that the cells crossed the blood-brain barrier. This therapy may be a promising strategy to treat renovascular hypertension and its renal consequences in the near future.  相似文献   

11.
Aim of the present study was the isolation, culture, and characterization of amniotic membrane-derived epithelial cells (AE) from term placenta collected postpartum in buffalo. We found that cultured cells were of polygonal in shape, resistance to trypsin digestion and expressed cytokeratin-18 indicating that they were of epithelial origin. These cells have negative expression of mesenchymal stem cell markers (CD29, CD44, and CD105) and positive for pluripotency marker (OCT4) genes indicated that cultured cells were not contaminated with mesenchymal stem cells. Immunofluorescence staining with pluripotent stem cell surface markers, SSEA-1, SSEA-4, TRA-1-60, and TRA-1-81 indicated that these cells may retain pluripotent stem cell characteristics even after long period of differentiation. Differentiation potential of these cells was determined by their potential to differentiate into cells of neurogenic lineages using retinoic acid. In conclusion, we demonstrate that AE cells expressed pluripotent stem cell markers and have propensity to differentiate into cells of neurogenic lineage upon directed differentiation in vitro.  相似文献   

12.
Human embryonic stem cells (hESC) are emerging as an attractive alternative source for cell replacement therapy since they can be expanded in culture indefinitely and differentiated to any cell types in the body. Various types of biomaterials have also been used in stem cell cultures to provide a microenvironment mimicking the stem cell niche1-3. The latter is important for promoting cell-to-cell interaction, cell proliferation, and differentiation into specific lineages as well as tissue organization by providing a three-dimensional (3D) environment4 such as encapsulation. The principle of cell encapsulation involves entrapment of living cells within the confines of semi-permeable membranes in 3D cultures2. These membranes allow for the exchange of nutrients, oxygen and stimuli across the membranes, whereas antibodies and immune cells from the host that are larger than the capsule pore size are excluded5. Here, we present an approach to culture and differentiate hESC DA neurons in a 3D microenvironment using alginate microcapsules. We have modified the culture conditions2 to enhance the viability of encapsulated hESC. We have previously shown that the addition of p160-Rho-associated coiled-coil kinase (ROCK) inhibitor, Y-27632 and human fetal fibroblast-conditioned serum replacement medium (hFF-CM) to the 3D platform significantly enhanced the viability of encapsulated hESC in which the cells expressed definitive endoderm marker genes1. We have now used this 3D platform for the propagation of hESC and efficient differentiation to DA neurons. Protein and gene expression analyses after the final stage of DA neuronal differentiation showed an increased expression of tyrosine hydroxylase (TH), a marker for DA neurons, >100 folds after 2 weeks. We hypothesized that our 3D platform using alginate microcapsules may be useful to study the proliferation and directed differentiation of hESC to various lineages. This 3D system also allows the separation of feeder cells from hESC during the process of differentiation and also has potential for immune-isolation during transplantation in the future.  相似文献   

13.
Stem cell technology has been a great hope for the treatment of many common problems such as Parkinson's disease, Alzheimer's disease, diabetes, cancer, and tissue regeneration. Therefore, the main challenge in hard tissue engineering is to make a successful combination of stem cells and efficient inductors in the concept of stem cell differentiation into odontogenic and osteogenic cell types. Although some boron derivatives have been reported to promote bone and teeth growth in vivo, the molecular mechanism of bone formation has not been elucidated yet. Different concentrations of sodium pentaborate pentahydrate (NaB) were prepared for the analysis of cell toxicity and differentiation evaluations. The odontogenic, osteogenic differentiation and biomineralization of human tooth germ stem cells (hTGSCs) were evaluated by analyzing the mRNA expression levels, odontogenic and osteogenic protein expressions, alkaline phosphatase (ALP) activity, mineralization, and calcium deposits. The NaB-treated group displayed the highest ALP activity and expression of osteo- and odontogenic-related genes and proteins compared to the other groups and baseline. In the current study, increased in vitro odontogenic and osteogenic differentiation capacity of hTGSCs by NaB application has been shown for the first time. The study offers considerable promise for the development of new scaffold systems combined with NaB in both functional bone and tooth tissue engineering.  相似文献   

14.
GABAergic cortical interneurons, derived from the embryonic medial and caudal ganglionic eminences (MGE and CGE), are functionally and morphologically diverse. Inroads have been made in understanding the roles of distinct cortical interneuron subgroups, however, there are still many mechanisms to be worked out that may contribute to the development and maturation of different types of GABAergic cells. Moreover, altered GABAergic signaling may contribute to phenotypes of autism, schizophrenia and epilepsy. Specific Cre-driver lines have begun to parcel out the functions of unique interneuron subgroups. Despite the advances in mouse models, it is often difficult to efficiently study GABAergic cortical interneuron progenitors with molecular approaches in vivo. One important technique used to study the cell autonomous programming of these cells is transplantation of MGE cells into host cortices. These transplanted cells migrate extensively, differentiate, and functionally integrate. In addition, MGE cells can be efficiently transduced with lentivirus immediately prior to transplantation, allowing for a multitude of molecular approaches. Here we detail a protocol to efficiently transduce MGE cells before transplantation for in vivo analysis, using available Cre-driver lines and Cre-dependent expression vectors. This approach is advantageous because it combines precise genetic manipulation with the ability of these cells to disperse after transplantation, permitting greater cell-type specific resolution in vivo.  相似文献   

15.
Archaeological indicators of cognitively modern behaviour become increasingly prevalent during the African Middle Stone Age (MSA). Although the exploitation of ochre is viewed as a key feature of the emergence of modern human behaviour, the uses to which ochre and ochre-based mixtures were put remain ambiguous. Here we present the results of an experimental study exploring the efficacy of ochre as a topical photoprotective compound. This is achieved through the in vivo calculation of the sun protection factor (SPF) values of ochre samples obtained from Ovahimba women (Kunene Region, Northern Namibia) and the Palaeozoic Bokkeveld Group deposits of the Cape Supergroup (Western Cape Province, South Africa). We employ visible spectroscopy, energy-dispersive X-ray fluorescence (ED-XRF), X-ray diffraction (XRD) and granulometric analyses to characterise ochre samples. The capacity of ochre to inhibit the susceptibility of humans to the harmful effects of exposure to ultraviolet radiation (UVR) is confirmed and the mechanisms implicated in the efficacy of ochre as a sunscreen identified. It is posited that the habitual application of ochre may have represented a crucial innovation for MSA humans by limiting the adverse effects of ultraviolet exposure. This may have facilitated the colonisation of geographic regions largely unfavourable to the constitutive skin colour of newly arriving populations.  相似文献   

16.
17.
18.
Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful quantitative proteomics platform for comprehensive characterization of complex biological systems. However, the potential of SILAC-based approaches has not been fully utilized in human embryonic stem cell (hESC) research mainly because of the complex nature of hESC culture conditions. Here we describe complete SILAC labeling of hESCs with fully preserved pluripotency, self-renewal capabilities, and overall proteome status that was quantitatively analyzed to a depth of 1556 proteins and 527 phosphorylation events. SILAC-labeled hESCs appear to be perfectly suitable for functional studies, and we exploited a SILAC-based proteomics strategy for discovery of hESC-specific surface markers. We determined and quantitatively compared the membrane proteomes of the self-renewing versus differentiating cells of two distinct human embryonic stem cell lines. Of the 811 identified membrane proteins, six displayed significantly higher expression levels in the undifferentiated state compared with differentiating cells. This group includes the established marker CD133/Prominin-1 as well as novel candidates for hESC surface markers: Glypican-4, Neuroligin-4, ErbB2, receptor-type tyrosine-protein phosphatase ζ (PTPRZ), and Glycoprotein M6B. Our study also revealed 17 potential markers of hESC differentiation as their corresponding protein expression levels displayed a dramatic increase in differentiated embryonic stem cell populations.Human embryonic stem cells (hESCs)1 are stem cells derived from the blastocyst inner cell mass. They are pluripotent; thus they are able to differentiate into any human cell type. The self-renewal capacity and pluripotency make hESCs an ideal system to study the processes of cell development and differentiation. Moreover hESC research is highly relevant for regenerative medicine, which aims at replacing or restoring tissue damaged by disease or injury through transplantation of functional hESCs (1,2). However, factors responsible for maintaining the undifferentiated and pluripotent nature of hESCs are still largely unknown. Before hESCs can be used for transplantation into the human body, reliable and reproducible protocols for differentiating them into specific cell types are needed. To create such protocols we need to develop a thorough understanding of the mechanisms maintaining the undifferentiated pluripotent nature of hESCs and those guiding their differentiation into specific lineages.A number of factors involved in the maintenance of pluripotency have been described over the last few years (3). It has also been demonstrated that overexpression of some of these factors in somatic cells is sufficient to turn them into pluripotent stem cells very similar to hESCs (48). However, it is apparent that the processes occurring during such transformation are extremely complex. A large number of factors and pathways are involved in maintaining the pluripotent state and regulating self-renewal and differentiation. The process of specific hESC differentiation into distinct cell types is even less understood. Most current attempts to directionally differentiate hESCs are based on sequential application of empirically selected growth factors and consequent selection for markers expressed in the target cell types (9). A more systematic approach is needed to improve our understanding of the pathways that control the conversion of precursors into specific cell types, progressing toward the goal of reproducing these processes in vitro for the generation of functional cells and tissues for transplantation.Comprehensive quantitative analysis of the hESC proteome would mean an important advance in understanding the nature of “stemness,” pluripotency, and differentiation. Several studies targeting various aspects of the hESC proteome have already been reported (for reviews, see Refs. 10 and 11). The task, however, is so enormous that further detailed analysis and novel strategies are necessary and will be of high interest and importance. In this regard, MS-based quantitative proteomics and in particular stable isotope labeling by amino acids in cell culture (SILAC) may greatly facilitate the process of defining the mechanisms of hESC self-renewal and differentiation. With SILAC, the entire proteome of a given cell population is metabolically labeled by heavy, non-radioactive isotopic variants of amino acids, thus making it distinguishable by MS analysis (12). Thereafter two or more distinctly SILAC-labeled cell populations can be mixed and analyzed in one MS experiment that allows accurate quantitation of proteins from the different cellular states (13). This versatile strategy has been demonstrated to be very useful for comprehensive characterization of complex biological phenomena (1421) including in-depth comparison of signaling pathways to identify control points determining cell fate of adult mesenchymal stem cells (22).Here we report a procedure for complete SILAC labeling of human ES cells. We show that these SILAC-encoded hESCs have preserved self-renewing undifferentiated status as well as pluripotent capabilities based on analysis of known markers. In addition, we further compared the overall proteomes and phosphoproteomes of SILAC-labeled hESCs and equivalent cells grown under conventional culture conditions. We next compared the membrane proteomes of undifferentiated and differentiated hESCs in a quantitative manner. Our analysis identified 811 membrane proteins, which to our knowledge is the largest data set of ES cell membrane proteome. This study also revealed 23 membrane proteins with large changes in their expression levels during the differentiation. Six of those cell surface molecules displayed more than 3-fold higher levels in the self-renewing cells, whereas the remaining 17 were identified as more abundant in the differentiated population. These may be useful as specific hESC markers for the corresponding ES cell state and help to shed light on the mechanisms for self-renewal and differentiation.  相似文献   

19.
Myeloid differentiation factor 88 (MyD88) is an adaptor protein that transduces intracellular signaling pathways evoked by the Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs). MyD88 is composed of an N-terminal death domain (DD) and a C-terminal Toll/IL-1 receptor (TIR) domain, separated by a short region. Upon ligand binding, TLR/IL-1Rs hetero- or homodimerize and recruit MyD88 through their respective TIR domains. Then, MyD88 oligomerizes via its DD and TIR domain and interacts with the interleukin-1 receptor-associated kinases (IRAKs) to form the Myddosome complex. We performed site-directed mutagenesis of conserved residues that are located in exposed regions of the MyD88-TIR domain and analyzed the effect of the mutations on MyD88 signaling. Our studies revealed that mutation of Glu183, Ser244, and Arg288 impaired homodimerization of the MyD88-TIR domain, recruitment of IRAKs, and activation of NF-κB. Moreover, overexpression of two green fluorescent protein (GFP)-tagged MyD88 mini-proteins (GFP-MyD88151–189 and GFP-MyD88168–189), comprising the Glu183 residue, recapitulated these effects. Importantly, expression of these dominant negative MyD88 mini-proteins competed with the function of endogenous MyD88 and interfered with TLR2/4-mediated responses in a human monocytic cell line (THP-1) and in human primary monocyte-derived dendritic cells. Thus, our studies identify novel residues of the TIR domain that are crucially involved in MyD88 homodimerization and TLR signaling in immune cells.  相似文献   

20.
A blunt-ended 19-mer short interfering hybrid (siHybrid) (H) comprised of sense-DNA/antisense-RNA targeting HER-2 mRNA was encapsulated in a liposomal nanoplex with anti-transferrin receptor single-chain antibody fragment (TfRscFv) as the targeting moiety for clinically relevant tumor-specific delivery. In vitro delivery to a human pancreatic cell line (PANC-1) was shown to exhibit sequence-specific inhibition of 48-h cell growth with an IC50 value of 37 nM. The inhibitory potency of this siHybrid was increased (IC50 value of 7.8 nM) using a homologous chemically modified siHybrid (mH) in which the 19-mer sense strand had the following pattern of 2 ′-deoxyinosine (dI) and 2 ′-O-methylribonucleotide (2 ′-OMe) residues: 5′-d(TITIT)-2′OMe(GCGGUGGUU)-d(GICIT). These modifications were intended to favor antisense strand-mediated RNAi while mitigating possible sense strand-mediated off-target effects and RNase H-mediated cleavage of the antisense RNA strand. The presently reported immunoliposomal delivery system was successfully used in vivo to inhibit HER-2 expression, and thus induce apoptosis in human breast carcinoma tumors (MDA-MB-435) in mice upon repeated i.v. treatment at a dose of 3 mg/kg of H or mH. The in vivo potency of modified siHybrid mH appeared to be qualitatively greater than that of H, as was the case in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号