首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ability to respond to natural selection under novel conditions is critical for the establishment and persistence of introduced alien species and their ability to become invasive. Here we correlated neutral and quantitative genetic diversity of the weed Pennisetum setaceum Forsk. Chiov. (Poaceae) with differing global (North American and African) patterns of invasiveness and compared this diversity to native range populations. Numerous molecular markers indicate complete monoclonality within and among all of these areas (F(ST) = 0.0) and is supported by extreme low quantitative trait variance (Q(ST) = 0.00065-0.00952). The results support the general-purpose-genotype hypothesis that can tolerate all environmental variation. However, a single global genotype and widespread invasiveness under numerous environmental conditions suggests a super-genotype. The super-genotype described here likely evolved high levels of plasticity in response to fluctuating environmental conditions during the Early to Mid Holocene. During the Late Holocene, when environmental conditions were predominantly constant but extremely inclement, strong selection resulted in only a few surviving genotypes.  相似文献   

2.
Cytoplasmic dynein transports cargoes for a variety of crucial cellular functions. However, since dynein is essential in most eukaryotic organisms, the in-depth study of the cellular function of dynein via genetic analysis of dynein mutations has not been practical. Here, we identify and characterize 34 different dynein heavy chain mutations using a genetic screen of the ascomycete fungus Neurospora crassa, in which dynein is nonessential. Interestingly, our studies show that these mutations segregate into five different classes based on the in vivo localization of the mutated dynein motors. Furthermore, we have determined that the different classes of dynein mutations alter vesicle trafficking, microtubule organization, and nuclear distribution in distinct ways and require dynactin to different extents. In addition, biochemical analyses of dynein from one mutant strain show a strong correlation between its in vitro biochemical properties and the aberrant intracellular function of that altered dynein. When the mutations were mapped to the published dynein crystal structure, we found that the three-dimensional structural locations of the heavy chain mutations were linked to particular classes of altered dynein functions observed in cells. Together, our data indicate that the five classes of dynein mutations represent the entrapment of dynein at five separate points in the dynein mechanochemical and transport cycles. We have developed N. crassa as a model system where we can dissect the complexities of dynein structure, function, and interaction with other proteins with genetic, biochemical, and cell biological studies.  相似文献   

3.
Tear G 《Nature cell biology》2008,10(10):1131-1132
Individual neurons form specific elaborate dendritic structures that receive presynaptic information. The pattern of dendritic branching is regulated by the microtubule-associated motor protein dynein, which is responsible for the transport of essential endosomes and other organelles into the dendrites.  相似文献   

4.
5.
6.
We highly purified the Chlamydomonas inner-arm dyneins e and c, considered to be single-headed subspecies. These two dyneins reside side-by-side along the peripheral doublet microtubules of the flagellum. Electron microscopic observations and single particle analysis showed that the head domains of these two dyneins were similar, whereas the tail domain of dynein e was short and bent in contrast to the straight tail of dynein c. The ATPase activities, both basal and microtubule-stimulated, of dynein e (kcat = 0.27 s–1 and kcat,MT = 1.09 s–1, respectively) were lower than those of dynein c (kcat = 1.75 s–1 and kcat,MT = 2.03 s–1, respectively). From in vitro motility assays, the apparent velocity of microtubule translocation by dynein e was found to be slow (Vap = 1.2 ± 0.1 μm/s) and appeared independent of the surface density of the motors, whereas dynein c was very fast (Vmax = 15.8 ± 1.5 μm/s) and highly sensitive to decreases in the surface density (Vmin = 2.2 ± 0.7 μm/s). Dynein e was expected to be a processive motor, since the relationship between the microtubule landing rate and the surface density of dynein e fitted well with first-power dependence. To obtain insight into the in vivo roles of dynein e, we measured the sliding velocity of microtubules driven by a mixture of dynein e and c at various ratios. The microtubule translocation by the fast dynein c became even faster in the presence of the slow dynein e, which could be explained by assuming that dynein e does not retard motility of faster dyneins. In flagella, dynein e likely acts as a facilitator by holding adjacent microtubules to aid dynein c’s power stroke.  相似文献   

7.
We highly purified the Chlamydomonas inner-arm dyneins e and c, considered to be single-headed subspecies. These two dyneins reside side-by-side along the peripheral doublet microtubules of the flagellum. Electron microscopic observations and single particle analysis showed that the head domains of these two dyneins were similar, whereas the tail domain of dynein e was short and bent in contrast to the straight tail of dynein c. The ATPase activities, both basal and microtubule-stimulated, of dynein e (kcat = 0.27 s–1 and kcat,MT = 1.09 s–1, respectively) were lower than those of dynein c (kcat = 1.75 s–1 and kcat,MT = 2.03 s–1, respectively). From in vitro motility assays, the apparent velocity of microtubule translocation by dynein e was found to be slow (Vap = 1.2 ± 0.1 μm/s) and appeared independent of the surface density of the motors, whereas dynein c was very fast (Vmax = 15.8 ± 1.5 μm/s) and highly sensitive to decreases in the surface density (Vmin = 2.2 ± 0.7 μm/s). Dynein e was expected to be a processive motor, since the relationship between the microtubule landing rate and the surface density of dynein e fitted well with first-power dependence. To obtain insight into the in vivo roles of dynein e, we measured the sliding velocity of microtubules driven by a mixture of dynein e and c at various ratios. The microtubule translocation by the fast dynein c became even faster in the presence of the slow dynein e, which could be explained by assuming that dynein e does not retard motility of faster dyneins. In flagella, dynein e likely acts as a facilitator by holding adjacent microtubules to aid dynein c’s power stroke.  相似文献   

8.
9.
10.
11.
ABSTRACT. Tetrahymena thermophila mutants homozygous for the oad mutation become nonmotile when grown at the restrictive temperature of 39° C. Axonemes isolated from nonmotile oad mutants ( oad 39° C axonemes) lack approximately 90% of their outer dynein arms and are deficient in 22S dynein. Here we report that oad 39° C axonemes contain 40% of the 22S dynein heavy chains that wild-type axonemes contain and that oad axonemes do not undergo ATP-induced microtubule sliding in vitro. Wild-type 22S dynein will bind to the outer arm position in oad axonemes and restore ATP-induced microtubule sliding in those axonemes. Unlike wild-type 22S dynein, oad 22S dynein does not bind to the outer arm position in oad axonemes. These data indicate that the oad mutation affects some component of the outer arm dynein itself rather than the outer arm dynein binding site. These data also indicate that oad axonemes can be used to assay outer dynein arm function.  相似文献   

12.
More than twenty years ago Rinderknecht et al. identified a minor trypsin isoform resistant to natural trypsin inhibitors in the human pancreatic juice. At the same time, Estell and Laskowski found that an inhibitor-resistant trypsin from the pyloric caeca of the starfish, Dermasterias imbricata rapidly hydrolyzed the reactive-site peptide bonds of trypsin inhibitors. A connection between these two seminal discoveries was made recently, when human mesotrypsin was shown to cleave the reactive-site peptide bond of the Kunitz-type soybean trypsin inhibitor, and degrade the Kazal-type pancreatic secretory trypsin inhibitor. These observations indicate that proteases specialized for the degradation of protease inhibitors are ubiquitous in metazoa, and prompt new investigations into their biological significance. Here we review the history and properties of human mesotrypsin, and discuss its function in the digestive degradation of dietary trypsin inhibitors and possible pathophysiological role in pancreatitis.  相似文献   

13.
McGrath JL 《Current biology : CB》2005,15(23):R970-R972
Cytoplasmic dynein is a microtubule-based motor protein that transports membranes in cells. The movement driven by a single dynein molecule in vitro is not as robust as dynein-driven movements in cells. A new study suggests that transport by multiple dyneins is more similar to cellular motions.  相似文献   

14.
Highlights? Outer dynein intermediate chain 2 (IC2) forms the outer-inner dynein (OID) linker ? A mutation to IC2 nonspecifically activates the outer dynein activity ? The mutation to IC2 alters the inner-dynein-dependent flagellar waveform ? The OID linker regulates flagellar beating by controlling outer and inner dyneins  相似文献   

15.
Most cellular organelles are positioned through active transport by motor proteins. The authors discuss the evidence that dynein has important cell cycle-regulated functions in this context at the nuclear envelope.Most cellular organelles are positioned through active transport by motor proteins. This is especially important during cell division, a time when the organelles and genetic content need to be divided equally between the two daughter cells. Although individual proteins can attain their correct location by diffusion, larger structures are usually positioned through active transport by motor proteins. The main motor that transports cargoes to the minus ends of the microtubules is dynein. In nondividing cells, dynein probably transports or positions the nucleus inside the cells by binding to the nuclear envelope (NE; Burke & Roux, 2009). However, it appears that dynein also has important cell-cycle-regulated functions at the NE, as it is recruited to the NE every cell cycle just before cells enter mitosis (Salina et al, 2002; Splinter et al, 2010). Here, we discuss why dynein might be recruited to the NE for a brief period before mitosis.During late G2 or prophase the centrosomes separate to opposite sides of the nucleus, but remain closely associated with the NE during separation. This close association is probably mediated through NE-bound dynein, which ‘walks'' towards the minus ends of centrosomal microtubules, thereby pulling centrosomes towards the NE (Splinter et al, 2010; Gonczy et al, 1999; Robinson et al, 1999). We speculate that close association of centrosomes to the NE might have several functions. First, if centrosomes are not mechanically coupled to the NE, centrosome movement during separation will occur in random directions and chromosomes will not end up between the two separated centrosomes. In this scenario, individual kinetochores might attach more frequently to microtubules coming from both centrosomes (merotelic attachments), a defect that can result in aneuploidy, a characteristic of cancer. Second, centrosome-nuclear attachment also keeps centrosomes in close proximity to chromosomes, which might facilitate rapid capture of chromosomes by microtubules nucleated by the centrosomes after NE breakdown. This might not be absolutely essential, as chromosome alignment can occur in the absence of centrosomes. However, the spatial proximity of centrosomes and chromosomes at NE breakdown might improve the fidelity of kinetochore capture and chromosome alignment.In addition, dynein has also been suggested to promote centrosome separation in prophase in some systems (Gonczy et al, 1999; Robinson et al, 1999; Vaisberg et al, 1993), although not in others (Tanenbaum et al, 2008). Perhaps dynein, anchored at the NE just before mitosis, could exert force on microtubules emanating from both centrosomes, thereby pulling centrosomes apart. However, this force could also be produced by cortical dynein and specific inhibition of NE-associated or cortical dynein will be required to test which pool is responsible.Dynein has also been implicated in the process of NE breakdown itself, by promoting mechanical shearing of the NE. Two elegant studies showed that microtubules can tear the NE as cells enter mitosis (Salina et al, 2002; Beaudouin et al, 2002). One possibility is that microtubules growing into the NE mechanically disrupt it. Alternatively, NE-associated dynein might ‘walk'' along centrosomal microtubules and thereby pull on the NE, tearing it apart. However, testing the exact role of dynein in NE breakdown is complicated by the fact that centrosomes detach from the NE on inactivation of dynein and centrosomal microtubules stop growing efficiently into the NE. Thus, selective inhibition of dynein function will also be required to test this idea.Specific recruitment of dynein to the NE just before mitosis clearly suggests a role for dynein at the NE in preparing cells for mitosis. A major role of NE-associated dynein is to maintain close association of centrosomes with the NE during centrosome separation, which might be needed for efficient capture and alignment of chromosomes after NE breakdown, but additionally, NE-associated dynein could facilitate breakdown and contribute to centrosome separation in some systems.  相似文献   

16.
One of the challenges in understanding ciliary and flagellar motility is determining the mechanisms that locally regulate dynein-driven microtubule sliding. Our recent studies demonstrated that microtubule sliding, in Chlamydomonas flagella, is regulated by phosphorylation. However, the regulatory proteins remain unknown. Here we identify the 138-kD intermediate chain of inner arm dynein I1 as the critical phosphoprotein required for regulation of motility. This conclusion is founded on the results of three different experimental approaches. First, genetic analysis and functional assays revealed that regulation of microtubule sliding, by phosphorylation, requires inner arm dynein I1. Second, in vitro phosphorylation indicated the 138-kD intermediate chain of I1 is the only phosphorylated subunit. Third, in vitro reconstitution demonstrated that phosphorylation and dephosphorylation of the 138-kD intermediate chain inhibits and restores wild-type microtubule sliding, respectively. We conclude that change in phosphorylation of the 138-kD intermediate chain of I1 regulates dynein-driven microtubule sliding. Moreover, based on these and other data, we predict that regulation of I1 activity is involved in modulation of flagellar waveform.  相似文献   

17.
Recent experiments have demonstrated a nucleus where chromatin is molded into stable, interwoven loops. Yet, many of the proteins, which shape chromatin structure, bind only transiently. In those brief encounters, these dynamic proteins temporarily crosslink chromatin loops. While, on the average, individual crosslinks do not persist, in the aggregate, they are sufficient to create and maintain stable chromatin domains. Owing to the asymmetry in size and speed of molecules involved, this type of organization imparts unique biophysical properties—the slow (chromatin) component can exhibit gel-like behaviors, whereas the fast (protein) component allows domains to respond with liquid-like characteristics.  相似文献   

18.
Cytoplasmic dynein is a minus end directed microtubule motor protein with numerous functions during interphase and mitosis. Recent evidence has identified several roles mediated by a fraction of cytoplasmic dynein associated with the cell cortex. So far, these include nuclear migration, mitotic spindle orientation, and cytoskeletal reorientation during wound healing, but others are likely. The possibility that a cortically bound form of dynein might represent its most ancient evolutionary state is discussed.  相似文献   

19.
20.
Dynein isoforms in sea urchin eggs   总被引:3,自引:0,他引:3  
Biochemical and immunological analysis of unfertilized sea urchin eggs has revealed the presence of at least two distinct isoforms of cytoplasmic dyneins, one soluble and the other microtubule-associated. The soluble enzyme is a 20 S particle with a MgATPase activity that can be activated 5-fold by nonionic detergents. It contains heavy chain polypeptides that 1) comigrate with the dynein heavy chains of embryonic cilia; 2) cross-react with antibodies against flagellar dynein; and 3) are cleaved by UV irradiation in the presence of MgATP and sodium vanadate into specific peptide fragments. The soluble egg dynein is, therefore, closely related to axonemal dynein and may be a ciliary precursor. Egg microtubule preparations contain a distinct dynein-like polypeptide, previously designated HMr-3 (Scholey, J.M., Neighbors, B., McIntosh, J.R., and Salmon, E.D. (1984) J. Biol Chem. 259, 6516-6525). HMr-3 binds microtubules in an ATP-sensitive fashion; it sediments at 20 S on sucrose density gradients, and it is susceptible to vanadate-sensitized UV cleavage. However, HMr-3 can be distinguished from the soluble cytoplasmic dynein on the basis of its weak cross-reactivity with antiflagellar dynein antibodies, its heavy chain composition on high resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis, its low specific ATPase activity, and the molecular weight of its vanadate-induced UV cleavage fragments. HMr-3 may represent a dynein-like polypeptide that is distinct from the pool of ciliary dynein precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号