首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Bacteriophages isolated on Mycobacterium smegmatis mc2155 represent many distinct genomes sharing little or no DNA sequence similarity. The genomes are architecturally mosaic and are replete with genes of unknown function. A new group of genomes sharing substantial nucleotide sequences constitute Cluster J. The six mycobacteriophages forming Cluster J are morphologically members of the Siphoviridae, but have unusually long genomes ranging from 106.3 to 117 kbp. Reconstruction of the capsid by cryo-electron microscopy of mycobacteriophage BAKA reveals an icosahedral structure with a triangulation number of 13. All six phages are temperate and homoimmune, and prophage establishment involves integration into a tRNA-Leu gene not previously identified as a mycobacterial attB site for phage integration. The Cluster J genomes provide two examples of intron splicing within the virion structural genes, one in a major capsid subunit gene, and one in a tail gene. These genomes also contain numerous free-standing HNH homing endonuclease, and comparative analysis reveals how these could contribute to genome mosaicism. The unusual Cluster J genomes provide new insights into phage genome architecture, gene function, capsid structure, gene mobility, intron splicing, and evolution.  相似文献   

4.
5.
Packing of the DNA molecule   总被引:1,自引:0,他引:1  
  相似文献   

6.
7.
8.
腺相关病毒的衣壳装配和DNA衣壳化机制   总被引:1,自引:0,他引:1  
重组腺相关病毒载体 (rAAV) 是基因治疗临床应用载体的选择之一。在简述野生型AAV基因组结构和复制机制的基础上,阐述了AAV包装过程中两个主要事件:衣壳蛋白的装配和基因组DNA的衣壳化。虽然对AAV的包装机制总体上已有一定的认识,但其详细的分子机制、构效关系仍需完善和充实。AAV病毒本身相关机制的深入研究有助于改善rAAV载体的制备技术,促进rAAV基因药物研发。  相似文献   

9.
10.
Viral capsid proteins (CPs) can regulate gene expression and encapsulate viral RNAs. Low-level expression of the brome mosaic virus (BMV) CP was found to stimulate viral RNA accumulation, while higher levels inhibited translation and BMV RNA replication. Regulation of translation acts through an RNA element named the B box, which is also critical for the replicase assembly. The BMV CP has also been shown to preferentially bind to an RNA element named SLC that contains the core promoter for genomic minus-strand RNA synthesis. To further elucidate CP interaction with RNA, we used a reversible cross-linking-peptide fingerprinting assay to identify peptides in the capsid that contact the SLC, the B-box RNA, and the encapsidated RNA. Transient expression of three mutations made in residues within or close by the cross-linked peptides partially released the normal inhibition of viral RNA accumulation in agroinfiltrated Nicotiana benthamiana. Interestingly, two of the mutants, R142A and D148A, were found to retain the ability to down-regulate reporter RNA translation. These two mutants formed viral particles in inoculated leaves, but only R142A was able to move systemically in the inoculated plant. The R142A CP was found to have higher affinities for SLC and the B box compared with those of wild-type CP and to alter contacts to the RNA in the virion. These results better define how the BMV CP can interact with RNA and regulate different viral processes.  相似文献   

11.
12.
13.
Betanodaviruses cause massive mortality in marine fish species with viral nervous necrosis. The structure of a T = 3 Grouper nervous necrosis virus-like particle (GNNV-LP) is determined by the ab initio method with non-crystallographic symmetry averaging at 3.6 Å resolution. Each capsid protein (CP) shows three major domains: (i) the N-terminal arm, an inter-subunit extension at the inner surface; (ii) the shell domain (S-domain), a jelly-roll structure; and (iii) the protrusion domain (P-domain) formed by three-fold trimeric protrusions. In addition, we have determined structures of the T = 1 subviral particles (SVPs) of (i) the delta-P-domain mutant (residues 35−217) at 3.1 Å resolution; and (ii) the N-ARM deletion mutant (residues 35−338) at 7 Å resolution; and (iii) the structure of the individual P-domain (residues 214−338) at 1.2 Å resolution. The P-domain reveals a novel DxD motif asymmetrically coordinating two Ca2+ ions, and seems to play a prominent role in the calcium-mediated trimerization of the GNNV CPs during the initial capsid assembly process. The flexible N-ARM (N-terminal arginine-rich motif) appears to serve as a molecular switch for T = 1 or T = 3 assembly. Finally, we find that polyethylene glycol, which is incorporated into the P-domain during the crystallization process, enhances GNNV infection. The present structural studies together with the biological assays enhance our understanding of the role of the P-domain of GNNV in the capsid assembly and viral infection by this betanodavirus.  相似文献   

14.
Ejection of the genome from the virus, phage λ, is the initial step in the infection of its host bacterium. In vitro, the ejection depends sensitively on internal pressure within the virus capsid; however, the in vivo effect of internal pressure on infection of bacteria is unknown. Here, we use microfluidics to monitor individual cells and determine the temporal distribution of lysis due to infection as the capsid pressure is varied. The lysis probability decreases markedly with decreased capsid pressure. Of interest, the average lysis times remain the same but the distribution is broadened as the pressure is lowered.  相似文献   

15.
The buoyant density of herpes simplex virus DNA may be significantly increased by isotopic labeling, particularly with (14)C. The apparent increase in buoyant density may be readily calculated from the specific activity of the DNA and is easily demonstrated by isopycnic centrifugation in both the preparative and analytical centrifuge.  相似文献   

16.
Bacteriophage HK97 maturation involves discrete intermediate particle forms, comparable to transitional states in protein folding, before reaching its mature form. The process starts by formation of a metastable prohead, poised for exothermic expansion triggered by DNA packaging. During maturation, the capsid subunit transitions from a strained to a canonical tertiary conformation and this has been postulated to be the driving mechanism for initiating expansion via switching hexameric capsomer architecture from skewed to 6-fold symmetric. We report the subnanometer electron-cryomicroscopy reconstruction of the HK97 first expansion intermediate before any crosslink formation. This form displays 6-fold symmetric hexamers, but capsid subunit tertiary structures exhibit distortions comparable to the prohead forms. We propose that coat subunit strain release acts in synergy with the first crosslinks to drive forward maturation. Finally, we speculate that the energetic features of this transition may result from increased stability of intermediates during maturation via enhanced inter-subunit interactions.  相似文献   

17.
Single-stranded RNA viruses package their genomes into capsids enclosing fixed volumes. We assayed the ability of bacteriophage MS2 coat protein to package large, defined fragments of its genomic, single-stranded RNA. We show that the efficiency of packaging into a T = 3 capsid in vitro is inversely proportional to RNA length, implying that there is a free-energy barrier to be overcome during assembly. All the RNAs examined have greater solution persistence lengths than the internal diameter of the capsid into which they become packaged, suggesting that protein-mediated RNA compaction must occur during assembly. Binding ethidium bromide to one of these RNA fragments, which would be expected to reduce its flexibility, severely inhibited packaging, consistent with this idea. Cryo-EM structures of the capsids assembled in these experiments with the sub-genomic RNAs show a layer of RNA density beneath the coat protein shell but lack density for the inner RNA shell seen in the wild-type virion. The inner layer is restored when full-length virion RNA is used in the assembly reaction, implying that it becomes ordered only when the capsid is filled, presumably because of the effects of steric and/or electrostatic repulsions. The cryo-EM results explain the length dependence of packaging. In addition, they show that for the sub-genomic fragments the strongest ordered RNA density occurs below the coat protein dimers forming the icosahedral 5-fold axes of the capsid. There is little such density beneath the proteins at the 2-fold axes, consistent with our model in which coat protein dimers binding to RNA stem-loops located at sites throughout the genome leads to switching of their preferred conformations, thus regulating the placement of the quasi-conformers needed to build the T = 3 capsid. The data are consistent with mutual chaperoning of both RNA and coat protein conformations, partially explaining the ability of such viruses to assemble so rapidly and accurately.  相似文献   

18.
Treatment of adenovirus types 4 and 7 with formamide disrupted the virions, degrading the capsids into predominantly single capsomers. As shown by electron microscopic observation, disruption proceeded in the following sequence: (i) reduction of the electron density of the virions, suggesting release of an internal component; (ii) progressive cleavage of the capsid into two or more segments and the formation (type 7 only) of capsomer “sheets”; (iii) final cleavage of the capsid into single or groups of a few capsomers. The sequence appeared similar for both adenoviruses; for both types, the rate and extent of disruption were dependent on the formamide concentration, but type 7 was more easily disrupted than type 4 by short-term (5 to 10 sec) treatment at the low (10%) concentration. At 30% formamide, the intercapsomer bonds of either type were fully cleaved, and the capsids were completely degraded into predominantly single capsomers. Pretreatment with formaldehyde did not prevent this degradation. Under suitable conditions, virus-derived remnants can be observed among the breakdown products. These remnants have been shorn of capsomers and presumably represent intact internal nucleoprotein.  相似文献   

19.
20.
UV irradiation of purified mengovirus resulted in a very rapid inactivation of the infectivity of the virions (D(37) [37% survival dose] = 700 ergs/mm(2)) which correlated in time with the formation of uracil dimers in the viral RNA. During the first 2 min of irradiation, an average of 1.7 uracil dimers were formed per PFU of virus inactivated. Hemagglutination activity of the virions began to decrease only after a lag period of about 5 min and at a much lower rate (D(37) = 84,000 ergs/mm(2)). This decrease coincided in time with the appearance of altered proteins in the capsid and a structural change in the capsid. Although 10- to 20-min irradiated virions appeared intact in the electron microscope and sedimented at 150S in sucrose density gradients, the RNA of the virions became accessible to RNase and extractable by low concentrations of sodium dodecyl sulfate, and the virions broke down upon equilibrium centrifugation in CsCl gradients. During longer periods of irradiation (30 to 60 min), a progressively greater proportion of the virions were converted to 14S protein particles and 80S ribonucleoprotein particles composed of intact viral RNA and about 30% of the capsid proteins, alpha, beta, and gamma. Empty capsids were not detectable at any time during 60 min of irradiation, by which time disruption of the virions was complete. Irradiation of complete virions also resulted in an increased sedimentation rate of the viral RNA and in the covalent linkage to the viral RNA of about 1% of the total capsid protein in the form of heterogeneous low-molecular-weight polypeptides. The two observations seem to be causally related, since irradiation of isolated viral RNA did not result in an increase in sedimentation rate of the RNA, even though uracil dimer formation in viral RNA occurred at about the same rate and to the same extent whether intact virions or viral RNA were irradiated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号