首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolutionary ecologists and population biologists have recently considered that ecological and evolutionary changes are intimately linked and can occur on the same time-scale. Recent theoretical developments have shown how the feedback between ecological and evolutionary dynamics can be linked, and there are now empirical demonstrations showing that ecological change can lead to rapid evolutionary change. We also have evidence that microevolutionary change can leave an ecological signature. We are at a stage where the integration of ecology and evolution is a necessary step towards major advances in our understanding of the processes that shape and maintain biodiversity. This special feature about ‘eco-evolutionary dynamics’ brings together biologists from empirical and theoretical backgrounds to bridge the gap between ecology and evolution and provide a series of contributions aimed at quantifying the interactions between these fundamental processes.  相似文献   

2.
Decomposing variation in population growth into contributions from both ecological and evolutionary processes is of fundamental concern, particularly in a world characterized by rapid responses to anthropogenic threats. Although the impact of ecological change on evolutionary response has long been acknowledged, the converse has predominantly been neglected, especially empirically. By applying a recently published conceptual framework, we assess and contrast the relative importance of phenotypic and environmental variability on annual population growth in five ungulate populations. In four of the five populations, the contribution of phenotypic variability was greater than the contribution of environmental variability, although not significantly so. The similarity in the contributions of environment and phenotype suggests that neither is worthy of neglect. Population growth is a consequence of multiple processes, which strengthens arguments advocating integrated approaches to assess how populations respond to their environments.  相似文献   

3.
Carlson SM  Quinn TP  Hendry AP 《Heredity》2011,106(3):438-447
Increasing acceptance of the idea that evolution can proceed rapidly has generated considerable interest in understanding the consequences of ongoing evolutionary change for populations, communities and ecosystems. The nascent field of 'eco-evolutionary dynamics' considers these interactions, including reciprocal feedbacks between evolution and ecology. Empirical support for eco-evolutionary dynamics has emerged from several model systems, and we here present some possibilities for diverse and strong effects in Pacific salmon (Oncorhynchus spp.). We specifically focus on the consequences that natural selection on body size can have for salmon population dynamics, community (bear-salmon) interactions and ecosystem process (fluxes of salmon biomass between habitats). For example, we find that shifts in body size because of selection can alter fluxes across habitats by up to 11% compared with ecological (that is, numerical) effects. More generally, we show that selection within a generation can have large effects on ecological dynamics and so should be included within a complete eco-evolutionary framework.  相似文献   

4.
Eco-evolutionary dynamics of communities and ecosystems   总被引:7,自引:0,他引:7  
  相似文献   

5.
Interactions between natural selection and environmental change are well recognized and sit at the core of ecology and evolutionary biology. Reciprocal interactions between ecology and evolution, eco-evolutionary feedbacks, are less well studied, even though they may be critical for understanding the evolution of biological diversity, the structure of communities and the function of ecosystems. Eco-evolutionary feedbacks require that populations alter their environment (niche construction) and that those changes in the environment feed back to influence the subsequent evolution of the population. There is strong evidence that organisms influence their environment through predation, nutrient excretion and habitat modification, and that populations evolve in response to changes in their environment at time-scales congruent with ecological change (contemporary evolution). Here, we outline how the niche construction and contemporary evolution interact to alter the direction of evolution and the structure and function of communities and ecosystems. We then present five empirical systems that highlight important characteristics of eco-evolutionary feedbacks: rotifer–algae chemostats; alewife–zooplankton interactions in lakes; guppy life-history evolution and nutrient cycling in streams; avian seed predators and plants; and tree leaf chemistry and soil processes. The alewife–zooplankton system provides the most complete evidence for eco-evolutionary feedbacks, but other systems highlight the potential for eco-evolutionary feedbacks in a wide variety of natural systems.  相似文献   

6.
We present a general framework for modelling adaptive trait dynamics in which we integrate various concepts and techniques from modern ESS-theory. The concept of evolutionarily singular strategies is introduced as a generalization of the ESS-concept. We give a full classification of the singular strategies in terms of ESS-stability, convergence stability, the ability of the singular strategy to invade other populations if initially rare itself, and the possibility of protected dimorphisms occurring within the singular strategy's neighbourhood. Of particular interest is a type of singular strategy that is an evolutionary attractor from a great distance, but once in its neighbourhood a population becomes dimorphic and undergoes disruptive selection leading to evolutionary branching. Modelling the adaptive growth and branching of the evolutionary tree can thus be considered as a major application of the framework. A haploid version of Levene's soft selection model is developed as a specific example to demonstrate evolutionary dynamics and branching in monomorphic and polymorphic populations.  相似文献   

7.
It is becoming increasingly clear that intraspecific evolutionary divergence influences the properties of populations, communities and ecosystems. The different ecological impacts of phenotypes and genotypes may alter selection on many species and promote a cascade of ecological and evolutionary change throughout the food web. Theory predicts that evolutionary interactions across trophic levels may contribute to hypothesized feedbacks between ecology and evolution. However, the importance of 'cascading evolutionary change' in a natural setting is unknown. In lakes in Connecticut, USA, variation in migratory behaviour and feeding morphology of a fish predator, the alewife (Alosa pseudoharengus), drives life-history evolution in a species of zooplankton prey (Daphnia ambigua). Here we evaluated the reciprocal impacts of Daphnia evolution on ecological processes in laboratory mesocosms. We show that life-history evolution in Daphnia facilitates divergence in rates of population growth, which in turn significantly alters consumer-resource dynamics and ecosystem function. These experimental results parallel trends observed in lakes. Such results argue that a cascade of evolutionary change, which has occurred over contemporary timescales, alters community and ecosystem processes.  相似文献   

8.
It has recently been demonstrated that ecological feedback mechanisms can facilitate the emergence and maintenance of cooperation in public goods interactions: the replicator dynamics of defectors and cooperators can result, for example, in the ecological coexistence of cooperators and defectors. Here we show that these results change dramatically if cooperation strategy is not fixed but instead is a continuously varying trait under natural selection. For low values of the factor with which the value of resources is multiplied before they are shared among all participants, evolution will always favour lower cooperation strategies until the population falls below an Allee threshold and goes extinct, thus evolutionary suicide occurs. For higher values of the factor, there exists a unique evolutionarily singular strategy, which is convergence stable. Because the fitness function is linear with respect to the strategy of the mutant, this singular strategy is neutral against mutant invasions. This neutrality disappears if a nonlinear functional response in receiving benefits is assumed. For strictly concave functional responses, singular strategies become uninvadable. Evolutionary branching, which could result in the evolutionary emergence of cooperators and defectors, can occur only with locally convex functional responses, but we illustrate that it can also result in coevolutionary extinction.  相似文献   

9.
    
Mutualism is thought to face a threat of coextinction cascade because the loss of a member species could lead to the extinction of the other member. Despite this common emphasis on the perils of such knock-on effect, hitherto, the evolutionary causes leading to extinction have been less emphasised. Here, we examine how extinction could be triggered in mutualism and whether an evolutionary response to partner loss could prevent collateral extinctions, by theoretically examining the coevolution of the host exploitation by symbionts and host dependence on symbiosis. Our model reveals that mutualism is more vulnerable to co-extinction through adaptive evolution (evolutionary double suicide) than parasitism. Additionally, it shows that the risk of evolutionary double suicide rarely promotes the backward evolution to an autonomous (non-symbiotic) state. Our results provide a new perspective on the evolutionary fragility of mutualism and the rarity of observed evolutionary transitions from mutualism to parasitism.  相似文献   

10.
11.
Summary Any character that has a substantial effect on a species' distribution and abundance can exert a variety of indirect effects on evolutionary processes. It is suggested that an organism's capacity for habitat selection is just such a character. Habitat selection can constrain the selective environment experienced by a population. Habitat selection can also indirectly influence the relative importance of natural selection, drift, and gene flow, through its effect on population size and growth rate. In many circumstances (but not all), habitat selection increases population size and growth rate, and thereby makes selection in a local environment more effective than drift and gene flow.  相似文献   

12.
13.
    
Understanding the interplay between ecological processes and the evolutionary dynamics of quantitative traits in natural systems remains a major challenge. Two main theoretical frameworks are used to address this question, adaptive dynamics and quantitative genetics, both of which have strengths and limitations and are often used by distinct research communities to address different questions. In order to make progress, new theoretical developments are needed that integrate these approaches and strengthen the link to empirical data. Here, we discuss a novel theoretical framework that bridges the gap between quantitative genetics and adaptive dynamics approaches. ‘Oligomorphic dynamics’ can be used to analyse eco-evolutionary dynamics across different time scales and extends quantitative genetics theory to account for multimodal trait distributions, the dynamical nature of genetic variance, the potential for disruptive selection due to ecological feedbacks, and the non-normal or skewed trait distributions encountered in nature. Oligomorphic dynamics explicitly takes into account the effect of environmental feedback, such as frequency- and density-dependent selection, on the dynamics of multi-modal trait distributions and we argue it has the potential to facilitate a much tighter integration between eco-evolutionary theory and empirical data.  相似文献   

14.
Despite the amplified threats of extinction facing small founder populations, successful colonization sometimes occurs, bringing devastating ecological and economic consequences. One explanation may be rapid evolution, which can increase mean fitness in populations declining towards extinction, permitting persistence and subsequent expansion. Such evolutionary rescue may be particularly important, given Allee effects. When a population is introduced at low density, individuals often experience a reduction in one or more components of fitness due to novel selection pressures that arise from diminished intraspecific interactions and positive density dependence (i.e. component Allee effects). A population can avoid extinction if it can adapt and recover on its own (i.e. evolutionary rescue), or if additional immigration sustains the population (i.e. demographic rescue) or boosts its genetic variation that facilitates adaptation (i.e. genetic rescue). These various forms of rescue have often been invoked as possible mechanisms for specific invasions, but their relative importance to invasion is not generally understood. Within a spatially explicit modelling framework, we consider the relative impact of each type of rescue on the probability of successful colonization, when there is evolution of a multi-locus quantitative trait that influences the strength of component Allee effects. We demonstrate that when Allee effects are important, the effect of demographic rescue via recurrent immigration overall provides the greatest opportunity for success. While highlighting the role of evolution in the invasion process, we underscore the importance of the ecological context influencing the persistence of small founder populations.  相似文献   

15.
    
Studies of eco-evolutionary dynamics have integrated evolution with ecological processes at multiple scales (populations, communities and ecosystems) and with multiple interspecific interactions (antagonistic, mutualistic and competitive). However, evolution has often been conceptualised as a simple process: short-term directional adaptation that increases population growth. Here we argue that diverse other evolutionary processes, well studied in population genetics and evolutionary ecology, should also be considered to explore the full spectrum of feedback between ecological and evolutionary processes. Relevant but underappreciated processes include (1) drift and mutation, (2) disruptive selection causing lineage diversification or speciation reversal and (3) evolution driven by relative fitness differences that may decrease population growth. Because eco-evolutionary dynamics have often been studied by population and community ecologists, it will be important to incorporate a variety of concepts in population genetics and evolutionary ecology to better understand and predict eco-evolutionary dynamics in nature.  相似文献   

16.
We describe the dynamics of an evolutionary model for a population subject to a strong Allee effect. The model assumes that the carrying capacity k(u), inherent growth rate r(u), and Allee threshold a(u) are functions of a mean phenotypic trait u subject to evolution. The model is a plane autonomous system that describes the coupled population and mean trait dynamics. We show bounded orbits equilibrate and that the Allee basin shrinks (and can even disappear) as a result of evolution. We also show that stable non-extinction equilibria occur at the local maxima of k(u) and that stable extinction equilibria occur at local minima of r(u). We give examples that illustrate these results and demonstrate other consequences of an Allee threshold in an evolutionary setting. These include the existence of multiple evolutionarily stable, non-extinction equilibria, and the possibility of evolving to a non-evolutionary stable strategy (ESS) trait from an initial trait near an ESS.  相似文献   

17.
Evolutionary rescue occurs when a population genetically adapts to a new stressful environment that would otherwise cause its extinction. Forecasting the probability of persistence under stress, including emergence of drug resistance as a special case of interest, requires experimentally validated quantitative predictions. Here, we propose general analytical predictions, based on diffusion approximations, for the probability of evolutionary rescue. We assume a narrow genetic basis for adaptation to stress, as is often the case for drug resistance. First, we extend the rescue model of Orr & Unckless (Am. Nat. 2008 172, 160–169) to a broader demographic and genetic context, allowing the model to apply to empirical systems with variation among mutation effects on demography, overlapping generations and bottlenecks, all common features of microbial populations. Second, we confront our predictions of rescue probability with two datasets from experiments with Saccharomyces cerevisiae (yeast) and Pseudomonas fluorescens (bacterium). The tests show the qualitative agreement between the model and observed patterns, and illustrate how biologically relevant quantities, such as the per capita rate of rescue, can be estimated from fits of empirical data. Finally, we use the results of the model to suggest further, more quantitative, tests of evolutionary rescue theory.  相似文献   

18.
The hypothesis is developed that there are causal linkages in evolved insect herbivore life histories and behaviors from phylogenetic constraints to adaptive syndromes to the emergent properties involving ecological interactions and population dynamics. Thus the argument is developed that the evolutionary biology of a species predetermines its current ecology.Phylogenetic Constraints refer to old characters in the phylogeny of a species and a group of species which set limits on the range of life history patterns and behaviors that can evolve. For example, a sawfly is commonly limited to oviposition in soft plant tissue, while plants are growing rapidly.Adaptive Syndromes are evolutionary responses to the phylogenetic constraints that minimize the limitations and maximize larval performance. Such syndromes commonly involve details of female ovipositional behavior and how individuals make choices for oviposition sites relative to plant quality variation which maximize larval survival. Syndromes also involve larval adaptations to the kinds of choices females make in oviposition. The evolutionary biology involved with phylogenetic constraints and adaptive syndromes commonly predetermines the ecological interactions of a species and its population dynamics. Therefore, these ecological interactions are calledEmergent Properties because they are natural consequences of evolved morphology, behavior, and physiology. They commonly strongly influence the three-trophic-level interactions among host plants, insect herbivores, and carnivores, and the relative forces of bottom-up and top-down influences in food webs. The arguments are supported using such examples as galling sawflies and other gallers, shoot-boring moths and beetles, budworms, and forest Macrolepidoptera. The contrasts between outbreak or eruptive species and uncommon and rare species with latent population dynamics are emphasized.  相似文献   

19.
20.
By simplifying the interpretation of nuclear magnetic resonance spin relaxation and residual dipolar couplings data, recent developments involving the elongation of RNA helices are providing new atomic insights into the dynamical properties that allow RNA structures to change functionally and adaptively. Domain elongation, in concert with spin relaxation measurements, has allowed the detailed characterization of a hierarchical network of local and collective motional modes occurring at nanosecond timescale that mirror the structural rearrangements that take place following adaptive recognition. The combination of domain elongation with residual dipolar coupling measurements has allowed the experimental three-dimensional visualization of very large amplitude rigid-body helix motions in HIV-1 transactivation response element (TAR) that trace out a highly choreographed trajectory in which the helices twist and bend in a correlated manner. The dynamic trajectory allows unbound TAR to sample many of its ligand bound conformations, indicating that adaptive recognition occurs by “conformational selection” rather than “induced fit.” These studies suggest that intrinsic flexibility plays essential roles directing RNA conformational changes along specific pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号