首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phagocytosis is central to bacterial clearance, but the exact mechanism is incompletely understood. Here, we show a novel and critical role for lumican, the connective tissue extracellular matrix small leucine-rich repeat proteoglycan, in CD14-mediated bacterial phagocytosis. In Psuedomonas aeruginosa lung infections, lumican-deficient (Lum−/−) mice failed to clear the bacterium from lungs, tissues, and showed a dramatic increase in mortality. In vitro, phagocytosis of nonopsonized Gram-negative Escherichia coli and P. aeruginosa was inhibited in Lum−/− peritoneal macrophages (MΦs). Lumican co-localized with CD14, CD18, and bacteria on Lum+/+ MΦ surfaces. Using two different P. aeruginosa strains that require host CD14 (808) or CD18/CR3 (P1) for phagocytosis, we showed that lumican has a larger role in CD14-mediated phagocytosis. Recombinant lumican (rLum) restored phagocytosis in Lum−/− MΦs. Surface plasmon resonance showed specific binding of rLum to CD14 (KA = 2.15 × 106 m−1), whereas rLumY20A, and not rLumY21A, where a tyrosine in each was replaced with an alanine, showed 60-fold decreased binding. The rLumY20A variant also failed to restore phagocytosis in Lum−/− MΦs, indicating Tyr-20 to be functionally important. Thus, in addition to a structural role in connective tissues, lumican has a major protective role in Gram-negative bacterial infections, a novel function for small leucine-rich repeat proteoglycans.  相似文献   

2.
We aimed to test previous predictions that limbal epithelial stem cells (LESCs) are quantitatively deficient or qualitatively defective in Pax6+/− mice and decline with age in wild-type (WT) mice. Consistent with previous studies, corneal epithelial stripe patterns coarsened with age in WT mosaics. Mosaic patterns were also coarser in Pax6+/− mosaics than WT at 15 weeks but not at 3 weeks, which excludes a developmental explanation and strengthens the prediction that Pax6+/− mice have a LESC-deficiency. To investigate how Pax6 genotype and age affected corneal homeostasis, we compared corneal epithelial cell turnover and label-retaining cells (LRCs; putative LESCs) in Pax6+/− and WT mice at 15 and 30 weeks. Limbal BrdU-LRC numbers were not reduced in the older WT mice, so this analysis failed to support the predicted age-related decline in slow-cycling LESC numbers in WT corneas. Similarly, limbal BrdU-LRC numbers were not reduced in Pax6+/− heterozygotes but BrdU-LRCs were also present in Pax6+/− corneas. It seems likely that Pax6+/− LRCs are not exclusively stem cells and some may be terminally differentiated CD31-positive blood vessel cells, which invade the Pax6+/− cornea. It was not, therefore, possible to use this approach to test the prediction that Pax6+/− corneas had fewer LESCs than WT. However, short-term BrdU labelling showed that basal to suprabasal movement (leading to cell loss) occurred more rapidly in Pax6+/− than WT mice. This implies that epithelial cell loss is higher in Pax6+/− mice. If increased corneal epithelial cell loss exceeds the cell production capacity it could cause corneal homeostasis to become unstable, resulting in progressive corneal deterioration. Although it remains unclear whether Pax6+/− mice have LESC-deficiency, we suggest that features of corneal deterioration, that are often taken as evidence of LESC-deficiency, might occur in the absence of stem cell deficiency if corneal homeostasis is destabilised by excessive cell loss.  相似文献   

3.
Functions of lumican and fibromodulin: lessons from knockout mice   总被引:5,自引:0,他引:5  
Lumican and fibromodulin are collagen-binding leucine-rich proteoglycans widely distributed in interstitial connective tissues. The phenotypes of lumican-null (Lum –/–), Fibromodulin-null (Fmod –/–) and compound double-null (Lum –/– Fmod –/–) mice identify a broad range of tissues where these two proteoglycans have overlapping and unique roles in modulating the extracellular matrix and cellular behavior. The lumican-deficient mice have reduced corneal transparency and skin fragility. The Lum –/– Fmod –/– mice are smaller than their wildtype littermates, display gait abnormality, joint laxity and age-dependent osteoarthritis. Misaligned knee patella, severe knee dysmorphogenesis and extreme tendon weakness are the likely cause for joint-laxity. Fibromodulin deficiency alone leads to significant reduction in tendon stiffness in the Lum +/+ Fmod –/– mice, with further loss in stiffness in a lumican gene dose-dependent way. At the level of ultrastructure, the Lum –/– cornea, skin and tendon show irregular collagen fibril contours and increased fibril diameter. The Fmod –/– tendon contains irregular contoured collagen fibrils, with increased frequency of small diameter fibrils. The tendons of Lum –/– Fmod –/– have an abnormally high frequency of small and large diameter fibrils indicating a de-regulation of collagen fibril formation and maturation. In tissues like the tendon, where both proteoglycans are present, fibromodulin may be required early in collagen fibrillogenesis to stabilize small-diameter fibril-intermediates and lumican may be needed at a later stage, primarily to limit lateral growth of fibrils Published in 2003.  相似文献   

4.
The corneal stroma is enriched in small leucine-rich proteoglycans (SLRPs), including both class I (decorin and biglycan) and class II (lumican, keratocan and fibromodulin). Transparency is dependent on the assembly and maintenance of a hierarchical stromal organization and SLRPs are critical regulatory molecules. We hypothesize that cooperative interclass SLRP interactions are involved in the regulation of stromal matrix assembly. We test this hypothesis using a compound Bgn−/0/Lum−/− mouse model and single Lum−/− or Bgn−/0 mouse models and wild type controls. SLRP expression was investigated using immuno-localization and immuno-blots. Structural relationships were defined using ultrastructural and morphometric approaches while transparency was analyzed using in vivo confocal microscopy. The compound Bgn−/0/Lum−/− corneas demonstrated gross opacity that was not seen in the Bgn−/0 or wild type corneas and greater than that in the Lum−/− mice. The Bgn−/0/Lum−/− corneas exhibited significantly increased opacity throughout the stroma compared to posterior opacity in the Lum−/− and no opacity in Bgn−/0 or wild type corneas. In the Bgn−/0/Lum−/− corneas there were abnormal lamellar and fibril structures consistent with the functional deficit in transparency. Lamellar structure was disrupted across the stroma with disorganized fibrils, and altered fibril packing. In addition, fibrils had larger and more heterogeneous diameters with an abnormal structure consistent with abnormal fibril growth. This was not observed in the Bgn−/0 or wild type corneas and was restricted to the posterior stroma in Lum−/− mice. The data demonstrate synergistic interclass regulatory interactions between lumican and biglycan. These interactions are involved in regulating both lamellar structure as well as collagen fibrillogenesis and therefore, corneal transparency.  相似文献   

5.
Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP)-expressing A. fumigatus (Af293.1RFP) conidia are injected into the corneal stroma, and disease progression and fungal survival are tracked over time. Using Mafia mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, we demonstrated that the presence of resident corneal macrophages is essential for production of IL-1β and CXCL1/KC, and for recruitment of neutrophils and mononuclear cells into the corneal stroma. We found that β-glucan was highly expressed on germinating conidia and hyphae in the cornea stroma, and that both Dectin-1 and phospho-Syk were up-regulated in infected corneas. Additionally, we show that infected Dectin-1−/− corneas have impaired IL-1β and CXCL1/KC production, resulting in diminished cellular infiltration and fungal clearance compared with control mice, especially during infection with clinical isolates expressing high β-glucan. In contrast to Dectin 1−/− mice, cellular infiltration into infected TLR2−/−, TLR4−/−, and MD-2−/− mice corneas was unimpaired, indicating no role for these receptors in cell recruitment; however, fungal killing was significantly reduced in TLR4−/− mice, but not TLR2−/− or MD-2−/− mice. We also found that TRIF−/− and TIRAP−/− mice exhibited no fungal-killing defects, but that MyD88−/− and IL-1R1−/− mice were unable to regulate fungal growth. In conclusion, these data are consistent with a model in which β-glucan on A.fumigatus germinating conidia activates Dectin-1 on corneal macrophages to produce IL-1β, and CXCL1, which together with IL-1R1/MyD88-dependent activation, results in recruitment of neutrophils to the corneal stroma and TLR4-dependent fungal killing.  相似文献   

6.
The immune response is essential for survival by destroying microorganisms and pre-cancerous cells. However, inflammation, one aspect of this response, can result in short- and long-term deleterious side-effects. Mclk1 +/− mutant mice can be long-lived despite displaying a hair-trigger inflammatory response and chronically activated macrophages as a result of high mitochondrial ROS generation. Here we ask whether this phenotype is beneficial or simply tolerated. We used models of infection by Salmonella serovars and found that Mclk1 +/− mutants mount a stronger immune response, control bacterial proliferation better, and are resistant to cell and tissue damage resulting from the response, including fibrosis and types of oxidative damage that are considered to be biomarkers of aging. Moreover, these same types of tissue damage were found to be low in untreated 23 months-old mutants. We also examined the initiation of tumour growth after transplantation of mouse LLC1 carcinoma cells into Mclk1 +/− mutants, as well as during spontaneous tumorigenesis in Mclk1 +/− Trp53 +/− double mutants. Tumour latency was increased by the Mclk1 +/− genotype in both models. Furthermore, we used the transplantation model to show that splenic CD8+ T lymphocytes from Mclk1 +/− graft recipients show enhanced cytotoxicity against LLC1 cells in vitro. Mclk1 +/− mutants thus display an association of an enhanced immune response with partial protection from age-dependent processes and from pathologies similar to those that are found with increased frequency during the aging process. This suggests that the immune phenotype of these mutants might contribute to their longevity. We discuss how these findings suggest a broader view of how the immune response might impact the aging process.  相似文献   

7.
IL-13 driven Th2 immunity is indispensable for host protection against infection with the gastrointestinal nematode Nippostronglus brasiliensis. Disruption of CD28 mediated costimulation impairs development of adequate Th2 immunity, showing an importance for CD28 during the initiation of an immune response against this pathogen. In this study, we used global CD28−/− mice and a recently established mouse model that allows for inducible deletion of the cd28 gene by oral administration of tamoxifen (CD28−/loxCre+/−+TM) to resolve the controversy surrounding the requirement of CD28 costimulation for recall of protective memory responses against pathogenic infections. Following primary infection with N. brasiliensis, CD28−/− mice had delayed expulsion of adult worms in the small intestine compared to wild-type C57BL/6 mice that cleared the infection by day 9 post-infection. Delayed expulsion was associated with reduced production of IL-13 and reduced serum levels of antigen specific IgG1 and total IgE. Interestingly, abrogation of CD28 costimulation in CD28−/loxCre+/− mice by oral administration of tamoxifen prior to secondary infection with N. brasiliensis resulted in impaired worm expulsion, similarly to infected CD28−/− mice. This was associated with reduced production of the Th2 cytokines IL-13 and IL-4, diminished serum titres of antigen specific IgG1 and total IgE and a reduced CXCR5+ TFH cell population. Furthermore, total number of CD4+ T cells and B220+ B cells secreting Th1 and Th2 cytokines were significantly reduced in CD28−/− mice and tamoxifen treated CD28−/loxCre+/− mice compared to C57BL/6 mice. Importantly, interfering with CD28 costimulatory signalling before re-infection impaired the recruitment and/or expansion of central and effector memory CD4+ T cells and follicular B cells to the draining lymph node of tamoxifen treated CD28−/loxCre+/− mice. Therefore, it can be concluded that CD28 costimulation is essential for conferring host protection during secondary N. brasiliensis infection.  相似文献   

8.
During inflammation, circulating polymorphonuclear neutrophils (PMNs) receive signals to cross the endothelial barrier and migrate through the extracellular matrix (ECM) to reach the injured site. Migration requires complex and poorly understood interactions of chemokines, chemokine receptors, ECM molecules, integrins, and other receptors. Here we show that the ECM protein lumican regulates PMN migration through interactions with specific integrin receptors. Lumican-deficient (Lum−/−) mice manifest connective tissue defects, impaired innate immune response, and poor wound healing with reduced PMN infiltration. Lum−/− PMNs exhibit poor chemotactic migration that is restored with exogenous recombinant lumican and inhibited by anti-lumican antibody, confirming a role for lumican in PMN migration. Treatment of PMNs with antibodies that block β2, β1, and αM integrin subunits inhibits lumican-mediated migration. Furthermore, immunohistochemical and biochemical approaches indicate binding of lumican to β2, αM, and αL integrin subunits. Thus, lumican may regulate PMN migration mediated by MAC-1 (αM2) and LFA-1 (αL2), the two major PMN surface integrins. We detected lumican on the surface of peritoneal PMNs and not bone marrow or peripheral blood PMNs. This suggests that PMNs must acquire lumican during or after crossing the endothelial barrier as they exit circulation. We also found that peritoneal PMNs do not express lumican, whereas endothelial cells do. Taken together these observations suggest a novel endothelial lumican-mediated paracrine regulation of neutrophils early on in their migration path.Polymorphonuclear neutrophils (PMNs)3 play a major role in the development of inflammatory responses to host injury and infection. Their functions include destruction of invading bacteria and recruitment of macrophages and lymphocytes to the affected site (1). Circulating PMNs sense injury and pathogen signals, cross the vascular endothelium, and migrate to the target tissue; two series of events control this process. The first leads to the slowing down and adherence of circulating PMNs on the vascular endothelium followed by their transendothelial migration or extravasation and activation (2). The second controls the directional migration of PMNs to the injured site through the endothelial basement membrane, a specialized type of ECM, and subsequently the deeper interstitial ECM, along chemokine and cytokine gradients. Leukocyte-to-leukocyte and leukocyte-to-endothelium interactions are important before extravasation. These are mediated by interactions between selectins and their ligands and by β2 (MAC-1 and LFA-1) and β1 (VLA-4–6) integrin interactions with cell adhesion proteins ICAM and PECAM (3). The directional migration of PMNs through the ECM is a complex, multistep process that involves several α and β integrin interactions with ECM proteins. Thus far, a few basement membrane proteins, laminins, entactin, and fibronectin have been identified as specific ligands in regulating migration of PMNs after extravasation (46). Additional interstitial ECM proteins and their receptors that modulate PMN migration have yet to be identified. Here we show that the ECM protein lumican is a novel regulator of PMN migration.Lumican is a secreted collagen-binding ECM protein of the corneal, dermal, and tendon stroma, arterial wall, and the intestinal submucosa (79). It is a member of the small leucine-rich repeat proteoglycans (10); these were initially investigated in the context of binding collagen and regulating tissue structure and biomechanics (11, 12). A body of literature is beginning to indicate that these proteoglycans interact with cytokines, growth factors, and cell surface receptors to modulate cell adhesion, proliferation, and migration (1316). Lumican and biglycan, another member of this family of proteoglycans, have been recently shown to regulate host response to pathogen-associated molecular patterns (17, 18). Thus, lumican-deficient (Lum−/−) mice are hyporesponsive to bacterial lipopolysaccharide (LPS) endotoxins, and Lum−/− macrophages in culture produce lower levels of pro-inflammatory cytokines in response to LPS (18). Lumican facilitates innate immune response by binding LPS and CD14, the glycerol phosphatidylinositol-linked cell surface adaptor protein that transfers the LPS signal to toll-like receptor 4 (18). In a corneal injury model neutrophil influx is delayed in the Lum−/− mice (19, 20). Although this may be partly due to impaired innate immune response, it raises the possibility that lumican may have an additional role in neutrophil migration. Here we elucidate a role for lumican in PMN migration. We show that poor chemotactic migration of Lum−/− PMNs can be rescued by exogenous recombinant lumican (rLum) and blocked specifically with antibodies against lumican, β2, β1, and αM integrins. Our results also show that lumican localizes on the surface of extravasated PMNs through its interactions with β2 integrins. The likely source of lumican on neutrophils is the vascular endothelium.  相似文献   

9.
Phagocytosis and inflammation within the lungs is crucial for host defense during bacterial pneumonia. Triggering receptor expressed on myeloid cells (TREM)-2 was proposed to negatively regulate TLR-mediated responses and enhance phagocytosis by macrophages, but the role of TREM-2 in respiratory tract infections is unknown. Here, we established the presence of TREM-2 on alveolar macrophages (AM) and explored the function of TREM-2 in the innate immune response to pneumococcal infection in vivo. Unexpectedly, we found Trem-2 −/− AM to display augmented bacterial phagocytosis in vitro and in vivo compared to WT AM. Mechanistically, we detected that in the absence of TREM-2, pulmonary macrophages selectively produced elevated complement component 1q (C1q) levels. We found that these increased C1q levels depended on peroxisome proliferator-activated receptor-δ (PPAR-δ) activity and were responsible for the enhanced phagocytosis of bacteria. Upon infection with S. pneumoniae, Trem-2 −/− mice exhibited an augmented bacterial clearance from lungs, decreased bacteremia and improved survival compared to their WT counterparts. This work is the first to disclose a role for TREM-2 in clinically relevant respiratory tract infections and demonstrates a previously unknown link between TREM-2 and opsonin production within the lungs.  相似文献   

10.
Aminoglycoside antibiotics, like gentamicin, continue to be clinically essential worldwide to treat life-threatening bacterial infections. Yet, the ototoxic and nephrotoxic side-effects of these drugs remain serious complications. A major site of gentamicin uptake and toxicity resides within kidney proximal tubules that also heavily express electrogenic sodium-glucose transporter-2 (SGLT2; SLC5A2) in vivo. We hypothesized that SGLT2 traffics gentamicin, and promotes cellular toxicity. We confirmed in vitro expression of SGLT2 in proximal tubule-derived KPT2 cells, and absence in distal tubule-derived KDT3 cells. D-glucose competitively decreased the uptake of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), a fluorescent analog of glucose, and fluorescently-tagged gentamicin (GTTR) by KPT2 cells. Phlorizin, an SGLT2 antagonist, strongly inhibited uptake of 2-NBDG and GTTR by KPT2 cells in a dose- and time-dependent manner. GTTR uptake was elevated in KDT3 cells transfected with SGLT2 (compared to controls); and this enhanced uptake was attenuated by phlorizin. Knock-down of SGLT2 expression by siRNA reduced gentamicin-induced cytotoxicity. In vivo, SGLT2 was robustly expressed in kidney proximal tubule cells of heterozygous, but not null, mice. Phlorizin decreased GTTR uptake by kidney proximal tubule cells in Sglt2+/− mice, but not in Sglt2−/− mice. However, serum GTTR levels were elevated in Sglt2−/− mice compared to Sglt2+/− mice, and in phlorizin-treated Sglt2+/− mice compared to vehicle-treated Sglt2+/− mice. Loss of SGLT2 function by antagonism or by gene deletion did not affect gentamicin cochlear loading or auditory function. Phlorizin did not protect wild-type mice from kanamycin-induced ototoxicity. We conclude that SGLT2 can traffic gentamicin and contribute to gentamicin-induced cytotoxicity.  相似文献   

11.
Acid sphingomyelinase (ASM) has been implicated in the development of hyperhomocysteinemia (hHcys)-induced glomerular oxidative stress and injury. However, it remains unknown whether genetically engineering of ASM gene produces beneficial or detrimental action on hHcys-induced glomerular injury. The present study generated and characterized the mice lacking cystathionine β-synthase (Cbs) and Asm mouse gene by cross breeding Cbs+/− and Asm+/− mice. Given that the homozygotes of Cbs−/−/Asm−/− mice could not survive for 3 weeks. Cbs+/−/Asm+/+, Cbs+/−/Asm+/− and Cbs+/−/Asm−/− as well as their Cbs wild type littermates were used to study the role of Asm−/− under a background of Cbs+/− with hHcys. HPLC analysis revealed that plasma Hcys level was significantly elevated in Cbs heterozygous (Cbs+/−) mice with different copies of Asm gene compared to Cbs+/+ mice with different Asm gene copies. Cbs+/−/Asm+/+ mice had significantly increased renal Asm activity, ceramide production and O2. level compared to Cbs+/+/Asm+/+, while Cbs+/−/Asm−/− mice showed significantly reduced renal Asm activity, ceramide production and O2. level due to increased plasma Hcys levels. Confocal microscopy demonstrated that colocalization of podocin with ceramide was much lower in Cbs+/−/Asm−/− mice compared to Cbs+/−/Asm+/+ mice, which was accompanied by a reduced glomerular damage index, albuminuria and proteinuria in Cbs+/−/Asm−/− mice. Immunofluorescent analyses of the podocin, nephrin and desmin expression also illustrated less podocyte damages in the glomeruli from Cbs+/−/Asm−/− mice compared to Cbs+/−/Asm+/+ mice. In in vitro studies of podocytes, hHcys-enhanced O2. production, desmin expression, and ceramide production as well as decreases in VEGF level and podocin expression in podocytes were substantially attenuated by prior treatment with amitriptyline, an Asm inhibitor. In conclusion, Asm gene knockout or corresponding enzyme inhibition protects the podocytes and glomeruli from hHcys-induced oxidative stress and injury.  相似文献   

12.
Chagas disease is a life-threatening disorder caused by the protozoan parasite Trypanosoma cruzi. Parasite-specific antibodies, CD8+ T cells, as well as IFN-γ and nitric oxide (NO) are key elements of the adaptive and innate immunity against the extracellular and intracellular forms of the parasite. Bim is a potent pro-apoptotic member of the Bcl-2 family implicated in different aspects of the immune regulation, such as negative selection of self-reactive thymocytes and elimination of antigen-specific T cells at the end of an immune response. Interestingly, the role of Bim during infections remains largely unidentified. To explore the role of Bim in Chagas disease, we infected WT, Bim+/−, Bim−/− mice with trypomastigotes forms of the Y strain of T. cruzi. Strikingly, our data revealed that Bim−/− mice exhibit a delay in the development of parasitemia followed by a deficiency in the control of parasite load in the bloodstream and a decreased survival compared to WT and Bim+/− mice. At the peak of parasitemia, peritoneal macrophages of Bim−/− mice exhibit decreased NO production, which correlated with a decrease in the pro-inflammatory Small Peritoneal Macrophage (SPM) subset. A similar reduction in NO secretion, as well as in the pro-inflammatory cytokines IFN-γ and IL-6, was also observed in Bim−/− splenocytes. Moreover, an impaired anti-T. cruzi CD8+ T-cell response was found in Bim−/− mice at this time point. Taken together, our results suggest that these alterations may contribute to the establishment of a delayed yet enlarged parasitic load observed at day 9 after infection of Bim−/− mice and place Bim as an important protein in the control of T. cruzi infections.Subject terms: Cell death and immune response, Infectious diseases  相似文献   

13.
Prior studies in our laboratory have suggested that the CC chemokine macrophage inflammatory protein-1α (MIP-1α) may be an important mediator in the blinding ocular inflammation which develops following herpes simplex virus type 1 (HSV-1) infection of the murine cornea. To directly test this hypothesis, MIP-1α-deficient (−/−) mice and their wild-type (+/+) counterparts were infected topically on the scarified cornea with 2.5 × 105 PFU of HSV-1 strain RE and subsequently graded for corneal opacity. Four weeks postinfection (p.i.), the mean corneal opacity score of −/− mice was 1.1 ± 0.3 while that of the +/+ mice was 3.7 ± 0.5. No detectable infiltrating CD4+ T cells were seen histologically at 14 or 21 days p.i. in −/− animals, whereas the mean CD4+ T-cell count per field (36 fields counted) in +/+ hosts was 26 ± 2 (P < 0.001). In addition, neutrophil counts in the −/− mouse corneas were reduced by >80% in comparison to the wild-type controls. At 2 weeks p.i., no interleukin-2 or gamma interferon could be detected in six of seven −/− mice, whereas both T-cell cytokines were readily demonstrable in +/+ mouse corneas. Also, MIP-2 and monocyte chemoattractant protein-1 protein levels were significantly lower in MIP-1α −/− mouse corneas than in +/+ host corneas, suggesting that MIP-1α directly, or more likely indirectly, influences the expression of other chemokines. Interestingly, despite the paucity of infiltrating cells, HSV-1 clearance from the eyes of −/− mice was not significantly different from that observed in +/+ hosts. We conclude that MIP-1α is not needed to control virus growth in the cornea but is essential for the development of severe stromal keratitis.  相似文献   

14.
15.
Fibrinogen (Fg) has been recognized to play a central role in coagulation, inflammation and tissue regeneration. Several studies have used Fg deficient mice (Fg−/−) in comparison with heterozygous mice (Fg+/−) to point the proinflammatory role of Fg in diverse pathological conditions and disease states. Although Fg+/− mice are considered ‘normal’, plasma Fg is reduced to ∼75% of the normal circulating levels present in wild type mice (Fg+/+). We report that this reduction in Fg protein production in the Fg+/− mice is enough to protect them from kidney ischemia reperfusion injury (IRI) as assessed by tubular injury, kidney dysfunction, necrosis, apoptosis and inflammatory immune cell infiltration. Mechanistically, we observed binding of Fg to ICAM-1 in kidney tissues of Fg+/+ mice at 24 h following IRI as compared to a complete absence of binding observed in the Fg+/− and Fg−/− mice. Raf-1 and ERK were highly activated as evident by significantly higher phosphorylation in the Fg+/+ kidneys at 24 h following IRI as compared to Fg+/− and Fg−/− mice kidneys. On the other hand Cyclin D1 and pRb, indicating higher cell proliferation, were significantly increased in the Fg+/− and Fg−/− as compared to Fg+/+ kidneys. These data suggest that Fg heterozygosity allows maintenance of a critical balance of Fg that enables regression of initial injury and promotes faster resolution of kidney damage.  相似文献   

16.
Alveolar macrophages (AM) are critical for defense against bacterial and fungal infections. However, a definitive role of AM in viral infections remains unclear. We here report that AM play a key role in survival to influenza and vaccinia virus infection by maintaining lung function and thereby protecting from asphyxiation. Absence of AM in GM-CSF-deficient (Csf2 −/−) mice or selective AM depletion in wild-type mice resulted in impaired gas exchange and fatal hypoxia associated with severe morbidity to influenza virus infection, while viral clearance was affected moderately. Virus-induced morbidity was far more severe in Csf2 −/− mice lacking AM, as compared to Batf3-deficient mice lacking CD8α+ and CD103+ DCs. Csf2 −/− mice showed intact anti-viral CD8+ T cell responses despite slightly impaired CD103+ DC development. Importantly, selective reconstitution of AM development in Csf2rb −/− mice by neonatal transfer of wild-type AM progenitors prevented severe morbidity and mortality, demonstrating that absence of AM alone is responsible for disease severity in mice lacking GM-CSF or its receptor. In addition, CD11c-Cre/Pparg fl/fl mice with a defect in AM but normal adaptive immunity showed increased morbidity and lung failure to influenza virus. Taken together, our results suggest a superior role of AM compared to CD103+ DCs in protection from acute influenza and vaccinia virus infection-induced morbidity and mortality.  相似文献   

17.
We examined the genotype-phenotype interactions of Cyp51+/− mice carrying one functional allele of lanosterol 14α-demethylase from cholesterol biosynthesis. No distinct developmental or morphological abnormalities were observed by routine visual inspection of Cyp51+/− and Cyp51+/+ mice and fertility was similar. We further collected a large data-set from female and male Cyp51+/− mice and controls fed for 16 weeks with three diets and applied linear regression modeling. We used 3 predictor variables (genotype, sex, diet), and 39 response variables corresponding to the organ characteristics (7), plasma parameters (7), and hepatic gene expression (25). We observed significant differences between Cyp51+/− and wild-type mice in organ characteristics and blood lipid profile. Hepatomegaly was observed in Cyp51+/− males, together with elevated total and low-density lipoprotein cholesterol. Cyp51+/− females fed high-fat, high-cholesterol diet were leaner and had elevated plasma corticosterone compared to controls. We observed elevated hepatocyte apoptosis, mitosis and lipid infiltration in heterozygous knockouts of both sexes. The Cyp51+/− females had a modified lipid storage homeostasis protecting them from weight-gain when fed high-fat high-cholesterol diet. Malfunction of one Cyp51 allele therefore initiates disease pathways towards cholesterol-linked liver pathologies and sex-dependent response to dietary challenge.  相似文献   

18.
Age-related macular degeneration is the leading cause of blindness in the elderly. The Y402H polymorphism in complement factor H promotes disease-like pathogenesis, and a Cfh+/− murine model can replicate this phenotype, but only after two years. We reasoned that by combining CFH deficiency with cigarette smoke exposure, we might be able to accelerate disease progression to facilitate preclinical research in this disease. Wild-type and Cfh+/− mice were exposed to nose-only cigarette smoke for three months. Retinal tissue morphology and visual function were evaluated by optical coherence tomography, fundus photography and autofluorescence, and electroretinogram. Retinal pigment epithelial cell phenotype and ultrastructure were evaluated by immunofluorescence staining and transmission electron microscopy. Cfh+/− smoking mice showed a dome-like protruding lesion at the ellipsoid zone (drusen-like deposition), many retinal hyper-autofluorescence spots, and a marked decrease in A- and B-wave amplitudes. Compared with non-smoking mice, wild-type and Cfh+/− smoking mice showed sub-retinal pigment epithelium complement protein 3 deposition, activation of microglia, metabolic waste accumulation, and impairment of tight junctions. Microglia cells migrated into the photoreceptor outer segment layer in Cfh+/− smoking mice showed increased activation. Our results suggest that exposing Cfh+/− mice to smoking leads to earlier onset of age-related macular degeneration than in other animal models, which may facilitate preclinical research into the pathophysiology and treatment of this disease.  相似文献   

19.
The CHKB gene encodes choline kinase β, which catalyzes the first step in the biosynthetic pathway for the major phospholipid phosphatidylcholine. Homozygous loss-of-function variants in human CHKB are associated with a congenital muscular dystrophy. Dilated cardiomyopathy is present in some CHKB patients and can cause heart failure and death. Mechanisms underlying a cardiac phenotype due to decreased CHKB levels are not well characterized. We determined that there is cardiac hypertrophy in Chkb−/− mice along with a decrease in left ventricle size, internal diameter, and stroke volume compared with wildtype and Chkb+/− mice. Unlike wildtype mice, 60% of the Chkb+/− and all Chkb−/− mice tested displayed arrhythmic events when challenged with isoproterenol. Lipidomic analysis revealed that the major change in lipid level in Chkb+/− and Chkb−/− hearts was an increase in the arrhythmogenic lipid acylcarnitine. An increase in acylcarnitine level is also associated with a defect in the ability of mitochondria to use fatty acids for energy and we observed that mitochondria from Chkb−/− hearts had abnormal cristae and inefficient electron transport chain activity. Atrial natriuretic peptide (ANP) is a hormone produced by the heart that protects against the development of heart failure including ventricular conduction defects. We determined that there was a decrease in expression of ANP, its receptor NPRA, as well as ventricular conduction system markers in Chkb+/− and Chkb−/− mice.  相似文献   

20.
Keratins (K) are important for epithelial stress protection as evidenced by keratin mutations predisposing to human liver diseases and possibly inflammatory bowel diseases. A role for K8 in the colon is supported by the ulcerative colitis-phenotype with epithelial hyperproliferation and abnormal ion transport in K8-knockout (K8−/−) mice. The heterozygote knockout (K8+/−) colon appears normal but displays a partial ion transport-defect. Characterizing the colonic phenotype we show that K8+/− colon expresses ~50% less keratins compared to K8 wild type (K8+/+) but de novo K7 expression is observed in the top-most cells of the K8+/− and K8−/− crypts. The K8+/− colonic crypts are significantly longer due to increased epithelial hyperproliferation, but display no defects in apoptosis or inflammation in contrast to K8−/−. When exposed to colitis using the dextran sulphate sodium-model, K8+/− mice showed higher disease sensitivity and delayed recovery compared to K8+/+ littermates. Therefore, the K8+/− mild colonic phenotype correlates with decreased keratin levels and increased sensitivity to experimental colitis, suggesting that a sufficient amount of keratin is needed for efficient stress protection in the colonic epithelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号