首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Short-term effects of 3,5-L-diiodothyronine (T2) administration to hypothyroid rats on FoF1-ATP synthase activity were investigated in liver mitochondria. One hour after T2 injection, state 4 and state 3 respiration rates were noticeably stimulated in mitochondria subsequently isolated. FoF1-ATP synthase activity, which was reduced in mitochondria from hypothyroid rats as compared to mitochondria from euthyroid rats, was significantly increased by T2 administration in both the ATP-synthesis and hydrolysis direction. No change in β-subunit mRNA accumulation and protein amount of the α-β subunit of FoF1-ATP synthase was found, ruling out a T2 genomic effect. In T2-treated rats, changes in the composition of mitochondrial phospholipids were observed, cardiolipin (CL) showing the greatest alteration. In mitochondria isolated from hypothyroid rats the decrease in the amount of CL was accompanied by an increase in the level of peroxidised CL. T2 administration to hypothyroid rats enhanced the level of CL and decreased the amount of peroxidised CL in subsequently isolated mitochondria, tending to restore the CL value to the euthyroid level. Minor T2-induced changes in mitochondrial fatty acid composition were detected. Overall, the enhanced FoF1-ATP synthase activity observed following injection of T2 to hypothyroid rats may be ascribed, at least in part, to an increased level of mitochondrial CL associated with decreased peroxidation of CL.  相似文献   

2.
The role of 3,5-diiodo-L-thyronine (T2), initially considered only a 3,3′,5-triiodo-L-thyronine (T3) catabolite, in the bioenergetic metabolism is of growing interest. In this study we investigated the acute effects (within 1 h) of T2 administration to hypothyroid rats on liver mitochondria fatty acid uptake and β-oxidation rate, mitochondrial efficiency (by measuring proton leak) and mitochondrial oxidative damage (by determining H2O2 release). Fatty acid uptake into mitochondria was measured assaying carnitine palmitoyl transferase (CPT) I and II activities, and fatty acid β-oxidation using palmitoyl-CoA as a respiratory substrate. Mitochondrial fatty acid pattern was defined by gas-liquid chromatography. In hypothyroid + T2 vs hypothyroid rats we observed a raise in the serum level of nonesterified fatty acids (NEFA), in the mitochondrial CPT system activity and in the fatty acid β-oxidation rate. A parallel increase in the respiratory chain activity, mainly from succinate, occurs. When fatty acids are chelated by bovine serum albumin, a T2-induced increase in both state 3 and state 4 respiration is observed, while, when fatty acids are present, mitochondrial uncoupling occurs together with increased proton leak, responsible for mitochondrial thermogenesis. T2 administration decreases mitochondrial oxidative stress as determined by lower H2O2 production. We conclude that in rat liver mitochondria T2 acutely enhances the rate of fatty acid β-oxidation, and the activity of the downstream respiratory chain. The T2-induced increase in proton leak may contribute to mitochondrial thermogenesis and to the reduction of oxidative stress. Our results strengthen the previously reported ability of T2 to reduce adiposity, dyslipidemia and to prevent liver steatosis.  相似文献   

3.
In order to further investigate the mechanisms regulating the control of mitochondrial respiration by thyroid hormone, the proton motive force was measured during State IV respiration in liver mitochondria isolated from euthyroid, hyperthyroid, hypothyroid and T3-treated hypothyroid rats. The proton motive force was significantly higher in the hyperthyroid group due to an increased pH. The proton motive force of hypothyroid mitochondria was lower than controls due to a decreased membrane potential. The proton motive force for the T3-treated hypothyroid group did not differ from the euthyroid group due to negating changes in the pH gradient and the membrane potential. The intramitochondrial volume was decreased in the hyperthyroid group and unchanged in the other groups. The results indicate that the thyroid status alters the proton motive force in State IV through individual changes in the pH and membrane potential components of the force. The component that changes in hyperthyroid mitochondria is different from that changing in hypothyroid mitochondria.  相似文献   

4.
The effect of thyroidectomy (Tx) and subsequent treatment with triiodothy-ronine (T3) on rat kidney mitochondrial oxidative phosphorylation was examined. Thyroidectomy resulted in lowering of state 3 respiration rates and cytochrome contents. Thyroidectomized animals administered with T3 (20 Μg/100 g body wt) resulted in the nonsynchronous stimulation of state 3 respiration rates in kidney mitochondria with glutamate, Β-hydroxybutyrate, succinate and ascorbate+TMPD as substrates. Cytoch-rome contents were also elevated differentially. Increase in the state 4 respiration rates was transient and reversible. However, primary dehydrogenases were not generally altered in the Tx and T3-treated Tx animals. The results thus indicate that the T3treatment to-Tx animals brings about differential and nonsynchronous increase in the respiratory parameters and respiratory chain components of kidney mitochondria.  相似文献   

5.
The purpose of the present study was to determine whether the regulation of urea synthesis was mediated through the supply of nitrogen by amino acid-catabolizing enzymes and whether the concentration of acetylCoA would control the N-acetylglutamate concentration when the thyroid status was manipulated. Experiments were conducted on three groups of rats, each being given 6-propyl-2-thiouracil (PTU, thyroid inhibitor) without a triiodothyronine (T3) treatment, or PTU + T3, or neither PTU nor T3 (control), respectively. The urinary excretion of urea, the liver concentration of N-acetylglutamate, and the hepatic activities of serine dehydratase, threonine dehydratase, alanine transaminase (GPT) and aspartate transaminase (GOT) in rats given PTU + T3 were significantly lower than those in rats given PTU alone. The activity of glutamate dehydrogenase and the concentrations of free amino acids and acetylCoA in the liver of the PTU + T3-treated group were significantly higher than those in the group treated with PTU alone. These results suggest that the higher activity of amino acid-catabolizing enzymes in the hypothyroid (with PTU alone) rats is likely to stimulate urea synthesis.  相似文献   

6.
Hypothyroidism in humans provokes various neuropsychiatric disorders, movement, and cognitive abnormalities that may greatly depend on the mitochondrial energy metabolism. Brain cells contain at least two major populations of mitochondria that include the non-synaptic mitochondria, which originate from neuronal and glial cell bodies (CM), and the synaptic (SM) mitochondria, which primarily originate from the nerve terminals. Several parameters of oxidative stress and other parameters in SM and CM fractions of hippocampus of adult rats were compared among euthyroid (control), hypothyroid (methimazol-treated), and thyroxine (T4)-treated hypothyroid states. nNOS translocation to CM was observed with concomitant increase of mtNOS??s activity in hypothyroid rats. In parallel, oxidation of cytochrome c oxidase and production of peroxides with substrates of complex I (glutamate?+?malate) were enhanced in CM, whereas the activity of aconitase and mitochondrial membrane potential (????m) were decreased. Furthermore, the elevation of mitochondrial hexokinase activity in CM was also found. No differences in these parameters between control and hypothyroid animals were observed in SM. However, in contrast to CM, hypothyroidism increases the level of pro-apoptotic K-Ras and Bad in SM. Our results suggest that hypothyroidism induces moderate and reversible oxidative/nitrosative stress in hippocampal CM, leading to the compensatory elevation of hexokinase activity and aerobic glycolysis. Such adaptive activation in glycolytic metabolism does not occur in SM, suggesting that synaptic mitochondria differ in their sensitivity to the energetic disturbance in hypothyroid conditions.  相似文献   

7.
3,5-diiodo-l-thyronine (T2), a thyroid hormone derivative, is capable of increasing energy expenditure, as well as preventing high fat diet-induced overweight and related metabolic dysfunction. Most studies to date on T2 have been carried out on liver and skeletal muscle. Considering the role of brown adipose tissue (BAT) in energy and metabolic homeostasis, we explored whether T2 could activate BAT thermogenesis. Using euthyroid, hypothyroid, and T2-treated hypothyroid rats (all maintained at thermoneutrality) in morphological and functional studies, we found that hypothyroidism suppresses the maximal oxidative capacity of BAT and thermogenesis, as revealed by reduced mitochondrial content and respiration, enlarged cells and lipid droplets, and increased number of unilocular cells within the tissue. In vivo administration of T2 to hypothyroid rats activated BAT thermogenesis and increased the sympathetic innervation and vascularization of tissue. Likewise, T2 increased BAT oxidative capacity in vitro when added to BAT homogenates from hypothyroid rats. In vivo administration of T2 to hypothyroid rats enhanced mitochondrial respiration. Moreover, UCP1 seems to be a molecular determinant underlying the effect of T2 on mitochondrial thermogenesis. In fact, inhibition of mitochondrial respiration by GDP and its reactivation by fatty acids were greater in mitochondria from T2-treated hypothyroid rats than untreated hypothyroid rats. In vivo administration of T2 led to an increase in PGC-1α protein levels in nuclei (transient) and mitochondria (longer lasting), suggesting a coordinate effect of T2 in these organelles that ultimately promotes net activation of mitochondrial biogenesis and BAT thermogenesis. The effect of T2 on PGC-1α is similar to that elicited by triiodothyronine. As a whole, the data reported here indicate T2 is a thyroid hormone derivative able to activate BAT thermogenesis.  相似文献   

8.
We investigated whether swim training modifies the effect of T3-induced hyperthyroidism on metabolism and oxidative damage in rat muscle. Respiratory capacities, oxidative damage, levels of antioxidants, and susceptibility to oxidative challenge of homogenates were determined. Mitochondrial respiratory capacities, H2O2 release rates, and oxidative damage were also evaluated. T3-treated rats exhibited increases in muscle respiratory capacity, which were associated with enhancements in mitochondrial respiratory capacity and tissue mitochondrial protein content in sedentary and trained animals, respectively. Hormonal treatment induced muscle oxidative damage and GSH depletion. Both effects were reduced by training, which also attenuated tissue susceptibility to oxidative challenge. The changes in single antioxidant levels were slightly related to oxidative damage extent, but the examination of parameters affecting the susceptibility to oxidants indicated that training was associated with greater effectiveness of the muscle antioxidant system. Training also attenuated T3-induced increases in H2O2 production and, therefore, oxidative damage of mitochondria by lowering their content of autoxidizable electron carriers. The above results suggest that moderate training is able to reduce hyperthyroid state-linked tissue oxidative damage, increasing antioxidant protection and decreasing the ROS flow from the mitochondria to the cytoplasmic compartment.  相似文献   

9.
The goal of this study was to examine the state of hepatocyte mitochondrial respiratory chain of rats with toxic hepatitis induced by CCl4 and ethanol. Oxygen consumption by hepatocytes and mitochondria was determined. Endogenous oxygen consumption by pathological hepatocytes was 1.3-fold higher compared with control. Rotenone resulted in 27% suppression of respiration by pathological hepatocytes whereas 2,4-dinitrophenol produced a 1.4-fold increase of respiration. States 3 and 4 of mitochondrial respiration with malate and glutamate were found to be higher as compared to control. State dinitrophenol and state 3 respirations were similar within every group of animals when being tested with malate and glutamate or succinate. Cytochrome c oxidase activity in hepatitis was 1.8-fold higher compared with control. Simvastatin administration resulted in a decrease in hepatocyte endogenous respiration in hepatitis. The presented data lead to the assumption that the increased oxygen consumption by the respiratory chain of pathological mitochondria to be linked mainly with the altered function of complex I.  相似文献   

10.
11.
Coupled rat heart mitochondria produce externally hydrogen peroxide at the rates which correspond to about 0.8 and 0.3% of the total oxygen consumption at State 4 with succinate and glutamate plus malate as the respiratory substrates, respectively. Stimulation of the respiratory activities by ADP (State 4–State 3 transition) decreases the succinate- and glutamate plus malate-supported H2O2 production 8- and 1.3-times, respectively. NH4+ strongly stimulates hydrogen peroxide formation with either substrate without any effect on State 4 and/or State 3 respiration. Rotenone-treated, alamethicin-permeabilized mitochondria catalyze NADH-supported H2O2 production at a rate about 10-fold higher than that seen in intact mitochondria under optimal (State 4 succinate-supported respiration in the presence of ammonium chloride) conditions. NADH-supported hydrogen peroxide production by the rotenone-treated mitochondria devoid of a permeability barrier for H2O2 diffusion by alamethicin treatment are only partially (~ 50%) sensitive to the Complex I NADH binding site-specific inhibitor, NADH-OH. The residual activity is strongly (~ 6-fold) stimulated by ammonium chloride. NAD+ inhibits both Complex I-mediated and ammonium-stimulated H2O2 production. In the absence of stimulatory ammonium about half of the total NADH-supported hydrogen peroxide production is catalyzed by Complex I. In the presence of ammonium about 90% of the total hydrogen peroxide production is catalyzed by matrix located, ammonium-dependent enzyme(s).  相似文献   

12.
Embryos of pea (Pisum sativum L. cv Sol) deprived of cotyledons were cultured for 3 days in medium with or without sucrose. Respiratory activity of embryos (intact) as well as the ability to oxidize glutamate by mitochondria isolated from embryos were studied. Respiration of intact embryos grown in sucrose supplemented medium was more intensive than in the starved ones. Transfer of the starved embryos to the sucrose-containing medium induced the increase in the intensity of O2 consumption. Mitochondria isolated from both starved and control embryos exhibited respiratory control. Mitochondria isolated from embryos cultured in the absence of sucrose showed higher (about 60 %) ability to oxidize glutamate and α-ketoglutarate than mitochondria from embryos grown in sucrose containing medium. The absence of sucrose in the medium led to a rapid increase in the specific activity of glutamate dehydrogenase (NADH-GDH and NAD-GDH) and it was accompanied by changes in izoenzymatic pattern of enzyme. These results suggest that in the conditions of sucrose starvation glutamate dehydrogenase may be responsible for the increase of glutamate oxidation by mitochondria of pea embryos. Electrophoretic separation of glutamate dehydrogenase isolated from embryos cultured in medium without sucrose showed the presence of ca. 17 isoenzymes while in non-starved embryos only 7 isoenzymes were identified. However, the addition of sucrose to starved embryos after 24 hours of cultivation led to a decrease in glutamate dehydrogenase activity (up to 40 %) but it did not cause the changes in isoenzymatic pattern. These results suggest that in the conditions of sucrose starvation glutamate dehydrogenase maybe responsible for the increase of glutamate oxidation by mitochondria of pea embryos. The posibility of glutamate dehydrogenase regulation by sucrose is discussed.  相似文献   

13.
In liver mitochondria isolated from hypothyroid rats, the rate of ATP synthesis is lower than in mitochondria from normal rats. Oligomycin-sensitive ATP hydrolase activity and passive proton permeability were significantly lower in submitochondrial particles from hypothyroid rats compared to those isolated from normal rats. In mitochondria from hypothyroid rats, the changes in catalytic activities of F0F1-ATP synthase are accompanied by a decrease in the amount of immunodetected -F1, F01-PVP, and OSCP subunits of the complex. Northern blot hybridization shows a decrease in the relative cytosolic content of mRNA for -F1 subunit in liver of hypothyroid rats. Administration of 3,5,3-triodo-L-thyronine to the hypothyroid rats tends to remedy the functional and structural defects of F0F1-ATP synthase observed in the hypothyroid rats. The results obtained indicate that hypothyroidism leads to a decreased expression of F0F1-ATP synthase complex in liver mitochondria and this contributes to the decrease of the efficiency of oxidative phosphorylation.  相似文献   

14.
After irradiation of rats with a linear electron accelerator, the respiratory rate in rat brain mitochondria was studied in the presence of substrate + ADP and after the conversion of ADP → ATP. After 20,000 rads of irradiation to the head there was a transient diminution of mitochondrial respiratory control when glutamate was used as the substrate, but no changes were observed when succinate was the substrate. Irradiation with 10,000 rads had no effect upon respiratory control. The addition of NADH2 to irradiated mitochondria had no effect upon mitochondrial respiration. Irradiation of the brain with 20,000 rads failed to produce mitochondrial peroxidation or swelling, even in the presence of FeNH4(SO4)2 or ascorbate. The slight changes in respiratory control of brain mitochondria following irradiation is in marked contrast to the susceptibility of mitochondria from other organs. The comparative radioresistance of brain mitochondria may be the result of greatly diminished radiation-induced peroxidation of cerebral mitochondrial membranes.  相似文献   

15.
Thyroid hormone (T3) plays an essential role in the central nervous system development. Astrocytes mediate many of the T3 effects in the growth and differentiation of cerebellum. In culture, T3 induces cerebellar astrocytes to secrete growth factors, mainly FGF2, and alters the expression and organization of the extracellular matrix (ECM) proteins, laminin, and fibronectin. In addition, T3-treated astrocytes promote neuronal differentiation. In this study, we have investigated whether other ECM molecules, such as syndecans, are involved in T3 action. Thus, we analyzed the expression of syndecans (1–4) by RT-PCR in astrocyte cultures from cerebellum, cortex, and hippocampus of newborn rats. Our results showed that syndecans (1–4) are expressed in astrocytes of cerebellum and cortex, whereas in hippocampus only syndecans 2 and 4 were detected. Semi-quantitative RT-PCR analysis revealed the reduced expression of syndecans 1, 2, and 4, and increased expression of syndecan 3 in hypothyroid cerebellum, when compared to the euthyroid tissue. Furthermore, we observed a reduced expression of syndecans 2 and 3 in T3-treated cerebellar astrocytes, when compared to control cultures. This balance of proteoglycans may be involved in T3 action mediated by FGF2 signaling, possibly affecting the formation of the trimeric signaling receptor complex composed by syndecan/FGF/FGF-receptor (FGFR), which is essential for FGFR dimerization, activation, and subsequent cell signaling.  相似文献   

16.
17.
18.
Isolated hepatocytes from hypothyroid, euthyroid and hyperthyroid rats have been employed to investigate the relative importance of reducing-equivalent shuttles for the transfer of hydrogen between cytoplasm and mitochondria during simultaneous ureogenesis and gluconeogenesis. In cells from hypothyroid animals, a 58% depression of glucose formation and 68% reduction in ureogenesis were induced by n-butylmalonate, an inhibitor of the malate shuttle. A more reduced state of the cytoplasmic compartment and a substantial fall in the concentrations of pyruvate, aspartate, alanine and glutamate accompanied this inhibition. Preincubation of cells with n-butylmalonate yielded greater inhibitory effects than observed in the absence of preincubation. The inhibitory effects on gluconeogenesis and ureogenesis were less in cells from euthyroid rats and were very much reduced in the case of glucose synthesis and absent in the case of ureogenesis, in cells from hyperthyroid rats. It is inferred that both the malate-aspartate and alpha-glycerophosphate shuttles may function in the transfer of reducing equivalents from cytoplasm to mitochondria during ureogenesis in hepatocytes. The major inhibition by n-butylmalonate of glucose and urea synthesis in hepatocytes from hypothyroid rats is due to the diminished activity of the alpha-glycerophosphate shuttle in these cells. Moreover, it follows that the NADH arising from the cytoplasmic malate dehydrogenase-catalysed reaction is accessible to both the malate-aspartate shuttle and the alpha-glycerophosphate shuttle.  相似文献   

19.
The effects of thyroxine (T4) and methimazole administration on plasma prostacyclin (PGI2) levels in vivo and on PGI2 release by aortic rings incubated in vitro were investigated in rats. Male rats were given single injection of T4 (200 μg/100 g body wt) ip every 24 h for either 3, 7 or 14 days for hyperthyroid rats. For hypothyroid rats, a group of rats were given methimazole (0.01 % in drinking water) for 14 days. PGI2 concentrations were determined in plasma and also in the medium in which aortic rings were incubated. PGI2 was measured as 6-keto-PGF1α by RIA. Plasma PGI2 levels in T4-treated groups were found to be significantly higher than those of control animals. Aortic rings obtained from rats given single injection of T4 for 7 and 14 days showed significant increases in release of PGI2 into the incubation medium. In contrast, rats given methimazole for 14 days showed a significant decrease in the production of PGI2 by aortic rings without any significant changes in plasma levels. Direct addition of T4 into the incubation medium did not cause any significant changes in PGI2 release by aortic rings obtained from control rats.These results suggest the regulatory role of thyroid hormone in PGI2 synthesis in vivo.  相似文献   

20.
The effect of the in vivo thyroid status on mitochondrial membrane potential (ΔΨm) in isolated rat hepatocytes was studies by means of a cytofluorimetric technique and the ΔΨm-specific probe JC-1. It is shown that the ΔΨm level decreases in the order hypothyroid>euthyroid>hyperthyroid. Polarographic measurement of the hepatocyte respiratory rates revealed an opposite trend of values: the highest respiratory rate in hepatocytes from hyperthyroid animals, the lowest in those from hypothyroid ones. This means that mitochondrial energy coupling is highest in hypothyroid hepatocytes and lowest in hyperthyroid hepatocytes. 6-Ketocholestanol added to hepatocytes failed to counterbalance the uncoupling effect of thyroid hormones on ΔΨm and respiration rate. Under the same conditions, 6-ketocholestanol appeared to be effective in recoupling of respiration uncoupled by low concentrations of the artificial protonophore FCCP. The mechanism and possible physiological functions of the thyroid hormone-induced decrease in mitochondrial energy coupling are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号