首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Microcystins LR (MC-LR) are hepatotoxic cyanotoxins that have been shown to induce reproductive toxicity, and Hypothalamic–Pituitary–Gonadal Axis (HPG) is responsible for the control of reproductive functions. However, few studies have been performed to evaluate the effects of MC-LR on HPG axis. This study aimed to investigate the MC-LR-induced toxicity in the reproductive system of mouse and focus on the HPG axis.

Methods

Adult male C57BL/6 mice were exposed to various concentrations of MC-LR (0, 3.75, 7.50, 15.00 and 30.00 µg/kg body weight per day) for 1 to 14 days, and it was found that exposure to different concentrations of MC-LR significantly disturbed sperm production in the mice testes in a dose- and time-dependent manner. To elucidate the associated possible mechanisms, the serum levels of testosterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were assessed. Meanwhile, PCR assays were employed to detect alterations in a series of genes involved in HPG axis, such as FSH, LH, gonadotropin-releasing hormone (GnRH) and their complement receptors. Furthermore, the effect of MC-LR on the viability and testosterone production of Leydig cells were tested in vitro. Results: MC-LR significantly impaired the spermatogenesis of mice possibly through the direct or indirect inhibition of GnRH synthesis at the hypothalamic level, which resulted in reduction of serum levels of LH that lead to suppression of testosterone production in the testis of mice.

Conclusions

MC-LR may be a GnRH toxin that would disrupt the reproductive system of mice.  相似文献   

2.
Microcystins (MCs) are a group of cyclic hepatotoxic peptides produced by cyanobacteria. Microcystin-LR (MC-LR) contains Leucine (L) and Arginine (R) in the variable positions, and is one of the most common and potently toxic peptides. MC-LR can inhibit protein phosphatase type 1 and type 2A (PP1 and PP2A) activities and induce excessive production of reactive oxygen species (ROS). The underlying mechanism of the inhibition of PP1 and PP2A has been extensively studied. The over-production of ROS is considered to be another main mechanism behind MC-LR toxicity; however, the detailed toxicological mechanism involved in over-production of ROS in carp (Cyprinus carpio L.) remains largely unclear. In our present study, the hydroxyl radical (•OH) was significantly induced in the liver of carp after a relatively short-term exposure to MC-LR. The elevated reactive oxygen species (ROS) production may play an important role in the disruption of microtubule structure. Pre-injection of the antioxidant N-acetyl-cysteine (NAC) provided significant protection to the cytoskeleton, however buthionine sulfoximine (BSO) exacerbated cytoskeletal destruction. In addition, the elevated ROS formation induced the expression of apoptosis-related genes, including p38, JNKa, and bcl-2. A significant increase in apoptotic cells was observed at 12 - 48 hours. Our study further supports evidence that ROS are involved in MC-LR induced damage to liver cells in carp, and indicates the need for further study of the molecular mechanisms behind MC-LR toxicity.  相似文献   

3.
The effect of selective inhibition of mitochondrial protein synthesis by chloramphenicol at 40 or 200 µg/ml on the formation of mitochondria in HeLa cells was investigated. HeLa cells, under the conditions used in the present work, grow at a decreasing rate for at least four cell generations in the presence of 40 µg/ml chloramphenicol, and for two generations in the presence of 200 µg/ml chloramphenicol. The progressive cell growth inhibition which begins after 2 days of exposure of the cells to 40 µg/ml chloramphenicol is immediately or gradually reversible, upon removal of the drug, for periods up to at least 8 days of treatment, though there is a progressive loss of cloning efficiency. In cells which have been treated for 6–7 days with 40 or 200 µg/ml of chloramphenicol, mitochondrial protein synthesis occurs at a normal or near-normal rate 1 h after removal of the drug. Mitochondria increase normally in number and show a normal size and amount of cristae in the presence of either concentration of drug. However, in 4–5% of the mitochondrial profiles the cristae appear to be arranged in unusual, circular, looped or whorled configuration.  相似文献   

4.
The regulation of phosphoenolpyruvate synthesis in pigeon liver   总被引:9,自引:9,他引:0  
1. The intracellular location and maximal activities of enzymes involved in phosphoenolpyruvate synthesis have been investigated in pigeon liver. Enolase and pyruvate kinase were cytoplasmic, and the activities were 50–60 and 180–210μmoles/min./g. dry wt. at 25° respectively. Phosphoenolpyruvate carboxykinase was present exclusively, and nucleoside diphosphokinase predominantly, in the mitochondria; the particles had to be disrupted to elicit maximal activities, which were 27–33 and 400–600μmoles/min./g. dry wt. at 25° respectively. The activities of all four enzymes did not change significantly during 48hr. of starvation. 2. Conditions for incubation of washed isolated mitochondria were established, to give high rates of synthesis of phosphoenolpyruvate, linear with time and proportional to mitochondrial concentration. Inorganic phosphate and added adenine nucleotides were stimulatory, whereas added Mg2+ inhibited, partly owing to activation of contaminant pyruvate kinase. Phosphoenolpyruvate formation occurred from oxaloacetate, malate, fumarate, succinate, α-oxoglutarate and citrate, in decreasing order of effectiveness. 3. The steady-state ATP/ADP ratio of mitochondrial suspensions was decreased in the presence of added 2·5mm-Mg2+ (owing to stimulation of adenylate kinase and possibly of an adenosine triphosphatase), 0·5mm-Ca2+ or 0·4mm-dinitrophenol. In each case the rate of substrate removal and oxygen uptake was increased, whereas phosphoenolpyruvate synthesis was inhibited. Citrate formation was enhanced, owing to de-inhibition of citrate synthase. These effects were not primarily related to changes in the oxaloacetate concentration. 4. Both phosphoenolpyruvate carboxykinase and nucleoside diphosphokinase were active within the atractylosidesensitive barrier to the mitochondrial metabolism of added adenine nucleotides. There was no correlation between the rate of substrate-level phosphorylation associated with the oxidation of α-oxoglutarate, and the synthesis of phosphoenolpyruvate. 5. The results suggest that phosphoenolpyruvate formation in pigeon-liver mitochondria is regulated partly by the phosphorylation state of the adenine and guanine nucleotides, and partly by variations in the oxaloacetate concentration, all in the mitochondrial matrix. 6. Phosphoenolpyruvate is assumed to be the metabolite transported from the mitochondria to the cytoplasm during gluconeogenesis from oxaloacetate in pigeon liver.  相似文献   

5.
Chronic exposure to polychlorinated biphenyls (PCBs), ubiquitous environmental contaminants, can adversely affect the development and function of the nervous system. Here we evaluated the effect of PCB exposure on mitochondrial function using the PCB mixture Aroclor-1254 (A1254) in SH-SY5Y neuroblastoma cells. A 6-hour exposure to A1254 (5 μg/ml) reduced cellular ATP production by 45%±7, and mitochondrial membrane potential, detected by TMRE, by 49%±7. Consistently, A1254 significantly decreased oxidative phosphorylation and aerobic glycolysis measured by extracellular flux analyzer. Furthermore, the activity of mitochondrial protein complexes I, II, and IV, but not V (ATPase), measured by BN-PAGE technique, was significantly reduced after 6-hour exposure to A1254. The addition of pyruvic acid during exposure to A1254 significantly prevent A1254-induced cell injury, restoring resting mitochondrial membrane potential, ATP levels, oxidative phosphorylation and aerobic glycolysis. Furthermore, pyruvic acid significantly preserved the activity of mitochondrial complexes I, II and IV and increased basal activity of complex V. Collectively, the present results indicate that the neurotoxicity of A1254 depends on the impairment of oxidative phosphorylation, aerobic glycolysis, and mitochondrial complexes I, II, and IV activity and it was counteracted by pyruvic acid.  相似文献   

6.
There have been several reports describing paracrystalline arrays in the intermembrane space of mitochondria. On closer inspection these structures appear to be junctions of two adjoining membranes. There are two types. They can be formed between the outer and inner mitochondrial membranes (designated outer-inner membrane junctions) or between two cristal membranes (intercristal membrane junctions). In rat heart, adjoining membranes appeared associated via a central dense midline approximately 30 Å wide. In rat kidney, the junction had a ladder-like appearance with electron-dense "bridges" approximately 80 Å wide, spaced 130 Å apart, connecting the adjoining membranes. We have investigated the conditions which favor the visualization of such structures in mitochondria. Heart mitochondria isolated rapidly from fresh tissue (within 30 min of death) contain membrane junctions in approximately 10–15% of the cross sections. This would indicate that the percentage of membrane junctions in the entire mitochondrion is far greater. Mitochondria isolated from heart tissue which was stored for 1 h at 0°–4°C showed an increased number of membrane junctions, so that 80% of the mitochondrial cross sections show membrane junctions. No membrane junctions are observed in mitochondria in rapidly fixed fresh tissue or in mitochondria isolated from tissue disrupted in fixative. Thus, the visualization of junctions in the intermembrane space of mitochondria appears to be dependent upon the storage of tissue after death. Membrane junctions can also be observed in mitochondria from other stored tissues such as skeletal muscle, kidney, and interstitial cells from large and small intestine. In each case, no such junctions are observed in these tissues when they are fixed immediately after removal from the animal. It would appear that most studies in the literature in which isolated mitochondria from tissues such as heart or kidney were used were carried out on mitochondria which contained membrane junctions. The presence of such structures does not significantly affect normal mitochondrial function in terms of respiratory control and oxidative phosphorylation.  相似文献   

7.
With the widespread use of quantum dots (QDs), the likelihood of exposure to quantum dots has increased substantially. The application of quantum dots in numerous biomedical areas requires detailed studies on their toxicity. In this study, we aimed to determine the threshold dose which reduced or eliminated CdTe-induced toxicity in L929 cells by controlling the exposure dose. We established a cellular model of acute exposure to CdTe QDs. Cells were exposed to different concentrations of CdTe QDs (2.2 nm and 3.5 nm) followed by illustrative cytotoxicity analysis. The results showed that low concentrations of CdTe QDs (under 10 µg/mL) promoted cell viability, caused no obvious effect on the rate of cell apoptosis, intracellular calcium levels and changes in mitochondrial membrane potential, while high concentrations significantly inhibited cell viability. In addition, reactive oxygen species in the 10 µg/mL-treated group was significantly reduced compared with the control group. In summary, the cytotoxicity of CdTe QDs on L929 cell is dose-dependent, time-dependent and size-dependent. Low concentrations of CdTe QDs (below 10 µg/mL) may be nontoxic and safe in L929 cells, whereas high concentrations (above 10 µg/mL) may be toxic resulting in inhibition of proliferation and induction of apoptosis in L929 cells.  相似文献   

8.
The choline concentration used in the growth medium influences the density of mitochondria produced by the chol-1 mutant of Neurospora. Isopycnic centrifugation in sucrose gradients can be used to determine the density of mitochondria, and can resolve into two populations, mitochondria derived from a mixture of cells grown at low (1 µg/ml choline chloride) and high (10 µg/ml choline chloride) choline levels. In an experiment in which cells are shifted from low to high choline growth conditions, mitochondria obtained after varying time periods show a gradual decrease in density tending toward the level typical of high choline mitochondria. Over a 90-minute period of observation, during which time there is an increase of mitochondrial protein mass of ~ 50 per cent over that initially present, the mitochondria change density as a single population. These results are consistent with the view that mitochondria grow by random accretion of new lecithin into existing mitochondrial structures, and also that the mitochondrial population increases by division.  相似文献   

9.
1. The rate of metabolism of propionate by aged sheep-liver mitochondria in the presence of oxygen + carbon dioxide (95:5) was 5·0 (± s.e.m. 0·8) μmoles/mg. of mitochondrial N/hr. 2. When aged in the presence of the mitochondrial supernatant the rate was increased. Mitochondria from 0·33g. of liver, when combined with the corresponding mitochondrial supernatant from 0·08g. of liver, metabolized propionate at a rate of 11·4 (± s.e.m. 1·2) μmoles/mg. of mitochondrial N/hr. This rate is comparable with rates previously obtained with aged nuclear-free homogenates. 3. Two factors in the mitochondrial supernatant were detected, which when combined reproduced the effect of the fresh supernatant and prevented loss of activity on aging. One of these was non-diffusible and was recovered by fractionation of the dialysed mitochondrial supernatant with ammonium sulphate. The second factor was present in an ultrafiltrate of fresh mitochondrial supernatant and in boiled mitochondrial supernatant; it was isolated and identified as l(+)-glutamate. 4. The effect of the non-diffusible factor was due to protection of the mitochondria from the aging process, whereas glutamate served both in this capacity and as a direct stimulant of propionate metabolism at low concentration.  相似文献   

10.

Objectivs

Cytokine-dependent activation of fibroblasts to myofibroblasts, a key event in fibrosis, is accompanied by phenotypic changes with increased secretory and contractile properties dependent on increased energy utilization, yet changes in the energetic profile of these cells are not fully described. We hypothesize that the TGF-β1-mediated transformation of myofibroblasts is associated with an increase in mitochondrial content and function when compared to naive fibroblasts.

Methods

Cultured NIH/3T3 mouse fibroblasts treated with TGF-β1, a profibrotic cytokine, or vehicle were assessed for transformation to myofibroblasts (appearance of α-smooth muscle actin [α-SMA] stress fibers) and associated changes in mitochondrial content and functions using laser confocal microscopy, Seahorse respirometry, multi-well plate reader and biochemical protocols. Expression of mitochondrial-specific proteins was determined using western blotting, and the mitochondrial DNA quantified using Mitochondrial DNA isolation kit.

Results

Treatment with TGF-β1 (5 ng/mL) induced transformation of naive fibroblasts into myofibroblasts with a threefold increase in the expression of α-SMA (6.85 ± 0.27 RU) compared to cells not treated with TGF-β1 (2.52 ± 0.11 RU). TGF-β1 exposure increased the number of mitochondria in the cells, as monitored by membrane potential sensitive dye tetramethylrhodamine, and expression of mitochondria-specific proteins; voltage-dependent anion channels (0.54 ± 0.05 vs. 0.23 ± 0.05 RU) and adenine nucleotide transporter (0.61 ± 0.11 vs. 0.22 ± 0.05 RU), as well as mitochondrial DNA content (530 ± 12 μg DNA/106 cells vs. 307 ± 9 μg DNA/106 cells in control). TGF-β1 treatment was associated with an increase in mitochondrial function with a twofold increase in baseline oxygen consumption rate (2.25 ± 0.03 vs. 1.13 ± 0.1 nmol O2/min/106 cells) and FCCP-induced mitochondrial respiration (2.87 ± 0.03 vs. 1.46 ± 0.15 nmol O2/min/106 cells).

Conclusions

TGF-β1 induced differentiation of fibroblasts is accompanied by energetic remodeling of myofibroblasts with an increase in mitochondrial respiration and mitochondrial content.  相似文献   

11.
DIRECT COUNTING AND SIZING OF MITOCHONDRIA IN SOLUTION   总被引:5,自引:2,他引:3       下载免费PDF全文
Resistive particle counting has been developed for the accurate sizing and counting of mitochondria in solution. The normal detection limit with a 30 µ aperture is 0.48 µ diameter, or 0.056 µ3 particle volume The mean volume of rat liver mitochondria was 0.42 µ3 or 0.93 µ in diameter. The average value for numbers of particles per milligram of mitochondrial protein was 4.3 x 103, and per gram of rat liver was about 11 x 1010. These values compare satisfactorily with those derived by light microscopy and electron microscopy. The mean volume for mitochondria from rat heart was 0 60 µ3 and from rat kidney cortex, 0.23 µ3. These values agree within 15% of those determined by electron microscopy of whole tissue. Mitochondrial fragility and contaminating subcellular organelles were shown to have little influence on the experimentally determined size distributions The technique may be applied to rapid swelling studies, as well as to estimations of the number and size of mitochondria from animals under different conditions such as liver regeneration and hormonal, pathological, or drug-induced states Mitochondrial DNA, RNA, cytochrome c-oxidase, cytochrome (a ÷ a3), and iron were nearly constant per particle over large differences in particle size. Such data may be particularly valuable for biogenesis studies and support the hypothesis that the net amount per particle of certain mitochondrial constituents remains constant during mitochondrial growth and enlargement  相似文献   

12.
Irrigation with wastewater releases pharmaceuticals, pathogenic bacteria, and resistance genes, but little is known about the accumulation of these contaminants in the environment when wastewater is applied for decades. We sampled a chronosequence of soils that were variously irrigated with wastewater from zero up to 100 years in the Mezquital Valley, Mexico, and investigated the accumulation of ciprofloxacin, enrofloxacin, sulfamethoxazole, trimethoprim, clarithromycin, carbamazepine, bezafibrate, naproxen, diclofenac, as well as the occurrence of Enterococcus spp., and sul and qnr resistance genes. Total concentrations of ciprofloxacin, sulfamethoxazole, and carbamazepine increased with irrigation duration reaching 95% of their upper limit of 1.4 µg/kg (ciprofloxacin), 4.3 µg/kg (sulfamethoxazole), and 5.4 µg/kg (carbamazepine) in soils irrigated for 19–28 years. Accumulation was soil-type-specific, with largest accumulation rates in Leptosols and no time-trend in Vertisols. Acidic pharmaceuticals (diclofenac, naproxen, bezafibrate) were not retained and thus did not accumulate in soils. We did not detect qnrA genes, but qnrS and qnrB genes were found in two of the irrigated soils. Relative concentrations of sul1 genes in irrigated soils were two orders of magnitude larger (3.15×10−3±0.22×10−3 copies/16S rDNA) than in non-irrigated soils (4.35×10−5±1.00×10−5 copies/16S rDNA), while those of sul2 exceeded the ones in non-irrigated soils still by a factor of 22 (6.61×10–4±0.59×10−4 versus 2.99×10−5±0.26×10−5 copies/16S rDNA). Absolute numbers of sul genes continued to increase with prolonging irrigation together with Enterococcus spp. 23S rDNA and total 16S rDNA contents. Increasing total concentrations of antibiotics in soil are not accompanied by increasing relative abundances of resistance genes. Nevertheless, wastewater irrigation enlarges the absolute concentration of resistance genes in soils due to a long-term increase in total microbial biomass.  相似文献   

13.
The buoyant densities of the nuclear and mitochondrial DNA from the thoracic muscles of Schistocerca gregaria were found to be 1 702 and 1.689 g/cm3, respectively, corresponding to guanine plus cytosine (G + C) content of 42.2 and 30% A preliminary treatment of the mitochondrial pellet with DNase (25°C, 20 min) is necessary to eliminate the contaminating nuclear DNA. The mitochondrial DNA renatures readily after heat denaturation and incubation at 65°C. The DNA released from the mitochondrial pellet by osmotic shock consists of circular open and closed molecules with a contour length around 5 µ The instability of insect mitochondria in in vitro preparations is discussed.  相似文献   

14.
1. Mitochondria and fluffy layer were prepared from control and regenerating rat liver. Differential and density-gradient centrifugation were used to fractionate the preparations, which were examined for protein content, density and the activity of cytochrome c oxidase, succinate dehydrogenase, NAD–isocitrate dehydrogenase and NADP–isocitrate dehydrogenase. 2. During regeneration the mitochondrial protein content of the liver fell by 18% from the control value of 18·4mg. of protein/g. of liver (wet wt.) and by 3 weeks had risen to 130% of the control value. It then declined slowly. 3. The fluffy-layer protein content (4·7mg./g. of liver) varied inversely as the mitochondrial content and increased by 70% in the early stages (10 days) of liver regeneration. The results suggest that fluffy layer may partially represent both partly formed and broken-down mitochondria. 4. NAD– and NADP–isocitrate dehydrogenases differed in their behaviour during liver regeneration. 5. The succinate-dehydrogenase and NADP–isocitrate-dehydrogenase activity of fluffy layer was high and rose during the early stages of liver regeneration (1 week). Succinate dehydrogenase and cytochrome c oxidase were concentrated in the lighter fluffy-layer particles 10 days to 3 weeks after partial hepatectomy. The significance of this with respect to mitochondrial formation is discussed. 6. Mitochondrial fractions possessed a certain degree of heterogeneity in enzymic activity when separated according to size and density. The mean density of heavy mitochondria was 1·198, light mitochondria 1·193. Fluffy layer was nearly homogeneous in control liver, but during regeneration considerable heterogeneity became evident. The significance of the heterogeneity is discussed.  相似文献   

15.
During sepsis, liver dysfunction is common, and failure of mitochondria to effectively couple oxygen consumption with energy production has been described. In addition to sepsis, pharmacological agents used to treat septic patients may contribute to mitochondrial dysfunction. This study addressed the hypothesis that remifentanil interacts with hepatic mitochondrial oxygen consumption. The human hepatoma cell line HepG2 and their isolated mitochondria were exposed to remifentanil, with or without further exposure to tumor necrosis factor-α (TNF-α). Mitochondrial oxygen consumption was measured by high-resolution respirometry, Caspase-3 protein levels by Western blotting, and cytokine levels by ELISA. Inhibitory κBα (IκBα) phosphorylation, measurement of the cellular ATP content and mitochondrial membrane potential in intact cells were analysed using commercial ELISA kits. Maximal cellular respiration increased after one hour of incubation with remifentanil, and phosphorylation of IκBα occurred, denoting stimulation of nuclear factor κB (NF-κB). The effect on cellular respiration was not present at 2, 4, 8 or 16 hours of incubation. Remifentanil increased the isolated mitochondrial respiratory control ratio of complex-I-dependent respiration without interfering with maximal respiration. Preincubation with the opioid receptor antagonist naloxone prevented a remifentanil-induced increase in cellular respiration. Remifentanil at 10× higher concentrations than therapeutic reduced mitochondrial membrane potential and ATP content without uncoupling oxygen consumption and basal respiration levels. TNF-α exposure reduced respiration of complex-I, -II and -IV, an effect which was prevented by prior remifentanil incubation. Furthermore, prior remifentanil incubation prevented TNF-α-induced IL-6 release of HepG2 cells, and attenuated fragmentation of pro-caspase-3 into cleaved active caspase 3 (an early marker of apoptosis). Our data suggest that remifentanil increases cellular respiration of human hepatocytes and prevents TNF-α-induced mitochondrial dysfunction. The results were not explained by uncoupling of mitochondrial respiration.  相似文献   

16.
The compound β°-thalassemia/Hb E hemoglobinopathy is characterized by an unusually large range of presentation from essentially asymptomatic to a severe transfusion dependent state. While a number of factors are known that moderate presentation, these factors do not account for the full spectrum of presentation. Mitochondria are subcellular organelles that are pivotal in a number of cellular processes including oxidative phosphorylation and apoptosis. A mitochondrial protein enriched proteome was determined and validated from erythroblasts from normal controls and β°-thalassemia/Hb E patients of different severities. Mitochondria were evaluated through the use of mitotracker staining, analysis of relative mitochondrial genome number and evaluation of mitochondrial gene expression in addition to assay of overall cellular redox status through the use of alamarBlue assays. Fifty differentially regulated mitochondrial proteins were identified. Mitotracker staining revealed significant differences in staining between normal control erythroblasts and those from β°-thalassemia/Hb E patients. Differences in relative mitochondria number and gene expression were seen primarily in day 10 cells. Significant differences were seen in redox status as evaluated by alamarBlue staining in newly isolated CD34+ cells. Mitochondria mediate oxidative phosphorylation and apoptosis, both of which are known to be dysregulated in differentiating erythrocytes from β°-thalassemia/Hb E patients. The evidence presented here suggest that there are inherent differences in these cells as early as the erythroid progenitor cell stage, and that maximum deficit is seen coincident with high levels of globin gene expression.  相似文献   

17.
We have examined the ultrastructure of mitochondria as it relates to energy metabolism in the intact cell. Oxidative phosphorylation was induced in ultrastructurally intact Ehrlich ascites tumor cells by rapidly generating intracellular adenosine diphosphate from endogenous adenosine triphosphate by the addition of 2-deoxyglucose. The occurrence of oxidative phosphorylation was ascertained indirectly by continuous and synchronous monitoring of respiratory rate, fluorescence of pyridine nucleotide, and 90° light-scattering. Oxidative phosphorylation was confirmed by direct enzymatic analysis of intracellular adenine nucleotides and by determination of intracellular inorganic orthophosphate. Microsamples of cells rapidly fixed for electron microscopy revealed that, in addition to oxidative phosphorylation, an orthodox → condensed ultrastructural transformation occurred in the mitochondria of all cells in less than 6 sec after the generation of adenosine diphosphate by 2-deoxyglucose. A 90° light-scattering increase, which also occurs at this time, showed a t ½ of only 25 sec which agreed temporally with a slower orthodox → maximally condensed mitochondrial transformation. Neither oxidative phosphorylation nor ultrastructural transformation could be initiated in mitochondria in intact cells by the intracellular generation of adenosine diphosphate in the presence of uncouplers of oxidative phosphorylation. Partial and complete inhibition of oxidative phosphorylation by oligomycin resulted in a positive relationship to partial and complete inhibition of 2-deoxyglucose-induced ultrastructural transformation in the mitochondria in these cells. The data presented reveal that an orthodox → condensed ultrastructural transformation is linked to induced oxidative phosphorylation in mitochondria in the intact ascites tumor cell.  相似文献   

18.
ADP is not only a key substrate for ATP generation, but also a potent inhibitor of mitochondrial permeability transition pore (mPTP). In this study, we assessed how oxidative stress affects the potency of ADP as an mPTP inhibitor and whether its reduction of reactive oxygen species (ROS) production might be involved. We determined quantitatively the effects of ADP on mitochondrial Ca2+ retention capacity (CRC) until the induction of mPTP in normal and stressed isolated cardiac mitochondria. We used two models of chronic oxidative stress (old and diabetic mice) and two models of acute oxidative stress (ischemia reperfusion (IR) and tert-butyl hydroperoxide (t-BH)). In control mitochondria, the CRC was 344 ± 32 nmol/mg protein. 500 μmol/L ADP increased CRC to 774 ± 65 nmol/mg protein. This effect of ADP seemed to relate to its concentration as 50 μmol/L had a significantly smaller effect. Also, oligomycin, which inhibits the conversion of ADP to ATP by F0F1ATPase, significantly increased the effect of 50 μmol/L ADP. Chronic oxidative stress did not affect CRC or the effect of 500 μmol/L ADP. After IR or t-BH exposure, CRC was drastically reduced to 1 ± 0.2 and 32 ± 4 nmol/mg protein, respectively. Surprisingly, ADP increased the CRC to 447 ± 105 and 514 ± 103 nmol/mg protein in IR and t-BH, respectively. Thus, it increased CRC by the same amount as in control. In control mitochondria, ADP decreased both substrate and Ca2+-induced increase of ROS. However, in t-BH mitochondria the effect of ADP on ROS was relatively small. We conclude that ADP potently restores CRC capacity in severely stressed mitochondria. This effect is most likely not related to a reduction in ROS production. As the effect of ADP relates to its concentration, increased ADP as occurs in the pathophysiological situation may protect mitochondrial integrity and function.  相似文献   

19.
Coenzyme Q-10 (CoQ-10) is a cofactor for mitochondrial electron transport chain and may be an alternative to improve sperm quality of cryopreserved equine semen. This work aimed to improve stallion semen quality after freezing by adding CoQ-10 to the cryopreservation protocol. Seven saddle stallions were utilized. Each animal was submitted to five semen collections and freezing procedures. For cryopreservation, each ejaculate was divided in three treatments: 1) Botucrio® diluent (control); 2) 50 μmol CoQ-10 added to Botucrio® diluent; 3) 1 mmol CoQ-10 added to Botucrio® diluent. Semen batches were analyzed for sperm motility characteristics (CASA), plasma and acrosomal membranes integrity and mitochondrial membrane potential (by fluorescence probes propidium iodide, Hoechst 33342, FITC-PSA and JC-1, respectively), alterations in cytoskeletal actin (phalloidin-FITC) and mitochondrial function (diaminobenzidine; DAB). The 1 mmol CoQ-10 treatment presented higher (P<0.05) amount (66.8%) of sperm cells with fully stained midpiece (indicating high mitochondrial activity) and higher (P<0.05) amount (81.6%) of cells without actin reorganization to the post-acrosomal region compared to control group (60.8% and 76.0%, respectively). It was concluded that the addition of 1 mmol CoQ-10 to the freezing diluent was more effective in preserving mitochondria functionality and cytoskeleton of sperm cells submitted to cryopreservation process.  相似文献   

20.
Impairments in mitochondrial energy metabolism have been implicated in human genetic diseases associated with mitochondrial and nuclear DNA mutations, neurodegenerative and cardiovascular disorders, diabetes, and aging. Alteration in mitochondrial complex I structure and activity has been shown to play a key role in Parkinson''s disease and ischemia/reperfusion tissue injury, but significant difficulty remains in assessing the content of this enzyme complex in a given sample. The present study introduces a new method utilizing native polyacrylamide gel electrophoresis in combination with flavin fluorescence scanning to measure the absolute content of complex I, as well as α-ketoglutarate dehydrogenase complex, in any preparation. We show that complex I content is 19 ± 1 pmol/mg of protein in the brain mitochondria, whereas varies up to 10-fold in different mouse tissues. Together with the measurements of NADH-dependent specific activity, our method also allows accurate determination of complex I catalytic turnover, which was calculated as 104 min−1 for NADH:ubiquinone reductase in mouse brain mitochondrial preparations. α-ketoglutarate dehydrogenase complex content was determined to be 65 ± 5 and 123 ± 9 pmol/mg protein for mouse brain and bovine heart mitochondria, respectively. Our approach can also be extended to cultured cells, and we demonstrated that about 90 × 103 complex I molecules are present in a single human embryonic kidney 293 cell. The ability to determine complex I content should provide a valuable tool to investigate the enzyme status in samples after in vivo treatment in mutant organisms, cells in culture, or human biopsies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号