首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsporidia are ubiquitous opportunistic parasites in nature infecting all animal phyla, and the zoonotic potential of this parasitosis is under discussion. Fecal samples from 124 pigeons from seven parks of Murcia (Spain) were analyzed. Thirty-six of them (29.0%) showed structures compatible with microsporidia spores by staining methods. The DNA isolated from 26 fecal samples (20.9%) of microsporidia-positive pigeons was amplified with specific primers for the four most frequent human microsporidia. Twelve pigeons were positive for only Enterocytozoon bieneusi (9.7%), 5 for Encephalitozoon intestinalis (4%), and one for Encephalitozoon hellem (0.8%). Coinfections were detected in eight additional pigeons: E. bieneusi and E. hellem were detected in six animals (4.8%); E. bieneusi was associated with E. intestinalis in one case (0.8%); and E. hellem and E. intestinalis coexisted in one pigeon. No positive samples for Encephalitozoon cuniculi were detected. The internally transcribed spacer genotype could be completed for one E. hellem-positive pigeon; the result was identical to the genotype A1 previously characterized in an E. hellem Spanish strain of human origin. To our knowledge, this is the first time that human-related microsporidia have been identified in urban park pigeons. Moreover, we can conclude that there is no barrier to microsporidia transmission between park pigeons and humans for E. intestinalis and E. hellem. This study is of environmental and sanitary interest, because children and elderly people constitute the main visitors of parks and they are populations at risk for microsporidiosis. It should also contribute to the better design of appropriate prophylactic measures for populations at risk for opportunistic infections.  相似文献   

2.
3.
Human-associated microsporidia were frequently observed in fecal samples of 331 feral pigeons in Amsterdam, The Netherlands, obtained during high- and low-breeding periods. Thirty-six of 331 samples (11%) contained the human pathogens Enterocytozoon bieneusi (n = 18), Encephalitozoon hellem (n = 11), Encephalitozoon cuniculi (n = 6), and Encephalitozoon intestinalis (n = 1); 5 samples contained other microsporidia. Pigeon feces can be an important source of human microsporidian infection.  相似文献   

4.
Microsporidia are ubiquitous opportunistic parasites in nature infecting all animal phyla, and the zoonotic potential of this parasitosis is under discussion. Fecal samples from 124 pigeons from seven parks of Murcia (Spain) were analyzed. Thirty-six of them (29.0%) showed structures compatible with microsporidia spores by staining methods. The DNA isolated from 26 fecal samples (20.9%) of microsporidia-positive pigeons was amplified with specific primers for the four most frequent human microsporidia. Twelve pigeons were positive for only Enterocytozoon bieneusi (9.7%), 5 for Encephalitozoon intestinalis (4%), and one for Encephalitozoon hellem (0.8%). Coinfections were detected in eight additional pigeons: E. bieneusi and E. hellem were detected in six animals (4.8%); E. bieneusi was associated with E. intestinalis in one case (0.8%); and E. hellem and E. intestinalis coexisted in one pigeon. No positive samples for Encephalitozoon cuniculi were detected. The internally transcribed spacer genotype could be completed for one E. hellem-positive pigeon; the result was identical to the genotype A1 previously characterized in an E. hellem Spanish strain of human origin. To our knowledge, this is the first time that human-related microsporidia have been identified in urban park pigeons. Moreover, we can conclude that there is no barrier to microsporidia transmission between park pigeons and humans for E. intestinalis and E. hellem. This study is of environmental and sanitary interest, because children and elderly people constitute the main visitors of parks and they are populations at risk for microsporidiosis. It should also contribute to the better design of appropriate prophylactic measures for populations at risk for opportunistic infections.  相似文献   

5.
Microsporidia, as a group, cause a wide range of infections, though two species of microsporidia in particular, Enterocytozoon bieneusi and Encephalitozoon intestinalis, are associated with gastrointestinal disease in humans. To date, the mode of transmission and environmental occurrence of microsporidia have not been elucidated due to lack of sensitive and specific screening methods. The present study was undertaken with recently developed methods to screen several significant water sources. Water concentrates were subjected to community DNA extraction followed by microsporidium-specific PCR amplification, PCR sequencing, and database homology comparison. A total of 14 water concentrates were screened; 7 of these contained human-pathogenic microsporidia. The presence of Encephalitozoon intestinalis was confirmed in tertiary sewage effluent, surface water, and groundwater; the presence of Enterocytozoon bieneusi was confirmed in surface water; and the presence of Vittaforma corneae was confirmed in tertiary effluent. Thus, this study represents the first confirmation, to the species level, of human-pathogenic microsporidia in water, indicating that these human-pathogenic microsporidia may be waterborne pathogens.  相似文献   

6.
The term microsporidia is used to describe several species of opportunistic protozoan parasites. Encephalitozoon intestinalis and Enterocytozoon bieneusi have been found in stools of more than 40% of AIDS patients with diarrhea. Diagnosis of infection with these small protozoans has been difficult, and until recently their occurrence has not been well documented. Formalin is widely used to preserve clinical specimens, but due to the nature of the fixation process, subsequent analysis, especially analysis by the PCR, is difficult. This study evaluated methods used to prepare formalin-fixed fecal specimens for PCR amplification of microsporidial DNA. Two methods were devised to allow PCR detection and subsequent identification of microsporidia in formalin-fixed fecal specimens to the species level. One method involved immunomagnetic separation to concentrate microsporidial spores from fecal specimens. In the second method Chelex resin (Bio-Rad, Hercules, Calif.) was used to remove inhibitory substances, followed by a DNA concentration step. Both methods resulted in reproducible, confirmed detection of microsporidia in formalinized fecal specimens and subsequent species determination by PCR sequencing. The detection sensitivity was two in vitro culture-derived spores (Encephalitozoon intestinalis) for the direct PCR. The reproducible detection sensitivity for DNA amplification from formalin-fixed fecal samples was 200 spores for either the Chelex method or the immunomagnetic bead separation method. Thus, we developed two methods for rapid, inexpensive detection of microsporidial spores in formalin-fixed fecal specimens.  相似文献   

7.
Intestinal parasitic pathogens in HIV/AIDS patients include Cryptosporidium sp, Cystoisospora sp, microsporidia and less commonly other parasites. The two most common microsporidia causing intestinal infection are Enterocytozoon bieneusi and Encephalitozoon intestinalis. Most of the Indian studies for intestinal parasitic infections in HIV/AIDS patients have not included microsporidia, due to difficult staining and identification of the parasite. The aim of the present study was to find the prevalence of intestinal microsporidiosis and their species identification along with correlation of CD4 count with parasite positivity and diarrhoea in HIV positive individuals. Stool samples of 363 individuals including 125 HIV seropositive patients with diarrhoea, 158 HIV seropositive patients without diarrhoea, 55 HIV seronegative patients with diarrhoea and 25 healthy controls were obtained from various out-patient departments and in-patients admitted to a tertiary care hospital from August 2008 to October 2009. The stool samples were subjected to examination by wet mount, modified acid fast stain for coccidian parasites and multiplex nested PCR for microsporidia. The overall prevalence of all intestinal parasites among HIV patients in our study was 26.5%. The prevalence of intestinal parasitic pathogens in HIV positive patients with diarrhoea was 43.2%. Microsporidia were the most common parasites detected (14%) in all patients, while in HIV infected patients 15.9% patients had microsporidia infection. The most common species causing intestinal microsporidiosis in our study was E. intestinalis (10.5%). In HIV seropositive individuals with diarrhoea, E. intestinalis was 20.8% and E. bieneusi 8.0% while in HIV-seropositive individuals without diarrhoea, E. intestinalis was 3.8% and E. bieneusi 1.9%. E. intestinalis was present in 10.9% of HIV negative individuals with diarrhoea in whom E. bieneusi was not found. There was a significant association between CD4 count ≤ 200/μl and intestinal parasite positivity. Thus, it can be concluded that intestinal microsporidiosis is under reported but an important disease in India. The predominant species in our study is E. intestinalis , in contrast to other parts of the world where E. bieneusi is more common.  相似文献   

8.
Nano-functionalized products such as UV protective paints additives, antimicrobial food packaging, and fuel additives offering reduced CO2 emissions have the potential to secure a significant Irish market share in the near future. This scoping study gives a first estimation of nanomaterial surface water concentrations and population ingestional exposure through drinking water resulting from these products. As nanomaterial behavior in wastewater treatment plants (WWTPs) and water treatment plants (WTPs) is currently unclear, bridging data relating to potentially relevant materials (pharmaceuticals and metal removal efficiencies in WWTPs; pathogen removal efficiencies in WTPs) are employed in this study. Mean nanomaterial removal efficiencies of 59.8% and 70.2% were predicted for Irish WWTPs, between 96.95% and 0% for Irish WTPs. Predicted nano-scale TiO2 concentrations in surface waters (resulting from exterior paints) were 2 orders of magnitude greater than that of Ag (resulting from food packaging) and CeO2 (resulting from fuel additives), respectively. Predicted surface and drinking water concentrations were unlikely to pose any ecotoxicological or human health risk, although nano-scale TiO2 and Ag may warrant monitoring as part of standard surface water monitoring schemes. Future research should be directed toward characterizing the behavior of different categories of nanomaterials within WWTP processes.  相似文献   

9.
Because of high diurnal water quality fluctuations in raw municipal wastewater, the use of proportional autosampling over a period of 24 h at municipal wastewater treatment plants (WWTPs) to evaluate carbon, nitrogen, and phosphorus removal has become a standard in many countries. Microbial removal or load estimation at municipal WWTPs, however, is still based on manually recovered grab samples. The goal of this study was to establish basic knowledge regarding the persistence of standard bacterial fecal indicators and Bacteroidetes genetic microbial source tracking markers in municipal wastewater in order to evaluate their suitability for automated sampling, as the potential lack of persistence is the main argument against such procedures. Raw and secondary treated wastewater of municipal origin from representative and well-characterized biological WWTPs without disinfection (organic carbon and nutrient removal) was investigated in microcosm experiments at 5 and 21°C with a total storage time of 32 h (including a 24-h autosampling component and an 8-h postsampling phase). Vegetative Escherichia coli and enterococci, as well as Clostridium perfringens spores, were selected as indicators for cultivation-based standard enumeration. Molecular analysis focused on total (AllBac) and human-associated genetic Bacteroidetes (BacHum-UCD, HF183 TaqMan) markers by using quantitative PCR, as well as 16S rRNA gene-based next-generation sequencing. The microbial parameters showed high persistence in both raw and treated wastewater at 5°C under the storage conditions used. Surprisingly, and in contrast to results obtained with treated wastewater, persistence of the microbial markers in raw wastewater was also high at 21°C. On the basis of our results, 24-h autosampling procedures with 5°C storage conditions can be recommended for the investigation of fecal indicators or Bacteroidetes genetic markers at municipal WWTPs. Such autosampling procedures will contribute to better understanding and monitoring of municipal WWTPs as sources of fecal pollution in water resources.  相似文献   

10.

Background

Microsporidia are obligate intracellular parasites that infect a broad range of vertebrates and invertebrates. They have been increasingly recognized as human pathogens in AIDS patients, mainly associated with a life-threatening chronic diarrhea and systemic disease. However, to date the global epidemiology of human microsporidiosis is poorly understood, and recent data suggest that the incidence of these pathogens is much higher than previously reported and may represent a neglected etiological agent of more common diseases indeed in immunocompetent individuals. To contribute to the knowledge of microsporidia molecular epidemiology in HIV-positive patients in Nigeria, the authors tested stool samples proceeding from patients with and without diarrhea.

Methodology/Principal Findings

Stool samples from 193 HIV-positive patients with and without diarrhea (67 and 126 respectively) from Lagos (Nigeria) were investigated for the presence of microsporidia and Cryptosporidium using Weber’s Chromotrope-based stain, Kinyoun stain, IFAT and PCR. The Weber stain showed 45 fecal samples (23.3%) with characteristic microsporidia spores, and a significant association of microsporidia with diarrhea was observed (O.R.  = 18.2; CI: 95%). A similar result was obtained using Kinyoun stain, showing 44 (31,8%) positive samples with structures morphologically compatible with Cryptosporidium sp, 14 (31.8%) of them with infection mixed with microsporidia. The characterization of microsporidia species by IFAT and PCR allowed identification of Enterocytozoon bieneusi, Encephalitozoon intestinalis and E. cuniculi in 5, 2 and 1 samples respectively. The partial sequencing of the ITS region of the rRNA genes showed that the three isolates of E.bieneusi studied are included in Group I, one of which bears the genotype B.

Conclusions/Significance

To our knowledge, this is the first report of microsporidia characterization in fecal samples from HIV-positive patients from Lagos, Nigeria. These results focus attention on the need to include microsporidial diagnosis in the management of HIV/AIDS infection in Nigeria, at the very least when other more common pathogens have not been detected.  相似文献   

11.
We developed nested PCR protocols and performed a multiyear survey on the prevalence of several protozoan parasites in wild northern bobwhite (Colinus virginianus) and scaled quail (Callipepla squamata) in the Rolling Plains ecoregion of Texas and Oklahoma (i.e. fecal pellets, bird intestines and blood smears collected between 2010 and 2013). Coccidia, cryptosporidia, and microsporidia were detected in 46.2%, 11.7%, and 44.0% of the samples (n = 687), whereas histomona and hematozoa were undetected. Coccidia consisted of one major and two minor Eimeria species. Cryptosporidia were represented by a major unknown Cryptosporidium species and Cryptosporidium baileyi. Detected microsporidia species were highly diverse, in which only 11% were native avian parasites including Encephalitozoon hellem and Encephalitozoon cuniculi, whereas 33% were closely related to species from insects (e.g. Antonospora, Liebermannia, and Sporanauta). This survey suggests that coccidia infections are a significant risk factor in the health of wild quail while cryptosporidia and microsporidia may be much less significant than coccidiosis. In addition, the presence of E. hellem and E. cuniculi (known to cause opportunistic infections in humans) suggests that wild quail could serve as a reservoir for human microsporidian pathogens, and individuals with compromised or weakened immunity should probably take precautions while directly handling wild quail.  相似文献   

12.
Fecal pollution from nonhuman (pets, livestock or wildlife) and human sources is often one of the major factors associated with urbanization that contribute to the degradation of water quality. Methods to differentiate animal from human sources of fecal coliform contamination could assist resource managers in developing strategies to protect shellfish harvesting areas and recreational waters. In this study, surface water samples were collected from both a developed and an undeveloped watershed in coastal South Carolina. Influent and effluent samples from several wastewater treatment plants (WWTPs) in the same area were also collected. Most Probable Numbers (MPNs) of fecal coliforms were determined for all samples. Escherichia coli isolates were analyzed for antibiotic resistance (AR) to 10 antibiotics. Then, AR indices (no. of resistant/total no. of antibiotics tested), were calculated for each isolate and site. Results indicated that MPNs from the WWTP samples were significantly higher than those from the developed watershed which were significantly higher than those from the undeveloped watershed (p<0.0001). The AR analyses suggested that there was a trend toward increased antibiotic resistance in samples for the urbanized Broad Creek (BC) watershed. In the Okatee River (OR), E. coli isolates from three sites (20%) showed resistance to a single antibiotic (penicillin) but in BC, isolates from seven sites (47%) were resistant to multiple antibiotics, and the predominant resistance pattern was chlortetracycline-oxytetracycline-tetracycline. Raw sewage isolates from most WWTPs contained E. coli that exhibited resistance to multiple antibiotics. Cluster analysis indicated that all resistant OR sites had antibiotic resistant isolates that matched AR patterns found in isolates from WWTPs. Similarly, six of the seven sites in BC had AR patterns that matched with resistance patterns in WWTPs. These results suggest that AR testing may be a useful tool for differentiating E. coli from human and wildlife sources. Further testing of bacterial isolates from known animal sources is necessary to better assess the utility of this approach.  相似文献   

13.
Therapy of intestinal protozoa   总被引:3,自引:0,他引:3  
Protozoa that parasitize the human intestine and cause disease include Entamoeba histolytica, Giardia lamblia, Cryptosporidium parvum, Cyclospora cayetanensis, Isospora belli, and the microsporidia (which are now classified as fungi). The new and broad-spectrum agent nitazoxanide now has an Food and Drug Administration indication for the treatment of cryptosporidiosis and giardiasis in children, making C. parvum for the first time a treatable infection. Metronidazole is the standard, and in most cases effective, therapy for invasive infection due to E. histolytica and for G. lamblia infection. Cyclosporiasis and isosporiasis are treated with trimethoprim–sulfamethoxazole, whereas some isolates of Encephalitozoon intestinalis are sensitive to albendazole. Eradication of E. histolytica infection after completion of metronidazole therapy normally requires additional therapy with paromomycin, whereas cases of giardiasis refractory to metronidazole have been treated with nitazoxanide, higher doses of metronidazole, or with combination therapy with quinacrine and metronidazole.  相似文献   

14.
Recent molecular characterizations of Cryptosporidium parasites make it possible to differentiate the human-pathogenic Cryptosporidium parasites from those that do not infect humans and to track the source of Cryptosporidium oocyst contamination in the environment. In this study, we used a small-subunit rRNA-based PCR-restriction fragment length polymorphism (RFLP) technique to detect and characterize Cryptosporidium oocysts in 55 samples of raw surface water collected from several areas in the United States and 49 samples of raw wastewater collected from Milwaukee, Wis. Cryptosporidium parasites were detected in 25 surface water samples and 12 raw wastewater samples. C. parvum human and bovine genotypes were the dominant Cryptosporidium parasites in the surface water samples from sites where there was potential contamination by humans and cattle, whereas C. andersoni was the most common parasite in wastewater. There may be geographic differences in the distribution of Cryptosporidium genotypes in surface water. The PCR-RFLP technique can be a useful alternative method for detection and differentiation of Cryptosporidium parasites in water.  相似文献   

15.
We examined the variations of bacterial populations in treated drinking water prior to and after the final chlorine disinfection step at two different surface water treatment plants. For this purpose, the bacterial communities present in treated water were sampled after granular activated carbon (GAC) filtration and chlorine disinfection from two drinking water treatment plants supplying the city of Paris (France). Samples were analyzed after genomic DNA extraction, polymerase chain reaction (PCR) amplification, cloning, and sequencing of a number of 16S ribosomal RNA (rRNA) genes. The 16S rDNA sequences were clustered into operational taxonomic units (OTUs) and the OTU abundance patterns were obtained for each sample. The observed differences suggest that the chlorine disinfection step markedly affects the bacterial community structure and composition present in GAC water. Members of the Alphaproteobacteria and Betaproteobacteria were found to be predominant in the GAC water samples after phylogenetic analyses of the OTUs. Following the chlorine disinfection step, numerous changes were observed, including decreased representation of Proteobacteria phylotypes. Our results indicate that the use of molecular methods to investigate changes in the abundance of certain bacterial groups following chlorine-based disinfection will aid in further understanding the bacterial ecology of drinking water treatment plants (DWTPs), particularly the disinfection step, as it constitutes the final barrier before drinking water distribution to the consumer’s tap.  相似文献   

16.
Several enteric microsporidia species have been detected in humans and other vertebrates and their identifications at the genotype level are currently being elucidated. As advanced methods, reagents, and disposal kits for detecting and identifying pathogens become commercially available, it is important to test them in settings other than in laboratories with “state‐of‐the‐art” equipment and well‐trained staff members. In the present study, we sought to detect microsporidia DNA preserved and extracted from FTA (fast technology analysis) cards spotted with human fecal suspensions obtained from Cameroonian volunteers living in the capital city of Yaoundé to preclude the need for employing spore‐concentrating protocols. Further, we tested whether amplicon nucleotide sequencing approaches could be used on small aliquots taken from the cards to elucidate the diversity of microsporidia species and strains infecting native residents. Of 196 samples analyzed, 12 (6.1%) were positive for microsporidia DNA; Enterocytozoon bieneusi (Type IV and KIN‐1), Encephalitozoon cuniculi, and Encephalitozoon intestinalis were identified. These data demonstrate the utility of the FTA cards in identifying genotypes of microsporidia DNA in human fecal samples that may be applied to field testing for prevalence studies.  相似文献   

17.
Antibiotics and antibiotic resistant bacteria enter wastewater treatment plants (WWTPs), an environment where resistance genes can potentially spread and exchange between microbes. Several antibiotic resistance genes (ARGs) were quantified using qPCR in three WWTPs of decreasing capacity located in Helsinki, Tallinn, and Tartu, respectively: sulphonamide resistance genes (sul1 and sul2), tetracycline resistance genes (tetM and tetC), and resistance genes for extended spectrum beta-lactams (blaoxa-58, blashv-34, and blactx-m-32). To avoid inconsistencies among qPCR assays we normalised the ARG abundances with 16S rRNA gene abundances while assessing if the respective genes increased or decreased during treatment. ARGs were detected in most samples; sul1, sul2, and tetM were detected in all samples. Statistically significant differences (adjusted p<0.01) between the inflow and effluent were detected in only four cases. Effluent values for blaoxa-58 and tetC decreased in the two larger plants while tetM decreased in the medium-sized plant. Only blashv-34 increased in the effluent from the medium-sized plant. In all other cases the purification process caused no significant change in the relative abundance of resistance genes, while the raw abundances fell by several orders of magnitude. Standard water quality variables (biological oxygen demand, total phosphorus and nitrogen, etc.) were weakly related or unrelated to the relative abundance of resistance genes. Based on our results we conclude that there is neither considerable enrichment nor purification of antibiotic resistance genes in studied conventional WWTPs.  相似文献   

18.
Reoviruses, enteroviruses, and adenoviruses were quantified by culture for various ambient waters in the Milwaukee area. From August 1994 through July 2003, the influent and effluent of a local wastewater treatment plant (WWTP) were tested monthly by a modified U.S. Environmental Protection Agency Information Collection Rule (ICR) organic flocculation cell culture procedure for the detection of culturable viruses. Modification of the ICR procedure included using Caco-2, RD, and HEp-2 cells in addition to BGM cells. Lake Michigan source water for two local drinking water treatment plants (DWTPs) was also tested monthly for culturable viruses by passing 200 liters of source water through a filter and culturing a concentrate representing 100 liters of source water. Reoviruses, enteroviruses, and adenoviruses were detected frequently (105 of 107 samples) and, at times, in high concentration in WWTP influent but were detected less frequently (32 of 107 samples) in plant effluent and at much lower concentrations. Eighteen of 204 samples (8.8%) of source waters for the two DWTPs were positive for virus and exclusively positive for reoviruses at relatively low titers. Both enteroviruses and reoviruses were detected in WWTP influent, most frequently during the second half of the year.  相似文献   

19.
Reoviruses, enteroviruses, and adenoviruses were quantified by culture for various ambient waters in the Milwaukee area. From August 1994 through July 2003, the influent and effluent of a local wastewater treatment plant (WWTP) were tested monthly by a modified U.S. Environmental Protection Agency Information Collection Rule (ICR) organic flocculation cell culture procedure for the detection of culturable viruses. Modification of the ICR procedure included using Caco-2, RD, and HEp-2 cells in addition to BGM cells. Lake Michigan source water for two local drinking water treatment plants (DWTPs) was also tested monthly for culturable viruses by passing 200 liters of source water through a filter and culturing a concentrate representing 100 liters of source water. Reoviruses, enteroviruses, and adenoviruses were detected frequently (105 of 107 samples) and, at times, in high concentration in WWTP influent but were detected less frequently (32 of 107 samples) in plant effluent and at much lower concentrations. Eighteen of 204 samples (8.8%) of source waters for the two DWTPs were positive for virus and exclusively positive for reoviruses at relatively low titers. Both enteroviruses and reoviruses were detected in WWTP influent, most frequently during the second half of the year.  相似文献   

20.
Cyclospora cayetanensis is a human-specific coccidian parasite responsible for several food and water-related outbreaks around the world, including the most recent ones involving over 900 persons in 2013 and 2014 outbreaks in the USA. Multicopy organellar DNA such as mitochondrion genomes have been particularly informative for detection and genetic traceback analysis in other parasites. We sequenced the C. cayetanensis genomic DNA obtained from stool samples from patients infected with Cyclospora in Nepal using the Illumina MiSeq platform. By bioinformatically filtering out the metagenomic reads of non-coccidian origin sequences and concentrating the reads by targeted alignment, we were able to obtain contigs containing Eimeria-like mitochondrial, apicoplastic and some chromosomal genomic fragments. A mitochondrial genomic sequence was assembled and confirmed by cloning and sequencing targeted PCR products amplified from Cyclospora DNA using primers based on our draft assembly sequence. The results show that the C. cayetanensis mitochondrion genome is 6274 bp in length, with 33% GC content, and likely exists in concatemeric arrays as in Eimeria mitochondrial genomes. Phylogenetic analysis of the C. cayetanensis mitochondrial genome places this organism in a tight cluster with Eimeria species. The mitochondrial genome of C. cayetanensis contains three protein coding genes, cytochrome (cytb), cytochrome C oxidase subunit 1 (cox1), and cytochrome C oxidase subunit 3 (cox3), in addition to 14 large subunit (LSU) and nine small subunit (SSU) fragmented rRNA genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号