首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pancreatic cancer is an extremely aggressive malignancy with a dismal prognosis. Cancer patients and tumor-bearing mice have multiple immunoregulatory subsets including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSC) that may limit the effectiveness of anti-tumor immunotherapies for pancreatic cancer. It is possible that modulating these subsets will enhance anti-tumor immunity. The goal of this study was to explore depletion of immunoregulatory cells to enhance dendritic cell (DC)-based cancer immunotherapy in a murine model of pancreatic cancer. Flow cytometry results showed an increase in both Tregs and MDSC in untreated pancreatic cancer–bearing mice compared with control. Elimination of Tregs alone or in combination with DC-based vaccination had no effect on pancreatic tumor growth or survival. Gemcitabine (Gem) is a chemotherapeutic drug routinely used for the treatment for pancreatic cancer patients. Treatment with Gem led to a significant decrease in MDSC percentages in the spleens of tumor-bearing mice, but did not enhance overall survival. However, combination therapy with DC vaccination followed by Gem treatment led to a significant delay in tumor growth and improved survival in pancreatic cancer–bearing mice. Increased MDSC were measured in the peripheral blood of patients with pancreatic cancer. Treatment with Gem also led to a decrease of this population in pancreatic cancer patients, suggesting that combination therapy with DC-based cancer vaccination and Gem may lead to improved treatments for patients with pancreatic cancer.  相似文献   

2.
Weanling female Wistar rats were supplemented with fish oil (1 g/kg body weight) for one generation. The male offspring received the same supplementation until to adult age. Rats supplemented with coconut fat were used as reference. Some rats were inoculated subcutaneously with a suspension (2 x 10(7) cells/mL) of Walker 256 tumor. At day 3, when the tumor was palpable, rats were treated with naproxen (N) (0.1 mg/mL), clenbuterol (Cb) (0.15 mg/kg body weight), and insulin (I) (10 U/kg body weight). At day 14 after tumor inoculation, the animals were killed. Tumor was removed and weighed. Blood, liver, and skeletal muscles were also collected for measurements of metabolites and insulin. In both tumor-bearing untreated rats and tumor-bearing rats supplemented with coconut fat, tumor growth, triacylglycerol, and blood lactate levels were higher, and glycogen content of the liver, blood glucose, cholesterol and HDL-cholesterol levels were lower as compared with the non-tumor-bearing and fish oil supplemented groups. Fish oil supplementation of tumor-bearing rats led to a partial recovery of the glycogen content in the liver and a full reversion of blood glucose, lactate, cholesterol, and HDL-cholesterol levels. The treatment with N plus Cb plus I attenuated cancer cachexia and decreased tumor growth in both coconut fat and fish oil supplemented rats. In conclusion, chronic fish oil supplementation decreased tumor growth and partially recovered cachexia. This beneficial effect of fish oil supplementation was potentiated by treatment with naproxen plus clenbuterol plus insulin.  相似文献   

3.
The phagocyte NADPH oxidase generates superoxide anion and downstream reactive oxidant intermediates in response to infectious threat, and is a critical mediator of antimicrobial host defense and inflammatory responses. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that are recruited by cancer cells, accumulate locally and systemically in advanced cancer, and can abrogate anti-tumor immunity. Prior studies have implicated the phagocyte NADPH oxidase as being an important component promoting MDSC accumulation and immunosuppression in cancer. We therefore used engineered NADPH oxidase-deficient (p47phox−/−) mice to delineate the role of this enzyme complex in MDSC accumulation and function in a syngeneic mouse model of epithelial ovarian cancer. We found that the presence of NADPH oxidase did not affect tumor progression. The accumulation of MDSCs locally and systemically was similar in tumor-bearing wild-type (WT) and p47phox−/− mice. Although MDSCs from tumor-bearing WT mice had functional NADPH oxidase, the suppressive effect of MDSCs on ex vivo stimulated T cell proliferation was NADPH oxidase-independent. In contrast to other tumor-bearing mouse models, our results show that MDSC accumulation and immunosuppression in syngeneic epithelial ovarian cancer is NADPH oxidase-independent. We speculate that factors inherent to the tumor, tumor microenvironment, or both determine the specific requirement for NADPH oxidase in MDSC accumulation and function.  相似文献   

4.
Supplementation of the diet with fish oil (FO) decreases growth of the Walker 256 tumor and decreases the cachexia associated with tumor-bearing. The mechanisms by which FO inhibits tumor growth and cachexia are unknown. Macrophages are very important in host defence against tumors since they produce several anti-tumor agents which in turn have been shown to be modified by dietary FO, but rarely in the setting of tumor bearing and never in relation to lifelong exposure. In this study, we compared the effects of supplementation of the diet of pregnant and lactating rats and subsequent supplementation of the offspring with coconut fat or FO on macrophage activities involved in anti-tumor defence. FO supplementation was able to induce an increase in phagocytosis, in O2-, H2O2, nitric oxide, and TNF-alpha production by macrophages and in lysosomal volume in non-tumor-bearing rats. However, phagocytosis, production of O2- and H2O2 and lysosomal volume were not affected by the FO diet when rats were bearing tumors, although nitric oxide production was higher in these animals. It appears that tumor bearing activates the innate immune system and that dietary FO has little effect on innate immunity in the presence of Walker 256 tumors. Thus, it is still unclear how FO decreases the growth of Walker 256 tumors and the associated cachexia.  相似文献   

5.
Omega-3 polyunsaturated fatty acids enriched fish oil exerts beneficial anti-inflammatory effects in animal models with acute and chronic inflammatory diseases. Myeloid-derived suppressor cells (MDSCs), comprised of myeloid progenitors and precursors of myeloid cells, play vital roles in cancer. How fish oil affects the generation of MDSCs and the tumor development remains largely unexplored. Here, we show that dietary intake of high fish oil diet suppresses CD8+ T cells activation and proliferation in vivo via elevated levels of MDSCs. Mechanistically, high fish oil diet induces the expression of immunosuppressive cytokine IL-10 and promotes myelopoiesis in the spleen as well as other peripheral tissues. The immature myeloid cells in the spleen exhibit morphological and functional characteristics of MDSCs with the capability to downregulate CD8+ T cells activation. Depletion of MDSCs using anti-Gr-1 antibody decreases the growth of subcutaneously transferred B16 melanoma in mice on high fish oil diet. Interestingly, diet-induced production of MDSCs is not solely dependent of the spleen, as splenectomy has no effect on the tumor progress. Our data show that the liver functions as an alternative extramedullary hematopoiesis organ to support MDSCs differentiation and maintain tumor growth. Taken together, our study provides a novel insight into the physiological effects of fish oil and points to MDSCs as a possible mediator linking dietary fish oil intake and immunosuppression in cancer immunosurveillance.  相似文献   

6.
Regulatory T cells (Tregs) are thought to facilitate tumor development by suppressing protective antitumor immune responses. However, recent clinical and laboratory studies show that Tregs are a favorable element against cancer. In this study, we provide evidence that Tregs have both promoting and inhibiting effects on tumors, depending on the stage of tumor development. By using 0.5 mg cyclophosphamide, we constructed a murine liver cancer model in which Tregs were continuously and selectively depleted. Under such conditions, we found that tumor growth was inhibited at early stages but accelerated later on. Analysis of the tumor microenvironment disclosed that long-term Treg depletion by 0.5 mg cyclophosphamide treatment induced Gr-1(+)CD11b(+) myeloid-derived suppressor cells (MDSCs). Ablation of MDSCs by anti-Gr-1 Ab blocked Treg depletion-induced promotion of tumor growth. Furthermore, lipoxygenases 5 and 12, two enzymes participating in the biosynthesis of the lipid anti-inflammatory mediator lipoxin A(4), were upregulated or downregulated by Treg depletion or adoptive transfer. Correspondingly, the levels of lipoxin A(4) were increased or decreased. Lipoxin A(4) thus regulated the induction of MDSCs in response to Treg depletion. These findings suggest that Tregs may play different roles at different stages of tumor growth: promoting early and inhibiting late tumor growth. Our study also suggests that the interplay among Tregs, MDSCs, and lipoxin A(4) tunes the regulation of tumor-associated inflammation.  相似文献   

7.
髓源抑制性细胞(myeloid-derived suppressor cells,MDSCs)是一群以骨髓祖细胞和未分化成熟的粒细胞、树突状细胞、巨噬细胞为代表的异质髓细胞,表达的抗原标志多样且不同于成熟髓细胞。当机体处于癌症、炎症、感染等状态时,MDSCs首先从骨髓被募集到外周并在外周被活化,一系列肿瘤来源的慢性炎症相关的因子是介导MDSCs的募集和活化的关键。MDSCs有多种方法抑制机体的获得性和天然抗肿瘤免疫,来帮助肿瘤细胞逃避机体的免疫监视和攻击,促进肿瘤发展。近年来,越来越多的研究者开始关注MDSCs与恶性肿瘤的相关性而且靶向MDSCs的肿瘤免疫治疗也见于报道。本文旨在对MDSCs在恶性肿瘤中的生物学作用及研究进展作一简要综述。  相似文献   

8.
Growing evidence suggests that myeloid-derived suppressor cells (MDSCs), which have been named "immature myeloid cells" or "myeloid suppressor cells" (MSCs), play a critical role during the progression of cancer in tumor-bearing mice and cancer patients. As their name implies, these cells are derived from bone marrow and have a tremendous potential to suppress immune responses. Recent studies indicated that these cells also have a crucial role in tumor progression. MDSCs can directly incorporate into tumor endothelium.They secret many pro-angiogenic factors as well. In addition, they play an essential role in cancer invasion and metastasis through inducing the production of matrix metalloproteinases (MMPs), chemoattractants and creating a pre-metastatic environment. Increasing evidence supports the idea that cancer stem cells (CSCs) are responsible for tumorigenesis, resistance to therapies, invasion and metastasis.Here, we hypothesize that CSCs may "hijack" MDSCs for use as alternative niche cells, leading to the maintenance of stemness and enhanced chemo- and radio-therapy resistance. The countermeasure that directly targets to MDSCs may be useful for against angiogenesis and preventing cancer from invasion and metastasis. Therefore, the study of MDSCs is important to understand tumor progression and to enhance the therapeutic efficacy against cancer.  相似文献   

9.
In two different experimental models of cancer cachexia, the rat Yoshida AH-130 ascites hepatoma and the mouse Lewis lung carcinoma, the implantation of the tumor caused a loss of body weight which was associated with a reduction in the weight of different skeletal muscles, as well as with their protein content. The decrease in protein content was accompanied by a reduction in DNA content. Interestingly, the protein/DNA ratio was unchanged in the skeletal muscle of the tumor-bearing animals as compared with the non-tumor-bearing controls. Analysis of DNA fragmentation in skeletal muscle clearly showed enhanced laddering in the skeletal muscle of tumor-bearing animals, suggesting an apoptotic phenomenon. Interestingly, the degree of laddering (total DNA fragmented) increased with tumor burden. These results suggest that DNA fragmentation may be a primary event in cancer-associated cachexia.  相似文献   

10.
Several chemotherapeutic drugs have immune-modulating effects. For example, cyclophosphamide (CP) and gemcitabine (GEM) diminish immunosuppression by regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), respectively. Here, we show that intermittent (metronomic) chemotherapy with low-dose CP plus GEM can induce anti-tumor T cell immunity in CT26 colon carcinoma-bearing mice. Although no significant growth suppression was observed by injections of CP (100 mg/kg) at 8-day intervals or those of CP (50 mg/kg) at 4-day intervals, CP injection (100 mg/kg) increased the frequency of tumor peptide-specific T lymphocytes in draining lymph nodes, which was abolished by two injections of CP (50 mg/kg) at a 4-day interval. Alternatively, injection of GEM (50 mg/kg) was superior to that of GEM (100 mg/kg) in suppressing tumor growth in vivo, despite the smaller dose. When CT26-bearing mice were treated with low-dose (50 mg/kg) CP plus (50 mg/kg) GEM at 8-day intervals, tumor growth was suppressed without impairing T cell function; the effect was mainly T cell dependent. The metronomic combination chemotherapy cured one-third of CT26-bearing mice that acquired tumor-specific T cell immunity. The combination therapy decreased Foxp3 and arginase-1 mRNA levels but increased IFN-γ mRNA expression in tumor tissues. The percentages of tumor-infiltrating CD45+ cells, especially Gr-1high CD11b+ MDSCs, were decreased. These results indicate that metronomic chemotherapy with low-dose CP plus GEM is a promising protocol to mitigate totally Treg- and MDSC-mediated immunosuppression and elicit anti-tumor T cell immunity in vivo.  相似文献   

11.
The “A, B and C” of Her-2 DNA vaccine development   总被引:2,自引:1,他引:1  
INTRODUCTION: The development of Her-2 DNA vaccine has progressed through three phases that can be categorized as phase "A": the pursuit of Her-2 as a tumor-associated "antigen", phase "B": tilting the "balance" between tumor immunity and autoimmunity and phase "C": the on-going "clinical trials". MATERIALS AND METHODS: In phase "A", a panel of human ErbB-2 or Her-2 plasmids were constructed to encode non-transforming Her-2 derivatives. The immunogenicity and anti-tumor activity of Her-2 DNA vaccines were tested in human Her-2 transgenic mice with or without the depletion of regulatory T cells (Tregs). However, Treg depletion or other immune modulating regimens may increase the risk of autoimmunity. In phase "B", the balance between tumor immunity and autoimmunity was assessed by monitoring the development of experimental autoimmune thyroiditis (EAT). To test the efficacy of Her-2 DNA vaccines in cancer patients, clinical trials have been initiated in phase "C". RESULTS AND CONCLUSIONS: Significant anti-Her-2 and anti-tumor activity was observed when Her-2 transgenic mice were electro-vaccinated after Treg depletion. Susceptibility to EAT was also enhanced by Treg depletion and there was mutual amplification between Her-2 immunity and EAT development. Although Tregs regulate both EAT and Her-2 immunity, their effector mechanisms may differ. It may be possible to amplify tumor immunity with improved strategies that can by-pass undue autoimmunity. Critical information will be revealed in the next decade to expedite the development of cancer vaccines.  相似文献   

12.
The progesterone analog medroxyprogesterone acetate (MPA) is widely used as a hormone replacement therapy in postmenopausal women and as contraceptive. However, prolonged administration of MPA is associated with increased incidence of breast cancer through ill-defined mechanisms. Here, we explored whether exposure to MPA during mammary tumor growth affects myeloid-derived suppressor cells (MDSCs; CD11b+Gr-1+, mostly CD11b+Ly6G+Ly6Cint and CD11b+Ly6G?Ly6Chigh cells) and natural killer (NK) cells, potentially restraining tumor immunosurveillance. We used the highly metastatic 4T1 breast tumor (which does not express the classical progesterone receptor and expands MDSCs) to challenge BALB/c mice in the absence or in the presence of MPA. We observed that MPA promoted the accumulation of NK cells in spleens of tumor-bearing mice, but with reduced degranulation ability and in vivo cytotoxic activity. Simultaneously, MPA induced a preferential expansion of CD11b+Ly6G+Ly6Cint cells in spleen and bone marrow of 4T1 tumor-bearing mice. In vitro, MPA promoted nuclear mobilization of the glucocorticoid receptor (GR) in 4T1 cells and endowed these cells with the ability to promote a preferential differentiation of bone marrow cells into CD11b+Ly6G+Ly6Cint cells that displayed suppressive activity on NK cell degranulation. Sorted CD11b+Gr-1+ cells from MPA-treated tumor-bearing mice exhibited higher suppressive activity on NK cell degranulation than CD11b+Gr-1+ cells from vehicle-treated tumor-bearing mice. Thus, MPA, acting through the GR, endows tumor cells with an enhanced capacity to expand CD11b+Ly6G+Ly6Cint cells that subsequently display a stronger suppression of NK cell-mediated anti-tumor immunity. Our results describe an alternative mechanism by which MPA may affect immunosurveillance and have potential implication in breast cancer incidence.  相似文献   

13.
髓源性抑制细胞(myeloid-derived suppressor cells,MDSCs)是一种异质性的免疫调节细胞。在癌症机体中,MDSCs是主要的免疫抑制细胞,通过多种途径诱导T淋巴细胞衰竭和凋亡,促进肿瘤细胞逃逸,从而导致肿瘤不受控制地生长,是癌症治疗的主要障碍。目前,MDSCs是癌症药物研究的热点和关键靶点。近年来,研究报道显示多糖可下调MDSCs在癌症患者及肿瘤实验动物体内数量和比例,并诱导免疫抑制功能丧失。食药用菌多糖是天然多糖的主要来源,可以通过多种途径激活肿瘤免疫应答,其抑制MDSCs功能的研究报道逐年增多,目前研究主要集中在香菇多糖、灵芝多糖等部分种类。因此,本文简要描述髓源性抑制细胞在癌症中的免疫抑制功能,然后详细地综述食药用菌多糖对髓源性抑制细胞作用的研究进展,以期为食药用菌多糖在肿瘤免疫药物开发及辅助增强(如免疫检查点抑制剂)等免疫治疗提供新思路。  相似文献   

14.
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous family of myeloid cells that suppress T cell immunity in tumor-bearing hosts. In patients with colon cancer, MDSCs have recently been described as Lin−/lowHLA-DRCD11b+CD33+ cells correlating with cancer stage, metastasis and chemotherapy response. To learn in more detail the dynamic change and clinical relevance of circulating and tumor-infiltrating Lin−/lowHLA-DRCD11b+CD33+ MDSC in colorectal cancer, we harvested the blood from 64 patients with varying stage of colorectal cancer and tumor and matched paraneoplastic tissues from 5 patients with advanced colorectal cancer, subjected them to multicolor flow cytometric analysis of percentage, absolute number and phenotype of MDSC and finally characterized their immunosuppressive functions. Our results demonstrate that peripheral blood from colorectal cancer patients contains markedly increased percentage and absolute number of Lin−/lowHLA-DRCD11b+CD33+ MDSCs compared with healthy individuals, and this increase is closely correlated with clinical cancer stage and tumor metastasis but not primary tumor size and serum concentrations of cancer biomarker. A similar increase of MDSCs was also observed in the tumor tissues. Phenotyping MDSCs shows that they express high CD13 and CD39, low CD115, CD117, CD124 and PD-L1, and devoid of CD14, CD15 and CD66b, reminiscent of precursor myeloid cells. MDSCs from cancer patients but not healthy donors have the immunosuppressive activity and were able to inhibit in vitro autologous T-cell proliferation. Collectively, this study substantiates the presence of increased immunosuppressive circulating and tumor-resident Lin−/lowHLA-DRCD11b+CD33+ MDSCs in patients with colorectal cancers correlating with cancer stage and metastasis, and suggests that pharmacologic blockade of MDSCs should be considered in future clinical trials.  相似文献   

15.
The purpose of this study was to explore the internal mechanism of lung cancer under the action of caspase recruitment domain-containing protein 9 (CARD9) and immunosuppressive cells myeloid-derived suppressor cells (MDSCs) in the Lewis lung cancer mice model. In this research, mice were selected as research objects, and the mechanism of CARD9 and immunosuppressive cells MDSCs in lung cancer was studied by experimental methods such as mRNA expression level, HE staining of tumor cells, and electron microscopy. The results showed that CARD9 regulated lung cancer by controlling the working state of immunosuppressive cells MDSCs and its downstream product indoleamine 2, 3-dioxygenase (IDO). The study confirmed the tumor regulatory mechanism of CARD9-MDSCs-NF-KB-IDO in MDSCs under tumor environment. In summary, the mechanism of CARD9 and immunosuppressive cells MDSCs in lung cancer was to achieve the goal of tumor control through the control of downstream product IDO. There are still some shortcomings in the research process, but the research results still provide some guidance for future research. Therefore, it is a research topic with practical significance.  相似文献   

16.
Background: Surgical stress has been suggested to facilitate colon cancer growth and metastasis. However, the precise mechanisms by which surgical trauma promotes colon cancer progression remain poorly understood. Methods: To unravel the mechanisms underlying surgery-induced colon cancer progression, a syngenic transplantation tumor model was established with CT26 cells, and the effect of laparotomy on tumor progression was investigated. Especially, the expression of several chemokines was assessed, and their roles in recruiting CD4+ CD25+ regulatory T cells (Tregs) after surgery were analyzed. Results: Tregs population was significantly increased in the tumor tissue and peripheral blood of tumor-bearing mice after laparotomy. C-C motif chemokine ligand 18 (CCL18) expression was significantly upregulated after laparotomy in tumor tissue and the peritoneal cavity of tumor-bearing mice, and it was positively correlated with the recruitment of Tregs. Functionally, CCL18 knockdown significantly reduces tumor growth and angiogenesis compared with control. Through analysis of Tregs, we found an upregulated proportion of Tregs in tumor tissue, peritoneal cavity, and peripheral blood after laparotomy, but this enhancement was blocked after CCL18 knockdown. In patients with colon cancer, a higher Tregs proportion is positively correlated to more advanced clinical TNM stages and shorter survival. Furthermore, a positive correlation was found between the serum CCL18 level and the Treg proportion in clinical samples. Conclusion: Surgical trauma contributes to colon cancer progression by increasing CCL18 expression and hence promotes Treg recruitment, which leads to an immunosuppressive environment.  相似文献   

17.
Although therapeutic HPV vaccines are able to elicit systemic HPV-specific immunity, clinical responses have not always correlated with levels of vaccine-induced CD8+ T cells in human clinical trials. This observed discrepancy may be attributable to an immunosuppressive tumor microenvironment in which the CD8+ T cells are recruited. Regulatory T cells (Tregs) are cells that can dampen cytotoxic CD8+ T-cell function. Cyclophosphamide (CTX) is a systemic chemotherapeutic agent, which can eradicate immune cells, including inhibitory Tregs. The optimal dose and schedule of CTX administration in combination with immunotherapy to eliminate the Treg population without adversely affecting vaccine-induced T-cell responses is unknown. Therefore, we investigated various dosing and administration schedules of CTX in combination with a therapeutic HPV vaccine in a preclinical tumor model. HPV tumor-bearing mice received either a single preconditioning dose or a daily dose of CTX in combination with the pNGVL4a-CRT/E7(detox) DNA vaccine. Both single and daily dosing of CTX in combination with vaccine had a synergistic antitumor effect as compared to monotherapy alone. The potent antitumor responses were attributed to the reduction in Treg frequency and increased infiltration of HPV16 E7-specific CD8+ T cells, which led to higher ratios of CD8+/Treg and CD8+/CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs). There was an observed trend toward decreased vaccine-induced CD8+ T-cell frequency with daily dosing of CTX. We recommend a single, preconditioning dose of CTX prior to vaccination due to its efficacy, ease of administration, and reduced cumulative adverse effect on vaccine-induced T cells.  相似文献   

18.
Myeloid-derived suppressor cells (MDSCs) are one of the most important cell types that contribute to negative regulation of immune responses in the tumor microenvironment. Recently, aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1), a novel pleiotropic cytokine, was identified as an antitumor protein that inhibits angiogenesis and induces antitumor responses. However, the effect of AIMP1 on MDSCs in the tumor environment remains unclear. In the present study, we demonstrated that AIMP1 significantly inhibited tumor growth in 4T1 breast cancer-bearing mice and reduced MDSCs population of tumor sites and spleens of tumor-bearing mice. AIMP1 reduced expansion of MDSCs from bone marrow-derived cells in the tumor-conditioned media. AIMP1 also negatively regulated suppressive activities of MDSCs by inhibiting IL-6 and NO production, and Arg-1 expression. Furthermore, treatment of breast cancer-bearing mice with AIMP1 decreased the capacity of MDSCs to suppress T cell proliferation and Treg cell induction. Western blot and inhibition experiments showed that downregulation of MDSCs functions by AIMP1 may result from attenuated activation of STATs, Akt, and ERK. These findings indicate that AIMP1 plays an essential role in negative regulation of suppressive functions of MDSCs. Therefore, it has a significant potential as a therapeutic agent for cancer treatment.  相似文献   

19.
Using TLR agonists in cancer treatment can have either beneficial or detrimental effects. Therefore, it is important to determine their effect on the tumor growth and understand the underlying mechanisms in animal tumor models. In this study, we report a general immunotherapeutic activity of a synthetic bacterial lipoprotein (BLP), a TLR1/TLR2 agonist, on established lung carcinoma, leukemia, and melanoma in mice. Systemic treatment of 3LL tumor-bearing mice with BLP, but not LPS, led to a dose-dependent tumor regression and a long-lasting protective response against tumor rechallenge. The BLP-mediated tumor remission was neither mediated by a direct tumoricidal activity nor by innate immune cells, because it lacked therapeutic effect in immunodeficient SCID mice. Instead, BLP treatment reduced the suppressive function of Foxp3(+) regulatory T cells (Tregs) and enhanced the cytotoxicity of tumor-specific CTL in vitro and in vivo. Furthermore, adoptive cotransfer of BLP-pretreated but not untreated CTL and Tregs from wild-type but not from TLR2(-/-) mice was sufficient to restore antitumor immunity in SCID mice by reciprocally modulating Treg and CTL function. These results demonstrate that the TLR1/TLR2 agonist BLP may have a general tumor therapeutic property involving reciprocal downregulation of Treg and upregulation of CTL function. This property may play an important role in the development of novel antitumor strategies.  相似文献   

20.
Chen L  He Z  Qin L  Li Q  Shi X  Zhao S  Chen L  Zhong N  Chen X 《PloS one》2011,6(9):e24407

Background

Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer.

Methodology/Principal Findings

Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC) model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL) staining and decreased Ki-67 expression in tumors. Through natural killer (NK) cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8+ T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect.

Conclusions/Significance

Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria parasite may provide a novel strategy or therapeutic vaccine vector for anti-lung cancer immune-based therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号