首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Insulin-like growth factor II (IGF-II) is a peptide growth factor that is homologous to both insulin-like growth factor I (IGF-I) and insulin and plays an important role in embryonic development and carcinogenesis. IGF-II is believed to mediate its cellular signaling via the transmembrane tyrosine kinase type 1 insulin-like growth factor receptor (IGF-I-R), which is also the receptor for IGF-I. Earlier studies with both cultured cells and transgenic mice, however, have suggested that in the embryo the insulin receptor (IR) may also be a receptor for IGF-II. In most cells and tissues, IR binds IGF-II with relatively low affinity. The IR is expressed in two isoforms (IR-A and IR-B) differing by 12 amino acids due to the alternative splicing of exon 11. In the present study we found that IR-A but not IR-B bound IGF-II with an affinity close to that of insulin. Moreover, IGF-II bound to IR-A with an affinity equal to that of IGF-II binding to the IGF-I-R. Activation of IR-A by insulin led primarily to metabolic effects, whereas activation of IR-A by IGF-II led primarily to mitogenic effects. These differences in the biological effects of IR-A when activated by either IGF-II or insulin were associated with differential recruitment and activation of intracellular substrates. IR-A was preferentially expressed in fetal cells such as fetal fibroblasts, muscle, liver and kidney and had a relatively increased proportion of isoform A. IR-A expression was also increased in several tumors including those of the breast and colon. These data indicate, therefore, that there are two receptors for IGF-II, both IGF-I-R and IR-A. Further, they suggest that interaction of IGF-II with IR-A may play a role both in fetal growth and cancer biology.  相似文献   

3.
IGF-II stimulates both mitogenesis and myogenesis through its binding and activation of the IGF-I receptor (IGF-IR). How this growth factor pathway promotes these two opposite cellular responses is not well understood. We investigate whether local IGF binding protein-5 (IGFBP-5) promotes the myogenic action of IGF-II. IGFBP-5 is induced before the elevation of IGF-II expression during myogenesis. Knockdown of IGFBP-5 impairs myogenesis and suppresses IGF-II gene expression. IGF-II up-regulates its own gene expression via the PI3K-Akt signaling pathway. Adding IGF-II or constitutively activating Akt rescues the IGFBP-5 knockdown-caused defects. However, an IGF analogue that binds to the IGF-IR but not IGFBP has only a limited effect. When added with low concentrations of IGF-II, IGFBP-5 restores IGF-II expression and myogenic differentiation, whereas an IGF binding–deficient IGFBP-5 mutant has no effect. These findings suggest that IGFBP-5 promotes muscle cell differentiation by binding to and switching on the IGF-II auto-regulation loop.  相似文献   

4.
The insulin receptor plays a vital role in mediating the actions of insulin. These include metabolic and mitogenic effects. This review will focus on the role of the insulin receptor isoforms in normal development and the pathogenesis of certain cancers and type 2 diabetes. There are two insulin receptor isoforms arising from the alternative splicing of exon 11 resulting in either the exon 11+ (IR-B) isoform (including 12 amino acids encoded by exon 11) or the exon 11- (IR-A) isoform. The isoforms have different affinities for insulin, IGF-II and IGF-I with the exon 11- isoform binding both insulin and IGF-II with high affinities. Interestingly, differential expression of the insulin receptor isoforms has been demonstrated in disease. Several cancer cell types that also overexpress IGF-II preferentially express the exon 11- isoform. Activation of the exon 11- insulin receptor by IGF-II and insulin results in mitogenic effects and a potentiation of the cancer phenotype. Also hyperinsulinemia has been associated with increased risk of cancer. Differential expression of the insulin receptor isoforms has also been demonstrated in type 2 diabetes although there is some discrepancy in the literature as to which isoform is expressed.  相似文献   

5.
The erythroleukemia cell line K562 was previously shown to have specific binding sites for insulin but not for insulin-like growth factor I (IGF-I). In this study the presence of specific receptors for insulin-like growth factor II (IGFqI) is established. Scatchard analysis of the competition curve for IGF-II disclosed a non-cooperative binding kinetic with a calculated affinity constant of 2.4×108 M–1 and a receptor number of 4.8×l04 sites/cell. IGF-I displayed 10% crossreactivity over the IGF-II receptor but insulin did not crossreact at all. Instead insulin, present in high concentrations, enhanced the binding of IGF-II. The presence of IGF II but not IGF-I receptors makes t h e K562 cell line suitable for studying properties of the type-2 receptor.  相似文献   

6.
The binding kinetics of human insulin-like growth factor binding protein (IGFBP) 1-6 for recombinant human insulin-like growth factor (IGF) I and II were measured and compared in the present study using surface plasmon resonance biosensor technique. Different concentrations of IGFBPs (5-100 nM) were allowed to interact with the immobilized IGF-I or IGF-II on sensor chip surface. Both des(1-3)IGF-I and insulin are known to bind weakly to the IGFBPs and therefore are used as negative controls for the binding experiments. The resultant sensorgrams were analyzed by using simple 1:1 binding model to derive both the association rate (k(a)) and dissociation rate (k(d)) constants for IGFBP-IGF interactions. The k(a) values of IGFBPs are in the range of 1x10(4) to 9x10(5) M(-1) s(-1) for IGF-I and 7x10(3) to 1.7x10(6) M(-1) s(-1) for IGF-II, respectively. The orders of k(a) for both IGF-I and IGF-II are IGFBP-3>IGFBP-5>IGFBP-6>IGFBP-4>IGFBP-2>++ +IGFBP-1. The k(d) values of IGFBPs are in the range of 1.5x10(-5) to 2x10(-4) s(-1) for IGF-I and 3.6x10(-5) to 3.7x10(-4) s(-1) for IGF-II, respectively. The order of k(d) for IGF-I is IGFBP-6>IGFBP-5>IGFBP-4>IGFBP-3>IGFBP-2>++ +IGFBP-1 and that for IGF-II is IGFBP-5>IGFBP-6>IGFBP-2>IGFBP-4>IGFBP-3>++ +IGFBP-1, respectively. The equilibrium affinity constants (K(A)) were calculated based on the ratio of k(a)/k(d) and were more precise than the published literature values based on competitive radioligand binding assays. The systematic study enables a direct comparison on the IGF-binding properties among the various IGFBPs, and the kinetic data provide additional information to delineate the physiological role of different IGFBPs in vivo.  相似文献   

7.
8.
9.
Insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) are both from the same subgroup of receptor tyrosine kinases that exist as covalently bound receptor dimers at the cell surface. For both IR and IGF-IR, the most described forms are homodimer receptors. However, hybrid receptors consisting of one-half IR and one-half IGF-IR are also present at the cell surface. Two splice variants of IR are expressed that enable formation of two isoforms of the IGF-IR/IR hybrid receptor. In this study, these two splice variants of hybrid receptors were studied with respect to binding affinities of insulin, insulin-like growth factor I (IGF-I), and insulin-like growth factor II (IGF-II). Unlike previously published data, in which semipurified receptors have been studied, we found that the two hybrid receptor splice variants had similar binding characteristics with respect to insulin, IGF-I, and IGF-II binding. We studied both semipurified and purified hybrid receptors. In all cases we found that IGF-I had at least 50-fold higher affinity than insulin, irrespective of the splice variant. The binding characteristics of insulin and IGF-I to both splice variants of the hybrid receptors were similar to classical homodimer IGF-IR.  相似文献   

10.
Production of insulin-like growth factor-binding protein-1 (IGFBP-1) by the liver is efficiently inhibited by insulin both in vivo and in vitro. Consequently, serum IGFBP-1 concentration reflects insulin bioactivity in portal vein. Sex hormone-binding globulin (SHBG) is another insulin-regulated liver-derived protein that has appeared promising in detecting individuals with portal hyperinsulinemia. We compared the regulation of IGFBP-1 and SHBG production by insulin and insulin-like growth factors (IGF-I and IGF-II) in human hepatoma cell cultures. Insulin equipotently inhibited IGFBP-1 and SHBG production, with maximal decrease in culture medium concentrations being about 35% for both proteins during 48 h of culture in serum-free medium. IGF-I and IGF-II also inhibited the IGFBP-1 and SHBG levels. We conclude that IGFBP-1 and SHBG are equally sensitive to ambient insulin concentrations in human hepatoma cell cultures, and the production of both proteins is also attenuated by the IGFs.  相似文献   

11.
The anabolic effects and bioavailability of insulin-like growth factors I and II (IGF-I, IGF-II) are regulated in part by a family of IGF-binding proteins (IGFBPs). There are six known members of the IGFBP family, which share distinct structural characteristics and functional activities. To study the binding properties of these proteins, we have expressed recombinant IGFBP-3 and IGFBP-4 using the LCR/Mel expression system. Using this system, we found that recombinant IGFBP-3 was secreted by Mel cells and had a glycosylation pattern similar to that of native IGFBP-3. Recombinant IGFBP-4 secreted from Mel cells had a molecular size identical to that of non-glycosylated native IGFBP-4. The binding kinetics of recombinant IGFBPs was measured using a solid-phase ligand-binding assay, an in vitro solution-binding assay, and a cellular proliferation assay. IGF-I bound with high affinity to recombinant IGFBP-3 and IGFBP-4 with K(D)s of <0.25 nmol. As reported for native IGFBPs, IGF-II bound with affinity higher than IGF-I to recombinant IGFBP-3 and IGFBP-4 (K(D) of <0.05 nmol). Recombinant IGFBP-3 and IGFBP-4 were found to inhibit the IGF-induced proliferation of an NIH3T3 cell line engineered to overexpress the IGF-I receptor. We have compared the binding kinetics of Mel cell-expressed IGFBPs with that of recombinant protein expressed in Escherichia coli and found them to be equivalent. Here, we show that the LCR/Mel expression system represents an effective route for expression of biologically active IGFBPs.  相似文献   

12.
Insulin-like growth factors (IGFs) I and II are two single-chain polypeptide hormones that are structurally related to each other and to proinsulin. Among the large number of growth factors involved in ovarian physiology, IGF-I and IGF-II are considered to be important progression factors for ovarian follicular development. To explore the ovarian expression of IGF-I, IGF-II and their receptor genes, a solution hybridization/RNase protection assay, was used. IGF-I mRNA was seen in the granulosa cells, and IGF-II mRNA in the theca-interstitial compartment. To study the hormonal regulation of the IGF-I and IGF-II gene, immature (21-day-old) hypohysectomized rats were treated with FSH (10 μg/day),GH (150 μg/day) and diethylstilbestrol (DES subcutaneous implant/5 days). Estrogen differentially regulated ovarian IGF-I and IGF-II gene expression. In concert with GH, estrogen up-regulated ovarian IGF-I mRNA, but significantly decreased hepatic IGF-I gene expression. Both IGF receptors (type I and type II) as well as the insulin receptor gene, were expressed in both ovarian cells. The expression of the type IIGF receptor gene (but not the type II IGF gene) was up-regulated by FSH and estrogen in vivo. In conclusion, these studies may serve to better understand the auto paracrine role of IGF, and their receptors in the pathophysiology of follicle recruitment, oocyte maturation and potentially embryo development.  相似文献   

13.
The insulin receptor (IR) and the insulin-like growth factor I receptor (IGF-IR) have a highly homologous structure, but different biological effects. Insulin and IGF-I half-receptors can heterodimerize, leading to the formation of insulin/IGF-I hybrid receptors (Hybrid-Rs) that bind IGF-I with high affinity. As the IR exists in two isoforms (IR-A and IR-B), we evaluated whether the assembly of the IGF-IR with either IR-A or IR-B moieties may differently affect Hybrid-R signaling and biological role. Three different models were studied: (a) 3T3-like mouse fibroblasts with a disrupted IGF-IR gene (R(-) cells) cotransfected with the human IGF-IR and with either the IR-A or IR-B cDNA; (b) a panel of human cell lines variably expressing the two IR isoforms; and (c) HepG2 human hepatoblastoma cells predominantly expressing either IR-A or IR-B, depending on their differentiation state. We found that Hybrid-Rs containing IR-A (Hybrid-Rs(A)) bound to and were activated by IGF-I, IGF-II, and insulin. By binding to Hybrid-Rs(A), insulin activated the IGF-I half-receptor beta-subunit and the IGF-IR-specific substrate CrkII. In contrast, Hybrid-Rs(B) bound to and were activated with high affinity by IGF-I, with low affinity by IGF-II, and insignificantly by insulin. As a consequence, cell proliferation and migration in response to both insulin and IGFs were more effectively stimulated in Hybrid-R(A)-containing cells than in Hybrid-R(B)-containing cells. The relative abundance of IR isoforms therefore affects IGF system activation through Hybrid-Rs, with important consequences for tissue-specific responses to both insulin and IGFs.  相似文献   

14.
Insulin-like growth factor-II (IGF-II) is an autocrine growth and motility factor for human rhabdomyosarcoma. It interacts with three different receptors: the IGF-I, the IGF-II, and the insulin receptor. A specific function of the IGF-II receptor in mediating IGF-II responses has not been defined. In this report we investigate the mechanism of IGF-II-mediated motility in rhabdomyosarcoma cells. We demonstrate that IGF-II and [Leu27]IGF-II, an analog selective for the IGF-II receptor, stimulate motility at concentrations in which they interact only with their own receptor. An antibody that blocks the IGF-I receptor does not inhibit either peptide activity, while an antibody specific for the IGF-II receptor suppresses the IGF-II-induced motility. This antibody does not interfere with rhabdomyosarcoma cell proliferation. We conclude that in rhabdomyosarcoma cells IGF-II stimulates two different responses mediated by distinct receptors: 1) a mitogenic response through the type I receptor and 2) a motility response through the type II receptor.  相似文献   

15.
We have characterized the role of tyrosine phosphorylation in protooncogene induction mediated by insulin-like growth factors I and II (IGF-I and IGF-II) in the Madin-Darby canine kidney (MDCK) cell line. These cells possess few, if any, insulin receptors, thus allowing determination of the effects of these growth factors in the absence of any secondary signal mediated through the insulin receptor. We found that IGF-I produced a specific stimulation of tyrosine kinase activity of the 97-kDa beta-subunit of the IGF-I receptor, resulting in autophosphorylation of the receptor and an increase in kinase activity toward a synthetic peptide substrate. This was associated with a gradual decrease in the level of phosphorylation of pp120, the major constitutive phosphotyrosine-containing protein of MDCK cells, and an increase in the ratio of serine to tyrosine phosphorylation. This was followed by a rapid, but transient, induction of c-fos gene expression, with no change in the levels of c-myc mRNA. Cycloheximide treatment resulted in a superinduction of both c-fos and c-myc and prevented any further stimulation by IGF-I. IGF-II did not stimulate tyrosine phosphorylation of its own receptor, but was 25% as active as IGF-I in stimulating phosphorylation of the IGF-I receptor. Despite this, IGF-II did not significantly enhance the expression of either nuclear protooncogene. Insulin also produced a delayed stimulation of IGF-I receptor phosphorylation, but was unable to stimulate biological effects in these cells. Under these conditions neither of the IGFs nor insulin produced any significant stimulation of thymidine incorporation into DNA. These data indicate that the IGF-I receptor can be activated upon binding of IGF-I, and to a lesser extent IGF-II, in intact cells to mediate cellular events. The nature of the signal generated by the IGF-I receptor appears to vary depending on the ligand that occupies it.  相似文献   

16.
Although several studies have shown that an induction of insulin-like growth factor (IGF) components occurs during hyperoxia-mediated lung injury, the role of these components in tissue repair is not well known. The present study aimed to elucidate the role of IGF system components in normal tissue remodeling. We used a rat model of lung injury and remodeling by exposing rats to > 95% oxygen for 48 h and allowing them to recover in room air for up to 7 days. The mRNA expression of IGF-I, IGF-II, and IGF-1 receptor (IGF-1R) increased during injury. However, the protein levels of these components remained elevated until day 3 of the recovery and were highly abundant in alveolar type II cells. Among IGF binding proteins (IGFBPs), IGFBP-5 mRNA expression increased during injury and at all the recovery time points. IGFBP-2 and -3 mRNA were also elevated during injury phase. In an in vitro model of cell differentiation, the expression of IGF-I and IGF-II increased during trans-differentiation of alveolar epithelial type II cells into type-I like cells. The addition of anti-IGF-1R and anti-IGF-I antibodies inhibited the cell proliferation and trans-differentiation to some extent, as evident by cell morphology and the expression of type I and type II cell markers. These findings demonstrate that the IGF signaling pathway plays a critical role in proliferation and differentiation of alveolar epithelium during tissue remodeling.  相似文献   

17.
Insulin-like growth factors (IGF) or somatomedins (SM) have been classically defined as promoting the actions of growth hormone in skeletal growth. IGF is divided into two groups, IGF-I and II, and are presumed to act via IGF type I (higher affinity for IGF-I and II and very low affinity for insulin) and II (higher affinity for IGF-II than I and no affinity for insulin) receptors, respectively. Recently, a switchover role of IGF-II to I during fetal to adult growth has been suggested. We have investigated the possible transitional role of IGF-II to I in a developing mouse embryonic limb bud organ culture model. In this in vitro system, limb bud develops from the blastoma stage to a well-differentiated cartilage tissue. Both IGF type I and II receptors were found to be present in limb buds at all stages of differentiation. Type I receptor decreased with differentiation while Type II receptor increased. The effect of IGF-I on [3H]thymidine and [35S]sulfate uptake by the tissue increased with differentiation while the effect of IGF-II on [3H]thymidine uptake of the undifferentiated tissue was abolished with differentiation of the tissue. The increase of the IGF-I response with decreased type I receptor may reflect an altered receptor sensitivity (occupancy) during differentiation. The decrease of the IGF-II response with increased type II receptor with differentiation may on the other hand suggest that IGF-II in differentiated tissue no longer acts as a classical growth factor. These results tend to support the hypothesis of the switchover role of IGF-I and II during fetal and adult growth, however, confirmation of the precise role of IGF-I and II in biological growth may have to wait until further studies clarifying the significance of the increased IGF type II receptor in differentiated tissue are made.  相似文献   

18.
Human insulin-like growth factor I and II (IGF-I and IGF-II) in concentrations of 1-30 ng/ml, were shown to stimulate ornithine decarboxylase activity and [3H]thymidine incorporation in human SH-SY5Y neuroblastoma cells. Proliferation of these cells was also stimulated by IGF-I and II when added to RPMI 1640 medium, fortified with selenium, hydrocortisone, transferrin, and beta-estradiol. Labeled IGF-I and II bound to SH-SY5Y cells. The cross-reaction pattern of IGF-I, IGF-II, and insulin in competing with the binding of labeled IGF-I and IGF-II, respectively, indicated that SH-SY5Y cells express both type I and type II IGF receptors. Treatment of SH-SY5Y cells for 4 d with 12-O-tetradecanoylphorbol-13-acetate (TPA), which resulted in morphological and functional differentiation and growth inhibition, abolished the mitogenic response to both IGF-I and II. Concomitantly, the binding of IGF-II disappeared almost totally, which offers a possible explanation for the reduced biological response to IGF-II after TPA treatment. In contrast, the IGF-I binding in TPA-treated cells was only reduced to approximately 70% of the binding to control cells. It is therefore not excluded that the IGF-I receptor could be uncoupled by TPA, with persistent binding capacity for IGF-I.  相似文献   

19.
Insulin-like growth factors I and II (IGF-I and II) and insulin are chemotactic agents for the human melanoma cell line A2058. As shown in this report, the motility receptor mediating this response is the heterodimeric type I IGF receptor. These three factors are able to compete with 125I-labeled IGF-I for binding to the cell surface with IC50 values equal to approximately 2 (IGF-I), approximately 150 (IGF-II), and approximately 300 nM (insulin). Cross-linking of 125I-IGF-I to the cell surface with disuccinimidyl suberate followed by analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography reveals a 130-kDa protein (reduced) consistent with the alpha component of a type I receptor and a 38-kDa protein which does not bind insulin, and thus could be another IGF-I cell surface binding protein. The anti-IGF-I receptor monoclonal antibody (alpha IR-3) also competes with labeled IGF-I in binding experiments. In contrast, a control monoclonal antibody, matched to alpha IR-3 with respect to IgG subclass, has no significant effect on IGF-I binding. While alpha IR-3 inhibits the motility induced by IGF-I, IGF-II, and insulin, pertussis toxin (0.01-1.0 micrograms/ml) has no significant effect on the motility induced by the insulin-like growth factors or insulin on this cell line. Therefore, the type I IGF receptor appears to mediate a highly potent pertussis toxin-insensitive motility response to IGF-I, IGF-II, and insulin. In contrast, motility induced by the autocrine motility factor, a cytokine produced by the A2058 cells, is not affected by alpha IR-3 but is extremely sensitive to pertussis toxin. When mixtures of autocrine motility factor and IGF-I are employed to induce chemotaxis, the resulting motility is greater than that induced by either agent alone. These data indicate that motility in this melanoma cell line can be initiated through multiple receptors that stimulate the cells by separate transduction pathways. This capability to respond to multiple stimuli could enhance the metastatic potential.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号