首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Epidemiologists and ecologists often collect data in the field and, on returning to their laboratory, enter their data into a database for further analysis. The recent introduction of mobile phones that utilise the open source Android operating system, and which include (among other features) both GPS and Google Maps, provide new opportunities for developing mobile phone applications, which in conjunction with web applications, allow two-way communication between field workers and their project databases.

Methodology

Here we describe a generic framework, consisting of mobile phone software, EpiCollect, and a web application located within www.spatialepidemiology.net. Data collected by multiple field workers can be submitted by phone, together with GPS data, to a common web database and can be displayed and analysed, along with previously collected data, using Google Maps (or Google Earth). Similarly, data from the web database can be requested and displayed on the mobile phone, again using Google Maps. Data filtering options allow the display of data submitted by the individual field workers or, for example, those data within certain values of a measured variable or a time period.

Conclusions

Data collection frameworks utilising mobile phones with data submission to and from central databases are widely applicable and can give a field worker similar display and analysis tools on their mobile phone that they would have if viewing the data in their laboratory via the web. We demonstrate their utility for epidemiological data collection and display, and briefly discuss their application in ecological and community data collection. Furthermore, such frameworks offer great potential for recruiting ‘citizen scientists’ to contribute data easily to central databases through their mobile phone.  相似文献   

2.

Background

Fast changes in human demographics worldwide, coupled with increased mobility, and modified land uses make the threat of emerging infectious diseases increasingly important. Currently there is worldwide alert for H5N1 avian influenza becoming as transmissible in humans as seasonal influenza, and potentially causing a pandemic of unprecedented proportions. Here we show how epidemiological surveillance data for emerging infectious diseases can be interpreted in real time to assess changes in transmissibility with quantified uncertainty, and to perform running time predictions of new cases and guide logistics allocations.

Methodology/Principal Findings

We develop an extension of standard epidemiological models, appropriate for emerging infectious diseases, that describes the probabilistic progression of case numbers due to the concurrent effects of (incipient) human transmission and multiple introductions from a reservoir. The model is cast in terms of surveillance observables and immediately suggests a simple graphical estimation procedure for the effective reproductive number R (mean number of cases generated by an infectious individual) of standard epidemics. For emerging infectious diseases, which typically show large relative case number fluctuations over time, we develop a Bayesian scheme for real time estimation of the probability distribution of the effective reproduction number and show how to use such inferences to formulate significance tests on future epidemiological observations.

Conclusions/Significance

Violations of these significance tests define statistical anomalies that may signal changes in the epidemiology of emerging diseases and should trigger further field investigation. We apply the methodology to case data from World Health Organization reports to place bounds on the current transmissibility of H5N1 influenza in humans and establish a statistical basis for monitoring its evolution in real time.  相似文献   

3.

Background

Epidemiological interventions aim to control the spread of infectious disease through various mechanisms, each carrying a different associated cost.

Methodology

We describe a flexible statistical framework for generating optimal epidemiological interventions that are designed to minimize the total expected cost of an emerging epidemic while simultaneously propagating uncertainty regarding the underlying disease model parameters through to the decision process. The strategies produced through this framework are adaptive: vaccination schedules are iteratively adjusted to reflect the anticipated trajectory of the epidemic given the current population state and updated parameter estimates.

Conclusions

Using simulation studies based on a classic influenza outbreak, we demonstrate the advantages of adaptive interventions over non-adaptive ones, in terms of cost and resource efficiency, and robustness to model misspecification.  相似文献   

4.
Aguas R  White LJ  Snow RW  Gomes MG 《PloS one》2008,3(3):e1767

Background

A characteristic of Plasmodium falciparum infections is the gradual acquisition of clinical immunity resulting from repeated exposures to the parasite. While the molecular basis of protection against clinical malaria remains unresolved, its effects on epidemiological patterns are well recognized. Accumulating epidemiological data constitute a valuable resource that must be intensively explored and interpreted as to effectively inform control planning.

Methodology/Principal Finding

Here we apply a mathematical model to clinical data from eight endemic regions in sub-Saharan Africa. The model provides a quantitative framework within which differences in age distribution of clinical disease are assessed in terms of the parameters underlying transmission. The shorter infectious periods estimated for clinical infections induce a regime of bistability of endemic and malaria-free states in regions of mesoendemic transmission. The two epidemiological states are separated by a threshold that provides a convenient measure for intervention design. Scenarios of eradication and resurgence are simulated.

Conclusions/Significance

In regions that support mesoendemic transmission, intervention success depends critically on reducing prevalence below a threshold which separates endemic and malaria-free regimes.  相似文献   

5.

Background

Rapid and accurate retrieval of whole genome sequences of human pathogens from disease vectors or animal reservoirs will enable fine-resolution studies of pathogen epidemiological and evolutionary dynamics. However, next generation sequencing technologies have not yet been fully harnessed for the study of vector-borne and zoonotic pathogens, due to the difficulty of obtaining high-quality pathogen sequence data directly from field specimens with a high ratio of host to pathogen DNA.

Results

We addressed this challenge by using custom probes for multiplexed hybrid capture to enrich for and sequence 30 Borrelia burgdorferi genomes from field samples of its arthropod vector. Hybrid capture enabled sequencing of nearly the complete genome (~99.5 %) of the Borrelia burgdorferi pathogen with 132-fold coverage, and identification of up to 12,291 single nucleotide polymorphisms per genome.

Conclusions

The proprosed culture-independent method enables efficient whole genome capture and sequencing of pathogens directly from arthropod vectors, thus making population genomic study of vector-borne and zoonotic infectious diseases economically feasible and scalable. Furthermore, given the similarities of invertebrate field specimens to other mixed DNA templates characterized by a high ratio of host to pathogen DNA, we discuss the potential applicabilty of hybrid capture for genomic study across diverse study systems.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1634-x) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background

Genetic selection for host resistance offers a desirable complement to chemical treatment to control infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account. Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of integrating this expression into genetic analyses.

Results

Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression are required.

Conclusions

We have derived a genetic-epidemiological function for quantitative genetic analyses of binary infectious disease data, which, unlike current approaches, takes infection dynamics into account and allows for variation in host susceptibility and infectiousness.  相似文献   

7.
Rhodes CJ  Demetrius L 《PloS one》2010,5(9):e12951

Background

Standard epidemiological theory claims that in structured populations competition between multiple pathogen strains is a deterministic process which is mediated by the basic reproduction number () of the individual strains. A new theory based on analysis, simulation and empirical study challenges this predictor of success.

Principal Findings

We show that the quantity is a valid predictor in structured populations only when size is infinite. In this article we show that when population size is finite the dynamics of infection by multi-strain pathogens is a stochastic process whose outcome can be predicted by evolutionary entropy, S, an information theoretic measure which describes the uncertainty in the infectious age of an infected parent of a randomly chosen new infective. Evolutionary entropy characterises the demographic stability or robustness of the population of infectives. This statistical parameter determines the duration of infection and thus provides a quantitative index of the pathogenicity of a strain. Standard epidemiological theory based on as a measure of selective advantage is the limit as the population size tends to infinity of the entropic selection theory. The standard model is an approximation to the entropic selection theory whose validity increases with population size.

Conclusion

An epidemiological analysis based on entropy is shown to explain empirical observations regarding the emergence of less pathogenic strains of human influenza during the antigenic drift phase. Furthermore, we exploit the entropy perspective to discuss certain epidemiological patterns of the current H1N1 swine ''flu outbreak.  相似文献   

8.

Background

syndromic surveillance system has great advantages in promoting the early detection of epidemics and reducing the necessities of disease confirmation, and it is especially effective for surveillance in resource poor settings. However, most current syndromic surveillance systems are established in developed countries, and there are very few reports on the development of an electronic syndromic surveillance system in resource-constrained settings.

Objective

this study describes the design and pilot implementation of an electronic surveillance system (ISS) for the early detection of infectious disease epidemics in rural China, complementing the conventional case report surveillance system.

Methods

ISS was developed based on an existing platform ‘Crisis Information Sharing Platform’ (CRISP), combining with modern communication and GIS technology. ISS has four interconnected functions: 1) work group and communication group; 2) data source and collection; 3) data visualization; and 4) outbreak detection and alerting.

Results

As of Jan. 31st 2012, ISS has been installed and pilot tested for six months in four counties in rural China. 95 health facilities, 14 pharmacies and 24 primary schools participated in the pilot study, entering respectively 74256, 79701, and 2330 daily records into the central database. More than 90% of surveillance units at the study sites are able to send daily information into the system. In the paper, we also presented the pilot data from health facilities in the two counties, which showed the ISS system had the potential to identify the change of disease patterns at the community level.

Conclusions

The ISS platform may facilitate the early detection of infectious disease epidemic as it provides near real-time syndromic data collection, interactive visualization, and automated aberration detection. However, several constraints and challenges were encountered during the pilot implementation of ISS in rural China.  相似文献   

9.
10.

Introduction

Rational decision making on malaria control depends on an understanding of the epidemiological risks and control measures. National Malaria Control Programmes across Africa have access to a range of state-of-the-art malaria risk mapping products that might serve their decision-making needs. The use of cartography in planning malaria control has never been methodically reviewed.

Materials and Methods

An audit of the risk maps used by NMCPs in 47 malaria endemic countries in Africa was undertaken by examining the most recent national malaria strategies, monitoring and evaluation plans, malaria programme reviews and applications submitted to the Global Fund. The types of maps presented and how they have been used to define priorities for investment and control was investigated.

Results

91% of endemic countries in Africa have defined malaria risk at sub-national levels using at least one risk map. The range of risk maps varies from maps based on suitability of climate for transmission; predicted malaria seasons and temperature/altitude limitations, to representations of clinical data and modelled parasite prevalence. The choice of maps is influenced by the source of the information. Maps developed using national data through in-country research partnerships have greater utility than more readily accessible web-based options developed without inputs from national control programmes. Although almost all countries have stratification maps, only a few use them to guide decisions on the selection of interventions allocation of resources for malaria control.

Conclusion

The way information on the epidemiology of malaria is presented and used needs to be addressed to ensure evidence-based added value in planning control. The science on modelled impact of interventions must be integrated into new mapping products to allow a translation of risk into rational decision making for malaria control. As overseas and domestic funding diminishes, strategic planning will be necessary to guide appropriate financing for malaria control.  相似文献   

11.
A Meta-Analysis of the Impacts of Genetically Modified Crops   总被引:1,自引:0,他引:1  

Background

Despite the rapid adoption of genetically modified (GM) crops by farmers in many countries, controversies about this technology continue. Uncertainty about GM crop impacts is one reason for widespread public suspicion.

Objective

We carry out a meta-analysis of the agronomic and economic impacts of GM crops to consolidate the evidence.

Data Sources

Original studies for inclusion were identified through keyword searches in ISI Web of Knowledge, Google Scholar, EconLit, and AgEcon Search.

Study Eligibility Criteria

Studies were included when they build on primary data from farm surveys or field trials anywhere in the world, and when they report impacts of GM soybean, maize, or cotton on crop yields, pesticide use, and/or farmer profits. In total, 147 original studies were included.

Synthesis Methods

Analysis of mean impacts and meta-regressions to examine factors that influence outcomes.

Results

On average, GM technology adoption has reduced chemical pesticide use by 37%, increased crop yields by 22%, and increased farmer profits by 68%. Yield gains and pesticide reductions are larger for insect-resistant crops than for herbicide-tolerant crops. Yield and profit gains are higher in developing countries than in developed countries.

Limitations

Several of the original studies did not report sample sizes and measures of variance.

Conclusion

The meta-analysis reveals robust evidence of GM crop benefits for farmers in developed and developing countries. Such evidence may help to gradually increase public trust in this technology.  相似文献   

12.

Background

Evidence suggests there are inconsistencies in patient-reported outcome (PRO) assessment and reporting in clinical trials, which may limit the use of these data to inform patient care. For trials with a PRO endpoint, routine inclusion of key PRO information in the protocol may help improve trial conduct and the reporting and appraisal of PRO results; however, it is currently unclear exactly what PRO-specific information should be included. The aim of this review was to summarize the current PRO-specific guidance for clinical trial protocol developers.

Methods and Findings

We searched the MEDLINE, EMBASE, CINHAL and Cochrane Library databases (inception to February 2013) for PRO-specific guidance regarding trial protocol development. Further guidance documents were identified via Google, Google scholar, requests to members of the UK Clinical Research Collaboration registered clinical trials units and international experts. Two independent investigators undertook title/abstract screening, full text review and data extraction, with a third involved in the event of disagreement. 21,175 citations were screened and 54 met the inclusion criteria. Guidance documents were difficult to access: electronic database searches identified just 8 documents, with the remaining 46 sourced elsewhere (5 from citation tracking, 27 from hand searching, 7 from the grey literature review and 7 from experts). 162 unique PRO-specific protocol recommendations were extracted from included documents. A further 10 PRO recommendations were identified relating to supporting trial documentation. Only 5/162 (3%) recommendations appeared in ≥50% of guidance documents reviewed, indicating a lack of consistency.

Conclusions

PRO-specific protocol guidelines were difficult to access, lacked consistency and may be challenging to implement in practice. There is a need to develop easily accessible consensus-driven PRO protocol guidance. Guidance should be aimed at ensuring key PRO information is routinely included in appropriate trial protocols, in order to facilitate rigorous collection/reporting of PRO data, to effectively inform patient care.  相似文献   

13.

Background

Researchers have provided evidence that telomere dysfunction play an important role in cancer development. MNS16A is a polymorphic tandem repeats minisatellite of human telomerase (hTERT) gene that influences promoter activity of hTERT and thus implicates to relate with risk of several malignancies. However, results on association between MNS16A and cancer risk remain controversial. We therefore conduct a meta-analysis to derive a more precise estimation of association between MNS16A and cancer risk.

Methods

A systematic literature search was conducted by searching PubMed, ISI Web of Knowledge, Human Genome and Epidemiology Network Navigator and Google Scholar digital database for publications on associations between MNS16A and cancer risk. Variants with statistically significant associations by meta-analysis were assessed using Venice criteria.

Results

10 case-control articles enrolling 6101 cases and 10521 controls were brought into our meta-analysis. The relationships were strong epidemiological credibility in cerebral cancer and breast cancer population (P for heterogeneity > 0.1). The cumulative analysis in chronologic order suggested a clear tendency towards a significant association with additional study samples.

Conclusions

The results provided a more accurate depiction of the role of MNS16A in cerebral cancer and breast cancer susceptibility. Additional larger studies were warranted to validate our findings.  相似文献   

14.

Background

During the last eight years, North and South Kivu, located in a lake area in Eastern Democratic Republic of Congo, have been the site of a major volcano eruption and of numerous complex emergencies with population displacements. These conditions have been suspected to favour emergence and spread of cholera epidemics.

Methodology/Principal Findings

In order to assess the influence of these conditions on outbreaks, reports of cholera cases were collected weekly from each health district of North Kivu (4,667,699 inhabitants) and South Kivu (4,670,121 inhabitants) from 2000 through 2007. A geographic information system was established, and in each health district, the relationships between environmental variables and the number of cholera cases were assessed using regression techniques and time series analysis. We further checked for a link between complex emergencies and cholera outbreaks. Finally, we analysed data collected during an epidemiological survey that was implemented in Goma after Nyiragongo eruption. A total of 73,605 cases and 1,612 deaths of cholera were reported. Time series decomposition showed a greater number of cases during the rainy season in South Kivu but not in North Kivu. Spatial distribution of cholera cases exhibited a higher number of cases in health districts bordering lakes (Odds Ratio 7.0, Confidence Interval range 3.8–12.9). Four epidemic reactivations were observed in the 12-week periods following war events, but simulations indicate that the number of reactivations was not larger than that expected during any random selection of period with no war. Nyiragongo volcanic eruption was followed by a marked decrease of cholera incidence.

Conclusion/Significance

Our study points out the crucial role of some towns located in lakeside areas in the persistence of cholera in Kivu. Even if complex emergencies were not systematically followed by cholera epidemics, some of them enabled cholera spreading.  相似文献   

15.

Background

Over recent years there has been a strong movement towards the improvement of vital statistics and other types of health data that inform evidence-based policies. Collecting such data is not cost free. To date there is no systematic framework to guide investment decisions on methods of data collection for vital statistics or health information in general. We developed a framework to systematically assess the comparative costs and outcomes/benefits of the various data methods for collecting vital statistics.

Methodology

The proposed framework is four-pronged and utilises two major economic approaches to systematically assess the available data collection methods: cost-effectiveness analysis and efficiency analysis. We built a stylised example of a hypothetical low-income country to perform a simulation exercise in order to illustrate an application of the framework.

Findings

Using simulated data, the results from the stylised example show that the rankings of the data collection methods are not affected by the use of either cost-effectiveness or efficiency analysis. However, the rankings are affected by how quantities are measured.

Conclusion

There have been several calls for global improvements in collecting useable data, including vital statistics, from health information systems to inform public health policies. Ours is the first study that proposes a systematic framework to assist countries undertake an economic evaluation of DCMs. Despite numerous challenges, we demonstrate that a systematic assessment of outputs and costs of DCMs is not only necessary, but also feasible. The proposed framework is general enough to be easily extended to other areas of health information.  相似文献   

16.

Background

Outbreaks of phocine distemper virus (PDV) in Europe during 1988 and 2002 were responsible for the death of around 23,000 and 30,000 harbour seals, respectively. These epidemics, particularly the one in 2002, provided an unusual opportunity to estimate epidemic parameters for a wildlife disease. There were marked regional differences in the values of some parameters both within and between epidemics.

Methodology and Principal Findings

We used an individual-based model of seal movement that allowed us to incorporate realistic representations of space, time and animal behaviour into a traditional epidemiological modelling framework. We explored the potential influence of a range of ecological (foraging trip duration, time of epidemic onset, population size) and epidemiological (length of infectious period, contact rate between infectious and susceptible individuals, case mortality) parameters on four readily-measurable epidemic characteristics (number of dead individuals, duration of epidemic, peak mortality date and prevalence) and on the probability that an epidemic would occur in a particular region. We analysed the outputs as if they were the results of a series of virtual experiments, using Generalised Linear Modelling. All six variables had a significant effect on the probability that an epidemic would be recognised as an unusual mortality event by human observers.

Conclusions

Regional and temporal variation in contact rate was the most likely cause of the observed differences between the two epidemics. This variation could be a consequence of differences in the way individuals divide their time between land and sea at different times of the year.  相似文献   

17.

Background

The way we formulate a mathematical model of an infectious disease to capture symptomatic and asymptomatic transmission can greatly influence the likely effectiveness of vaccination in the presence of vaccine effect for preventing clinical illness. The present study aims to assess the impact of model building strategy on the epidemic threshold under vaccination.

Methodology/Principal Findings

We consider two different types of mathematical models, one based on observable variables including symptom onset and recovery from clinical illness (hereafter, the “observable model”) and the other based on unobservable information of infection event and infectiousness (the “unobservable model”). By imposing a number of modifying assumptions to the observable model, we let it mimic the unobservable model, identifying that the two models are fully consistent only when the incubation period is identical to the latent period and when there is no pre-symptomatic transmission. We also computed the reproduction numbers with and without vaccination, demonstrating that the data generating process of vaccine-induced reduction in symptomatic illness is consistent with the observable model only and examining how the effective reproduction number is differently calculated by two models.

Conclusions

To explicitly incorporate the vaccine effect in reducing the risk of symptomatic illness into the model, it is fruitful to employ a model that directly accounts for disease progression. More modeling studies based on observable epidemiological information are called for.  相似文献   

18.

Background

The spread of infectious diseases in wildlife populations is influenced by patterns of between-host contacts. Habitat “hotspots” - places attracting a large numbers of individuals or social groups - can significantly alter contact patterns and, hence, disease propagation. Research on the importance of habitat hotspots in wildlife epidemiology has primarily focused on how inter-individual contacts occurring at the hotspot itself increase disease transmission. However, in territorial animals, epidemiologically important contacts may primarily occur as animals cross through territories of conspecifics en route to habitat hotspots. So far, the phenomenon has received little attention. Here, we investigate the importance of these contacts in the case where infectious individuals keep visiting the hotspots and in the case where these individuals are not able to travel to the hotspot any more.

Methodology and Principal Findings

We developed a simulation epidemiological model to investigate both cases in a scenario when transmission at the hotspot does not occur. We find that (i) hotspots still exacerbate epidemics, (ii) when infectious individuals do not travel to the hotspot, the most vulnerable individuals are those residing at intermediate distances from the hotspot rather than nearby, and (iii) the epidemiological vulnerability of a population is the highest when the number of hotspots is intermediate.

Conclusions and Significance

By altering animal movements in their vicinity, habitat hotspots can thus strongly increase the spread of infectious diseases, even when disease transmission does not occur at the hotspot itself. Interestingly, when animals only visit the nearest hotspot, creating additional artificial hotspots, rather than reducing their number, may be an efficient disease control measure.  相似文献   

19.

Background

In South Korea, there is currently no syndromic surveillance system using internet search data, including Google Flu Trends. The purpose of this study was to investigate the correlation between national influenza surveillance data and Google Trends in South Korea.

Methods

Our study was based on a publicly available search engine database, Google Trends, using 12 influenza-related queries, from September 9, 2007 to September 8, 2012. National surveillance data were obtained from the Korea Centers for Disease Control and Prevention (KCDC) influenza-like illness (ILI) and virologic surveillance system. Pearson''s correlation coefficients were calculated to compare the national surveillance and the Google Trends data for the overall period and for 5 influenza seasons.

Results

The correlation coefficient between the KCDC ILI and virologic surveillance data was 0.72 (p<0.05). The highest correlation was between the Google Trends query of H1N1 and the ILI data, with a correlation coefficient of 0.53 (p<0.05), for the overall study period. When compared with the KCDC virologic data, the Google Trends query of bird flu had the highest correlation with a correlation coefficient of 0.93 (p<0.05) in the 2010-11 season. The following queries showed a statistically significant correlation coefficient compared with ILI data for three consecutive seasons: Tamiflu (r = 0.59, 0.86, 0.90, p<0.05), new flu (r = 0.64, 0.43, 0.70, p<0.05) and flu (r = 0.68, 0.43, 0.77, p<0.05).

Conclusions

In our study, we found that the Google Trends for certain queries using the survey on influenza correlated with national surveillance data in South Korea. The results of this study showed that Google Trends in the Korean language can be used as complementary data for influenza surveillance but was insufficient for the use of predictive models, such as Google Flu Trends.  相似文献   

20.

Background

Sharing of epidemiological and clinical data sets among researchers is poor at best, in detriment of science and community at large. The purpose of this paper is therefore to (1) describe a novel Web application designed to share information on study data sets focusing on epidemiological clinical research in a collaborative environment and (2) create a policy model placing this collaborative environment into the current scientific social context.

Methodology

The Database of Databases application was developed based on feedback from epidemiologists and clinical researchers requiring a Web-based platform that would allow for sharing of information about epidemiological and clinical study data sets in a collaborative environment. This platform should ensure that researchers can modify the information. A Model-based predictions of number of publications and funding resulting from combinations of different policy implementation strategies (for metadata and data sharing) were generated using System Dynamics modeling.

Principal Findings

The application allows researchers to easily upload information about clinical study data sets, which is searchable and modifiable by other users in a wiki environment. All modifications are filtered by the database principal investigator in order to maintain quality control. The application has been extensively tested and currently contains 130 clinical study data sets from the United States, Australia, China and Singapore. Model results indicated that any policy implementation would be better than the current strategy, that metadata sharing is better than data-sharing, and that combined policies achieve the best results in terms of publications.

Conclusions

Based on our empirical observations and resulting model, the social network environment surrounding the application can assist epidemiologists and clinical researchers contribute and search for metadata in a collaborative environment, thus potentially facilitating collaboration efforts among research communities distributed around the globe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号