首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents a new experimental approach for determining the individual optical characteristics of reduced heme a in bovine heart cytochrome c oxidase starting from a small selective shift of the heme a absorption spectrum induced by calcium ions. The difference spectrum induced by Ca2+ corresponds actually to a first derivative (differential) of the heme a 2+ absolute absorption spectrum. Such an absolute spectrum was obtained for the mixed-valence cyanide complex of cytochrome oxidase (a 2+ a 3 3+ -CN) and was subsequently used as a basis spectrum for further procession and modeling. The individual absorption spectrum of the reduced heme a in the Soret region was reconstructed as the integral of the difference spectrum induced by addition of Ca2+. The spectrum of heme a 2+ in the Soret region obtained in this way is characterized by a peak with a maximum at 447 nm and half-width of 17 nm and can be decomposed into two Gaussians with maxima at 442 and 451 nm and half-widths of ~10 nm (589 cm?1) corresponding to the perpendicularly oriented electronic π→π* transitions B 0x and B 0y in the porphyrin ring. The reconstructed spectrum in the Soret band differs significantly from the “classical” absorption spectrum of heme a 2+ originally described by Vanneste (Vanneste, W. H. (1966) Biochemistry, 65, 838–848). The differences indicate that the overall γ-band of heme a 2+ in cytochrome oxidase contains in addition to the B 0x and B 0y transitions extra components that are not sensitive to calcium ions, or, alternatively, that the Vanneste’s spectrum of heme a 2+ contains significant contribution from heme a 3 2+ . The reconstructed absorption band of heme a 2+ in the α-band with maximum at 605 nm and half-width of 18 nm (850 cm?1) corresponds most likely to the individual Q 0y transition of heme a, whereas the Q 0x transition contributes only weakly to the spectrum.  相似文献   

2.
The orientation of pigments and pigment-protein complexes of the green photosynthetic bacterium Prosthecochloris aestuarii was studied by measurement of linear dichroism spectra at 295 and 100 K. Orientation of intact cells and membrane vesicles (Complex I) was obtained by drying on a glass plate. The photochemically active pigment-protein complexes (photosystem-protein complex and reaction center pigment-protein complex) and the antenna bacteriochlorophyll a protein were oriented by pressing a polyacrylamide gel. The data indicate that the near-infrared transitions (Qy) of bacteriochlorophyll c and most bacteriochlorophyll a molecules have a relatively parallel orientation to the membrane, whereas the Qy transitions of the bacteriochlorophyll a in the antenna protein are oriented predominantly perpendicularly to the membrane. Carotenoids and the Qx transitions (590–620 nm) of bacteriochlorophyll a, not belonging to the bacteriochlorophyll a protein, have a relatively perpendicular orientation to the membrane. The absorption and linear dichroism spectra indicate the existence of different pools of bacteriochlorophyll c in the chlorosomes and of carotenoid and bacteriopheophytin c in the cell membrane. The results suggest that the photosystem-protein and reaction center pigment-protein complexes are oriented with their short axes approximately perpendicular to the plane of the membrane. The symmetry axis of the bacteriochlorophyll a protein has an approximately perpendicular orientation.  相似文献   

3.
4.
This paper presents a concise review of the structural factors which control the energy of the Qy absorption band of bacteriochlorophyll a in purple bacterial antenna complexes. The energy of these Qy absorption bands is important for excitation energy transfer within the bacterial photosynthetic unit. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Oligomers of bacteriopheophytin (BPh) and bacteriochlorophyll (BChl) were formed in mixed aqueous-organic solvent systems, and in aqueous micelles of the detergent lauryldimethylamine oxide (LDAO). Conditions were found that gave relatively homogeneous samples of oligomers and that allowed quantitative comparisons of the spectroscopic properties of the monomeric and oligomeric pigments. The formation of certain types of oligomers is accompanied by a large bathochromic shift of the long-wavelength (Qy) absorption band of the BChl or BPh, and by a substantial increase in its dipole strength (hyperchromism). The hyperchromism of the Qy band occurs at the expense of the Soret band, which loses dipole strength. The Qx band shifts slightly to shorter wavelengths and also loses dipole strength. The CD spectrum in the near-infra-red (Qy) region becomes markedly nonconservative. (The net rotational strength in the Qy region is positive.) This also occurs at the expense of the bands at shorter wavelengths, which gain a net negative rotational strength. The spectroscopic properties of the oligomers resemble those of some of the BChl-protein complexes found in photosynthetic bacteria. The oligomerization of BPh in LDAO micelles is linked to the formation of large, cylindrical micelles that contain on the order of 105 LDAO molecules. However, the spectral changes probably occur on the formation of small oligomers of BPh; they begin to be seen when the micelles contain about 10 molecules of BPh. The BPh oligomers formed in LDAO micelles fluoresce at 865 nm, but the fluorescence yield is decreased about 40-fold, relative to that of monomeric BPh. The fluorescence yield is insensitive to the BPh/LDAO molar ratio, suggesting that the oligomers formed under these conditions are predominantly dimers. When the oligomers are excited with a short flash of light, they are converted with a low quantum yield into a metastable form. This transformation probably involves alterations in the geometry of the oligomer, but not full dissociation.  相似文献   

6.
《FEBS letters》1997,400(2-3):171-174
The D1-D2-cytochrome b-559 reaction center complex of photosystem II with an altered pigment composition was prepared from the original complex by treatment with sodium borohydride (BH4). The absorption spectra of the modified and original complexes were compared to each other and to the spectra of purified chlorophyll a and pheophytin a (Pheo a) treated with BH4 in methanolic solution. The results of these comparisons are consistent with the presence in the modified complex of an irreversibly reduced Pheo a molecule, most likely 131-deoxo-131-hydroxy-Pheo a, replacing one of the two native Pheo a molecules present in the original complex. Similar to the original preparation, the modified complex was capable of a steady-state photoaccumulation of Pheo and P680+. It is concluded that the pheophytin a molecule which undergoes borohydride reduction is not involved in the primary charge separation and seems to represent a previously postulated photochemically inactive Pheo a molecule. The Qy and Qx transitions of this molecule were determined to be located at 5°C at 679.5–680 nm and 542 nm, respectively.  相似文献   

7.
Occurrence of excitonic interactions in light-harvesting complex II (LHC II) was investigated by nonlinear polarization spectroscopy in the frequency domain (NLPF) at room temperature. NLPF spectra were obtained upon probing in the chlorophyll (Chl) a/b Soret region and pumping in the Qy region. The lowest energy Chl a absorbing at 678 nm is strongly excitonically coupled to Chl b.  相似文献   

8.
9.
In vitro studies of the carotenoid peridinin, which is the primary pigment from the peridinin chlorophyll-a protein (PCP) light harvesting complex, showed a strong dependence on the lifetime of the peridinin lowest singlet excited state on solvent polarity. This dependence was attributed to the presence of an intramolecular charge transfer (ICT) state in the peridinin excited state manifold. The ICT state was also suggested to be a crucial factor in efficient peridinin to Chl-a energy transfer in the PCP complex. Here we extend our studies of peridinin dynamics to reconstituted PCP complexes, in which Chl-a was replaced by different chlorophyll species (Chl-b, acetyl Chl-a, Chl-d and BChl-a). Reconstitution of PCP with different Chl species maintains the energy transfer pathways within the complex, but the efficiency depends on the chlorophyll species. In the native PCP complex, the peridinin S1/ICT state has a lifetime of 2.7 ps, whereas in reconstituted PCP complexes it is 5.9 ps (Chl-b) 2.9 ps (Chl-a), 2.2 ps (acetyl Chl-a), 1.9 ps (Chl-d), and 0.45 ps (BChl-a). Calculation of energy transfer rates using the Förster equation explains the differences in energy transfer efficiency in terms of changing spectral overlap between the peridinin emission and the absorption spectrum of the acceptor. It is proposed that the lowest excited state of peridinin is a strongly coupled S1/ICT state, which is the energy donor for the major energy transfer channel. The significant ICT character of the S1/ICT state in PCP enhances the transition dipole moment of the S1/ICT state, facilitating energy transfer to chlorophyll via the Förster mechanism. In addition to energy transfer via the S1/ICT, there is also energy transfer via the S2 and hot S1/ICT states to chlorophyll in all reconstituted PCP complexes.  相似文献   

10.
We use a 6.8-fs laser as the light source for broad-band femtosecond pump-probe real-time vibrational spectroscopy to investigate both electronic relaxation and vibrational dynamics of the Qy-band of Chl-a at 293 K. More than 25 vibrational modes coupled to the Qy transition are observed. Eleven of them have been clarified predominantly due to the excited state, and six of them are concluded to be nearly exclusively resulting from the ground-state wave-packet motion. Moreover, thanks to the broad-band detection over 5000 cm−1, the modulated signals due to the excited state vibrational coherence are observed on both sides of the 0-0 transition with equal separation. The corresponding nonlinear process has been studied using a three-level model, from which the probe wavelength dependence of the phase of the periodic modulation can be calculated. The probe wavelength dependence of the vibrational amplitude is interpreted in terms of the interaction between the “pump” or “laser,” Stokes, and anti-Stokes field intermediated by the molecular vibrations. In addition, an excited state absorption peak at ∼709 nm has been observed. To the best of our knowledge, this is the first study of broad-band real-time vibrational spectroscopy in Chl-a.  相似文献   

11.
《BBA》2020,1861(5-6):148176
Electrochromic band-shifts have been investigated in Photosystem II (PSII) from Thermosynechoccocus elongatus. Firstly, by using Mn-depleted PsbA1-PSII and PsbA3-PSII in which the QX absorption of PheD1 differs, a band-shift in the QX region of PheD2 centered at ~ 544 nm has been identified upon the oxidation, at pH 8.6, of TyrD. In contrast, a band-shift due to the formation of either QA•- or TyrZ is observed in PsbA3-PSII at ~ 546 nm, as expected with E130 H-bonded to PheD1 and at ~ 544 nm as expected with Q130 H-bonded to PheD1. Secondly, electrochromic band-shifts in the Chla Soret region have been measured in O2-evolving PSII in PsbA3-PSII, in the PsbA3/H198Q mutant in which the Soret band of PD1 is blue shifted and in the PsbA3/T179H mutant. Upon TyrZQA•- formation the Soret band of PD1 is red shifted and the Soret band of ChlD1 is blue shifted. In contrast, only PD1 undergoes a detectable S-state dependent electrochromism. Thirdly, the time resolved S-state dependent electrochromism attributed to PD1 is biphasic for all the S-state transitions except for S1 to S2, and shows that: i) the proton release in S0 to S1 occurs after the electron transfer and ii) the proton release and the electron transfer kinetics in S2 to S3, in T. elongatus, are significantly faster than often considered. The nature of S2TyrZ is discussed in view of the models in the literature involving intermediate states in the S2 to S3 transition.  相似文献   

12.
Optical and structural properties of the B875 light-harvesting complex of purple bacteria were examined by measurements of low-temperature circular dichroism (CD) and excitation spectra of fluorescence polarization. In the B875 complex isolated from wild-type Rhodopseudomonas sphaeroides, fluorescence polarization increased steeply across the long-wavelength Qy bacteriochlorophyll a (BChl) absorption band at both 4 and approx. 300 K. With the native complex in the photosynthetic membranes of Rhodospirillum rubrum and Rps. sphaeroides wild-type and R26-carotenoidless strains, this significant increase in polarization from 0.12 to 0.40 was only observed at low temperature. A polarization of ?0.2 was observed upon excitation in the Qx BChl band. The results indicate that about 15% of the BChl molecules in the complex absorb at wavelengths about 12 nm longer than the other BChls. All BChls have approximately the same orientation with their Qy transition dipoles essentially parallel and their Qx transitions perpendicular to the plane of the membrane. At low temperature, energy transfer to the long-wavelength BChls is irreversible, yielding a high degree of polarization upon direct excitation, whereas at room temperature a partial depolarization of fluorescence by energy transfer between different subunits occurs in the membrane, but not in the isolated complex. CD spectra appear to reflect the two spectral forms of B875 BChl in Rps. sphaeroides membranes. They also reveal structural differences between the complexes of Rps. sphaeroides and Rhs. rubrum, in both BChl and carotenoid regions. The CD spectrum of isolated B875 indicates that the interactions between the BChls but not the carotenoids are altered upon isolation.  相似文献   

13.
Low temperature, steady-state, optical spectroscopic methods were used to study the spectral features of peridinin-chlorophyll-protein (PCP) complexes in which recombinant apoprotein has been refolded in the presence of peridinin and either chlorophyll a (Chl a), chlorophyll b (Chl b), chlorophyll d (Chl d), 3-acetyl-chlorophyll a (3-acetyl-Chl a) or bacteriochlorophyll a (BChl a). Absorption spectra taken at 10 K provide better resolution of the spectroscopic bands than seen at room temperature and reveal specific pigment–protein interactions responsible for the positions of the Qy bands of the chlorophylls. The study reveals that the functional groups attached to Ring I of the two protein-bound chlorophylls modulate the Qy and Soret transition energies. Fluorescence excitation spectra were used to compute energy transfer efficiencies of the various complexes at room temperature and these were correlated with previously reported ultrafast, time-resolved optical spectroscopic dynamics data. The results illustrate the robust nature and value of the PCP complex, which maintains a high efficiency of antenna function even in the presence of non-native chlorophyll species, as an effective tool for elucidating the molecular details of photosynthetic light-harvesting.  相似文献   

14.
The reaction of the irreversible chemical reduction of the 131-keto C=O group of pheophytin a (Pheo a) with sodium borohydride in reaction centers (RCs) of functionally active spinach photosystem II (PS II) core complexes was studied. Stable, chromatographically purified PS II core complex preparations with altered chromophore composition are obtained in which ~25% of Pheo a molecules are modified to 131-deoxo-131-hydroxy-Pheo a. Some of the chlorophyll a molecules in the complexes were also irreversibly reduced with borohydride to 131-deoxo-131-hydroxy-chlorophyll a. Based on the results of comparative study of spectral, biochemical, and photochemical properties of NaBH4-treated and control preparations, it was concluded that: (i) the borohydride treatment did not result in significant dissociation of the PS II core complex protein ensemble; (ii) the modified complexes retained the ability to photoaccumulate the radical anion of the pheophytin electron acceptor in the presence of exogenous electron donor; (iii) only the photochemically inactive pheo-phytin PheoD2 is subjected to the borohydride treatment; (iv) the Qx optical transition of the PheoD2 molecule in the RC of PS II core complexes is located at 543 nm; (v) in the Qy spectral region, PheoD2 probably absorbs at ~680 nm.  相似文献   

15.
《BBA》2023,1864(3):148984
Photosystem I (PSI) of the cyanobacterium Acaryochloris marina is capable of performing an efficient photoelectrochemical conversion of far-red light due to its unique suite of cofactors. Chlorophyll d (Chl-d) has been long known as the major antenna pigment in the PSI from A. marina, while the exact cofactor composition of the reaction centre (RC) was established only recently by cryo-electron microscopy. The RC consists of four Chl-d molecules, and, surprisingly, two molecules of pheophytin a (Pheo-a), which provide a unique opportunity to resolve, spectrally and kinetically, the primary electron transfer reactions. Femtosecond transient absorption spectroscopy was here employed to observe absorption changes in the 400–860 nm spectral window occurring in the 0.1–500 ps timescale upon unselective antenna excitation and selective excitation of the Chl-d special pair P740 in the RC. A numerical decomposition of the absorption changes, including principal component analysis, allowed the identification of P740(+)Chld2(−) as the primary charge separated state and P740(+)Pheoa3(−) as the successive, secondary, radical pair. A remarkable feature of the electron transfer reaction between Chld2 and Pheoa3 is the fast, kinetically unresolved, equilibrium with an estimated ratio of 1:3. The energy level of the stabilised ion-radical state P740(+)Pheoa3(−) was determined to be ~60 meV below that of the RC excited state. In this regard, the energetics and the structural implications of the presence of Pheo-a in the electron transfer chain of PSI from A. marina are discussed, also in comparison with those of the most diffused Chl-a binding RC.  相似文献   

16.
Bacteriochlorophyll a-protein from Prosthecochloris aestuarii strain 2K was oriented in a pulsed electric field. The room temperature linear dichroism spectrum of the oriented protein in the Qy region of the bacteriochlorophyll a absorption exhibits a single asymmetrical peak at 813 nm with a shoulder extending to the blue. The ≈12 nm fullwidth of the linear dichroism peak is only about half that of the 300 K absorption spectrum. The linear dichroism at 813 nm was not saturated at field strengths of up to 15 kV/cm. The time dependence of the linear dichroism suggests that the orienting particles are aggregates of at least some tens of bacteriochlorophyll a-protein trimers. The linear dichroism peak coincides in wavelength with the 813-nm peak of the 300 K, 4th derivative absorption spectrum of the protein and is therefore attributed to the bacteriochlorophyll a Qy exciton transition observed in absorption at the same wavelength.  相似文献   

17.
《BBA》2023,1864(2):148937
Bovine cytochrome c oxidase (CcO) contains two hemes, a and a3, chemically identical but differing in coordination and spin state. The Soret absorption band of reduced aa3-type cytochrome c oxidase consists of overlapping bands of the hemes a2+ and a32+. It shows a peak at ~444 nm and a distinct shoulder at ~425 nm. However, attribution of individual spectral lineshapes to hemes a2+ and a32+ in the Soret is controversial. In the present work, we characterized spectral contributions of hemes a2+ and a32+ using two approaches. First, we reconstructed bovine CcO heme a2+ spectrum using a selective Ca2+-induced spectral shift of the heme a2+. Second, we investigated photobleaching of the reduced Thermus thermophilus ba3- and bovine aa3-oxidases in the Soret induced by femtosecond laser pulses in the Q-band. The resolved spectra show splitting of the electronic B0x-, B0y-transitions of both reduced hemes. The heme a2+ spectrum is shifted to the red relative to heme a32+ spectrum. The ~425 nm shoulder is mostly attributed to heme a32+.  相似文献   

18.
Active Photosystem II (PS II) cores were prepared from spinach, pea, Synechocystis PCC 6803, and Thermosynechococcus vulcanus, the latter of which has been structurally determined [Kamiya and Shen (2003) Proc Natl Acad Sci USA 100: 98–103]. Electrochromic shifts resulting from QA reduction by 1.7-K illumination were recorded, and the Qx and Qy absorption bands of the redox-active pheophytin a thus identified in the different organisms. The Qx transition is ∼3 nm (100 cm−1) to higher energy in cyanobacteria than in the plants. The predominant Qy shift appears in the range 683–686 nm depending on species, and does not appear to have a systematic shift. Low-temperature absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra of the chlorophyll Qy region are very similar in spinach and pea, but vary in cyanobacteria. We assigned CP43 and CP47 trap-chlorophyll absorption features in all species, as well as a P680 transition. Each absorption identified has an area of one chlorophyll a. The MCD deficit, introduced previously for spinach as an indicator of P680 activity, occurs in the same spectral region and has the same area in all species, pointing to a robustness of this as a signature for P680. MCD and CD characteristics point towards a significant variance in P680 structure between cyanobacteria, thermophilic cyanobacteria, and higher plants.  相似文献   

19.
Ma F  Kimura Y  Zhao XH  Wu YS  Wang P  Fu LM  Wang ZY  Zhang JP 《Biophysical journal》2008,95(7):3349-3357
The intact core antenna-reaction center (LH1-RC) core complex of thermophilic photosynthetic bacterium Thermochromatium (Tch.) tepidum is peculiar in its long-wavelength LH1-Qy absorption (915 nm). We have attempted comparative studies on the excitation dynamics of bacteriochlorophyll (BChl) and carotenoid (Car) between the intact core complex and the EDTA-treated one with the Qy absorption at 889 nm. For both spectral forms, the overall Car-to-BChl excitation energy transfer efficiency is determined to be ∼20%, which is considerably lower than the reported values, e.g., ∼35%, for other photosynthetic purple bacteria containing the same kind of Car (spirilloxanthin). The RC trapping time constants are found to be 50∼60 ps (170∼200 ps) for RC in open (closed) state irrespective to the spectral forms and the wavelengths of Qy excitation. Despite the low-energy LH1-Qy absorption, the RC trapping time are comparable to those reported for other photosynthetic bacteria with normal LH1-Qy absorption at 880 nm. Selective excitation to Car results in distinct differences in the Qy-bleaching dynamics between the two different spectral forms. This, together with the Car band-shift signals in response to Qy excitation, reveals the presence of two major groups of BChls in the LH1 of Tch. tepidum with a spectral heterogeneity of ∼240 cm−1, as well as an alteration in BChl-Car geometry in the 889-nm preparation with respect to the native one.  相似文献   

20.
The transfer of excitation energy and the pigment arrangement in isolated chlorosomes of the thermophilic green bacterium Chloroflexus aurantiacus were studied by means of absorption, fluorescence and linear dichroism spectroscopy, both at room temperature and at 4 K. The low temperature absorption spectrum shows bands of the main antenna pigments BChl c and carotenoid, in addition to which bands of BChl a are present at 798 and 613 nm. Fluorescence measurements showed that excitation energy from BChl c and carotenoid is transferred to BChl a, which presumably functions as an intermediate in energy transfer from the chlorosome to the cytoplasmic membrane. Measurements of fluorescence polarization and the use of two different orientation techniques for linear dichroism experiments enabled us to determine the orientation of several transition dipole moments with respect to each other and to the three principal axes of the chlorosome. The Qy transition of BChl a is oriented almost perfectly perpendicular to the long axis of the chlorosome. The Qy transition of BChl c and the -carotene transition dipole are almost parallel to each other. They make an angle of about 40° with the long axis and of about 70° with the short axis of the chlorosome; the angle between these transitions and the BChl a Qy transition is close to the magic angle (55°).Abbreviations BChl bacteriochlorophyll - CD circular dichroism - LD linear dichroism Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号