首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
多年来,肥胖被公认是导致机体抗胰岛素作用的重要危害因子,体重的减少可提高人体对胰岛素的敏感度。然而,脂肪质量的增加是通过怎样的机制破坏胰岛素的作用,特别是对目标组织肌肉和肝脏的作用,至今还不得而知;抗素的发现会为肥胖与胰岛素抗性之间的关系建立起新联系?  相似文献   

3.
The antibacterial peptide toxin colicin V (ColV) uses a dedicated signal sequence-independent export system for its secretion in Escherichia coli that involves the products of three genes, cvaA, cvaB, and tolC in this process. As a member of the membrane fusion protein (MFP) family, the CvaA protein has been proposed to interact with an outer membrane protein TolC via its C-terminal hydrophobic domain. The importance of this domain, which is highly conserved throughout the members of MFP family, was analyzed by use of site-directed mutagenesis of missense or nonsense mutations with suppressors. All the nonsense mutations tested resulted in the loss of ColV secretion, indicating the importance of the C-terminus of CvaA, including the last 100 residue–hydrophilic domain. The missense mutations of several conserved amino acids have no drastic effects. On the other hand, when Glu-248, Ala-262, Thr-274, Leu-285, Gly-313, Ala-322, or Val-335 of CvaA protein was mutated, the secretion of ColV was greatly reduced in certain mutants. While some mutations resulted in structural instability, Glu-248 to Lys and Ala-322 to Gly proteins were relatively stable, but were not functional in ColV secretion. The results indicate that these conserved amino acids are important for the structure and functions of CvaA in the secretion of ColV. Received: 6 February 1999 / Accepted: 26 June 1999  相似文献   

4.
Conserved signaling pathways that activate the mitogen-activated protein kinases (MAPKs) are involved in relaying extracellular stimulations to intracellular responses. The MAPKs coordinately regulate cell proliferation, differentiation, motility, and survival, which are functions also known to be mediated by members of a growing family of MAPK-activated protein kinases (MKs; formerly known as MAPKAP kinases). The MKs are related serine/threonine kinases that respond to mitogenic and stress stimuli through proline-directed phosphorylation and activation of the kinase domain by extracellular signal-regulated kinases 1 and 2 and p38 MAPKs. There are currently 11 vertebrate MKs in five subfamilies based on primary sequence homology: the ribosomal S6 kinases, the mitogen- and stress-activated kinases, the MAPK-interacting kinases, MAPK-activated protein kinases 2 and 3, and MK5. In the last 5 years, several MK substrates have been identified, which has helped tremendously to identify the biological role of the members of this family. Together with data from the study of MK-knockout mice, the identities of the MK substrates indicate that they play important roles in diverse biological processes, including mRNA translation, cell proliferation and survival, and the nuclear genomic response to mitogens and cellular stresses. In this article, we review the existing data on the MKs and discuss their physiological functions based on recent discoveries.  相似文献   

5.
6.
Sigmoid functions have been applied in many areas to model self limited population growth. The most popular functions; General Logistic (GL), General von Bertalanffy (GV), and Gompertz (G), comprise a family of functions called Theta Logistic ([Formula: see text] L). Previously, we introduced a simple model of tumor cell population dynamics which provided a unifying foundation for these functions. In the model the total population (N) is divided into reproducing (P) and non-reproducing/quiescent (Q) sub-populations. The modes of the rate of change of ratio P/N was shown to produce GL, GV or G growth. We now generalize the population dynamics model and extend the possible modes of the P/N rate of change. We produce a new family of sigmoid growth functions, Trans-General Logistic (TGL), Trans-General von Bertalanffy (TGV) and Trans-Gompertz (TG)), which as a group we have named Trans-Theta Logistic (T [Formula: see text] L) since they exist when the [Formula: see text] L are translated from a two parameter into a three parameter phase space. Additionally, the model produces a new trigonometric based sigmoid (TS). The [Formula: see text] L sigmoids have an inflection point size fixed by a single parameter and an inflection age fixed by both of the defining parameters. T [Formula: see text] L and TS sigmoids have an inflection point size defined by two parameters in bounding relationships and inflection point age defined by three parameters (two bounded). While the Theta Logistic sigmoids provided flexibility in defining the inflection point size, the Trans-Theta Logistic sigmoids provide flexibility in defining the inflection point size and age. By matching the slopes at the inflection points we compare the range of values of inflection point age for T [Formula: see text] L versus [Formula: see text] L for model growth curves.  相似文献   

7.
An emerging series of papers has identified new receptor proteins that predict seven-transmembrane pass topologies. We have consolidated this family to 11 human genes and have named the family PAQR, after two of the initially described ligands (progestin and adipoQ receptors). This protein family has ancient evolutionary roots, with identified homologs found in eubacteria. To date, published data indicate that the prokaryotic members of this family appear to encode hemolysin-type proteins, while in eukaryotes, PAQR proteins encode functional receptors with a broad range of apparent ligand specificities. We provide the complete human and mouse complement of this family, suggest a conserved structure/topology with invariant intracellular amino acid residues, and have measured mRNA expression levels for these genes across a range of human tissues.[Reviewing Editor: Martin Kreitman]  相似文献   

8.
9.
CreBC is a highly conserved two-component regulatory system (TCS) in several gram-negative bacteria, including Escherichia coli, Aeromonas spp., Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. CreD is a conserved gene that encodes a predicted inner-membrane protein and is located near the creBC loci. Activation of CreBC increases creD expression; therefore, creD expression is generally used as a measure of CreBC activation in E. coli, Aeromonas spp., and P. aeruginosa systems. In this article, we aim to elucidate the expression of creD and further to investigate its functions in S. maltophilia. In spite of a short intergenic region of 81 bp between creBC and creD, creD is expressed separately from the adjacent creBC operon and from a promoter immediately upstream of creD (P creD) in S. maltophilia. We found that the promoter activity of P creD is negatively regulated by the creBC TCS, positively regulated by the bacterial culture density, and not affected by β-lactams. Furthermore, creD expression is not significantly altered in the presence of the phosphor-mimic variant of CreB, CreB(D55E), which mimics activated CreB. The functions of CreD of S. maltophilia were assessed by comparison among the following: wild-type KJ; the creD isogenic mutant, KJΔCreD; and the complementary strain, KJΔCreD(pCreD). The mutant lacking creD had cell division defects and aberrations in cell envelope integrity, which then triggered the σE-mediated envelope stress response. Thus, the results indicated that CreD plays a critical role in the maintenance of envelope integrity.  相似文献   

10.
A 38-kDa major outer membrane protein (OMP) was isolated from the nitrogen-fixing enterobacterium Rahnella aquatilis CF3. This protein exists as a stable trimer in the presence of 2% sodium dodecyl sulfate at temperatures below 60°C. Single channel experiments showed that this major OMP of R. aquatilis CF3 is able to form pores in the planar lipid membrane. Two oligonucleotides encoding the N-terminal portion of the 38-kDa OMP and C-terminal portion of OmpC were used to amplify the 38-kDa gene by PCR. The deduced amino acid sequence showed a strong homology with Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, and Serratia marcescens OmpC sequences, except loops L6 and L7, which are postulated to be cell surface exposed. On the basis of the OmpF-PhoE three-dimensional structure, it seems likely that this 38-kDa organizes three 16-strand β-barrel subunits. The relationship between the structure and the double functionality of this protein as porin and as a root adhesin is discussed.  相似文献   

11.
12.
The inner nuclear membrane (INM) protein Nemp1/TMEM194A has previously been suggested to be involved in eye development in Xenopus, and contains two evolutionarily conserved sequences in the transmembrane domains (TMs) and the C-terminal region, named region A and region B, respectively. To elucidate the molecular nature of Nemp1, we analyzed its interacting proteins through those conserved regions. First, we found that Nemp1 interacts with itself and lamin through the TMs and region A, respectively. Colocalization of Nemp1 and lamin at the INM suggests that the interaction with lamin participates in the INM localization of Nemp1. Secondly, through yeast two-hybrid screening using region B as bait, we identified the small GTPase Ran as a probable Nemp1-binding partner. GST pulldown and co-immunoprecipitation assays using region B and Ran mutants revealed that region B binds directly to the GTP-bound Ran through its effector domain. Immunostaining experiments using transfected COS-7 cells revealed that full-length Nemp1 recruits Ran near the nuclear envelope, suggesting a role for Nemp1 in the accumulation of RanGTP at the nuclear periphery. At the neurula-to-tailbud stages of Xenopus embryos, nemp1 expression overlapped with ran in several regions including the eye vesicles. Co-knockdown using antisense morpholino oligos for nemp1 and ran caused reduction of cell densities and severe eye defects more strongly than either single knockdown alone, suggesting their functional interaction. Finally we show that Arabidopsis thaliana Nemp1-orthologous proteins interact with A. thaliana Ran, suggesting their evolutionally conserved physical and functional interactions possibly in basic cellular functions including nuclear transportation. Taken together, we conclude that Nemp1 represents a new type of RanGTP-binding protein.  相似文献   

13.
Homologues of the Na+/glucose cotransporter, the SGLT family, include sequences of mammalian, eubacterial, yeast, insect and nematode origin. The cotransported substrates are sugars, inositol, proline, pantothenate, iodide, urea and undetermined solutes. It is reasonable to expect that the SGLT family members share a similar or identical topology of membrane spanning elements, by virtue of their common ancestry and similar coupling of solute transport to downhill sodium flux. Here we examine their membrane topologies as deduced from diverse analyses of their primary sequences, and from their sequence correlations with the experimentally determined topology of the human Na+/glucose cotransporter SGLT1. Our analyses indicate that all family members share a common core of 13 transmembrane helices, but that some, like SGLT1 itself, have one additional span appended to the C-terminus, and still others, two. One bacterial member incorporates an additional span at the N-terminus. Sequence comparisons indicative of common ancestry of the SGLT and the [Na++ Cl] transporter families are introduced, and evaluated in light of their topologies. New evidence concerning the previously asserted common ancestry of SGLT1 and an N-acetylglucosamine permease of the bacterial phosphotransferase system is considered. Finally, we analyze observations which lead us to conjecture that the experimental strategy most commonly employed to reveal the topology of bacterial transporters (i.e., the fusion of reporter enzymes such as phoA alkaline phosphatase, beta-lactamase or beta-galactosidase, to progressively C-truncated fragments of the transporter) has often instead so perturbed local topology as to have entirely missed pairs of adjacent membrane spans. Received: 18 May 1996  相似文献   

14.
Several of the genes currently known to be associated, when mutated, with mental retardation, code for molecules directly involved in Rho guanosine triphosphatase (GTPase) signaling. These include PAK3, a member of the PAK protein kinase family, which are important effectors of small GTPases. In many systems, PAK kinases play crucial roles regulating complex mechanisms such as cell migration, differentiation, or survival. Their precise functions in the central nervous system remain, however, unclear. Although their activity does not seem to be required for normal brain development, several recent studies point to a possible involvement in more subtle mechanisms such as neurite outgrowth, spine morphogenesis or synapse formation, and plasticity. This article reviews this information in the light of the current knowledge available on the molecular characteristics of the different members of this family and discuss the mechanisms through which they might contribute to cognitive functions.  相似文献   

15.
Protein Targeting to the Bacterial Cytoplasmic Membrane   总被引:16,自引:2,他引:16       下载免费PDF全文
Proteins that perform their activity within the cytoplasmic membrane or outside this cell boundary must be targeted to the translocation site prior to their insertion and/or translocation. In bacteria, several targeting routes are known; the SecB- and the signal recognition particle-dependent pathways are the best characterized. Recently, evidence for the existence of a third major route, the twin-Arg pathway, was gathered. Proteins that use either one of these three different pathways possess special features that enable their specific interaction with the components of the targeting routes. Such targeting information is often contained in an N-terminal extension, the signal sequence, but can also be found within the mature domain of the targeted protein. Once the nascent chain starts to emerge from the ribosome, competition for the protein between different targeting factors begins. After recognition and binding, the targeting factor delivers the protein to the translocation sites at the cytoplasmic membrane. Only by means of a specific interaction between the targeting component and its receptor is the cargo released for further processing and translocation. This mechanism ensures the high-fidelity targeting of premembrane and membrane proteins to the translocation site.  相似文献   

16.
Transmembrane proteins allow cells to extensively communicate with the external world in a very accurate and specific way. They form principal nodes in several signaling pathways and attract large interest in therapeutic intervention, as the majority pharmaceutical compounds target membrane proteins. Thus, according to the current genome annotation methods, a detailed structural/functional characterization at the protein level of each of the elements codified in the genome is also required. The extreme difficulty in obtaining high-resolution three-dimensional structures, calls for computational approaches. Here we review to which extent the efforts made in the last few years, combining the structural characterization of membrane proteins with protein bioinformatics techniques, could help describing membrane proteins at a genome-wide scale. In particular we analyze the use of comparative modeling techniques as a way of overcoming the lack of high-resolution three-dimensional structures in the human membrane proteome.  相似文献   

17.
Protein Interactions and Membrane Geometry   总被引:1,自引:0,他引:1       下载免费PDF全文
The difficulty in growing crystals for x-ray diffraction analysis has hindered the determination of membrane protein structures. However, this is changing with the advent of a new method for growing high quality membrane protein crystals from the lipidic cubic phase. Although successful, the mechanism underlying this method has remained unclear. Here, we present a theoretical analysis of the process. We show that it is energetically favorable for proteins embedded in the highly curved cubic phase to cluster together in flattened regions of the membrane. This stabilizes the lamellar phase, permitting its outgrowth from the cubic phase. A kinetic barrier-crossing model is developed to determine the free energy barrier to crystallization from the time-dependent growth of protein clusters. Determining the values of key parameters provides both a rational basis for optimizing the experimental procedure for membrane proteins that have not yet been crystallized and insight into the analogous cubic to lamellar transitions in cells. We also discuss the implications of this mechanism for protein sorting at the exit sites of the Golgi and endoplasmic reticulum and the general stabilization of membrane structures.  相似文献   

18.
19.
The influenza viral membrane protein hemagglutinin (HA) is required at high concentrations on virion and host-cell membranes for infectivity. Because the role of actin in membrane organization is not completely understood, we quantified the relationship between HA and host-cell actin at the nanoscale. Results obtained using superresolution fluorescence photoactivation localization microscopy (FPALM) in nonpolarized cells show that HA clusters colocalize with actin-rich membrane regions (ARMRs). Individual molecular trajectories in live cells indicate restricted HA mobility in ARMRs, and actin disruption caused specific changes to HA clustering. Surprisingly, the actin-binding protein cofilin was excluded from some regions within several hundred nanometers of HA clusters, suggesting that HA clusters or adjacent proteins within the same clusters influence local actin structure. Thus, with the use of imaging, we demonstrate a dynamic relationship between glycoprotein membrane organization and the actin cytoskeleton at the nanoscale.  相似文献   

20.
Membranes of peripheral endoplasmic reticulum form intricate morphologies consisting of tubules and sheets as basic elements. The physical mechanism of endoplasmic-reticulum shaping has been suggested to originate from the elastic behavior of the sheet edges formed by linear arrays of oligomeric protein scaffolds. The heart of this mechanism, lying in the relationships between the structure of the protein scaffolds and the effective intrinsic shapes and elastic properties of the sheets’ edges, has remained hypothetical. Here we provide a detailed computational analysis of these issues. By minimizing the elastic energy of membrane bending, we determine the effects of a rowlike array of semicircular arclike membrane scaffolds on generation of a membrane fold, which shapes the entire membrane surface into a flat double-membrane sheet. We show, quantitatively, that the sheet’s edge line tends to adopt a positive or negative curvature depending on the scaffold’s geometrical parameters. We compute the effective elastic properties of the sheet edge and analyze the dependence of the equilibrium distance between the scaffolds along the edge line on the scaffold geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号