首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
认知地图的神经环路基础   总被引:1,自引:0,他引:1  
空间记忆是人类认识世界和改造世界的基本认知能力,与我们的生活息息相关.无论是寻找常用的生活物件,如钥匙和手机,还是外出上班、购物和约会,都依赖我们对周围环境的记忆.截止到目前已有大量研究从不同水平探讨大脑如何表征其周围环境,但仍然有很多未解的问题.本文系统综述了基于脑成像和神经电生理技术开展的空间记忆研究进展.通过梳理以往研究中有关生物体在构建认知地图的神经结构和神经活动规律,提出了海马结构和新皮层对空间记忆的编码环路和表征机制,并在此基础上对未来研究进行了展望.  相似文献   

5.
6.
Reappraisal is a well-known emotion regulation strategy. Recent neuroimaging studies suggest that reappraisal recruits both medial and lateral prefrontal brain regions. However, few studies have investigated neural representation of reappraisals associated with anticipatory anxiety, and the specific nature of the brain activity underlying this process remains unclear. We used functional magnetic resonance imaging (fMRI) to investigate neural activity associated with reappraisals of transient anticipatory anxiety. Although transient anxiety activated mainly subcortical regions, reappraisals targeting the anxiety were associated with increased activity in the medial and lateral prefrontal regions (including the orbitofrontal and anterior cingulate cortices). Reappraisal decreased fear circuit activity (including the amygdala and thalamus). Correlational analysis demonstrated that reductions in subjective anxiety associated with reappraisal were correlated with orbitofrontal and anterior cingulate cortex activation. Reappraisal recruits medial and lateral prefrontal regions; particularly the orbitofrontal and anterior cingulate cortices are associated with successful use of this emotion regulation strategy.  相似文献   

7.
Eskov  V. M.  Pyatin  V. F.  Eskov  V. V.  Ilyashenko  L. K. 《Biophysics》2019,64(2):293-299
Biophysics - This paper presents two new fundamental principles of the functioning of real neural networks of the brain. These principles have inspired the design of artificial neural networks (a...  相似文献   

8.
9.
Social responsibility links personal behavior with societal expectations and plays a key role in affecting an agent’s emotional state following a decision. However, the neural basis of responsibility attribution remains unclear. In two previous event-related brain potential (ERP) studies we found that personal responsibility modulated outcome evaluation in gambling tasks. Here we conducted a functional magnetic resonance imaging (fMRI) study to identify particular brain regions that mediate responsibility attribution. In a context involving team cooperation, participants completed a task with their teammates and on each trial received feedback about team success and individual success sequentially. We found that brain activity differed between conditions involving team success vs. team failure. Further, different brain regions were associated with reinforcement of behavior by social praise vs. monetary reward. Specifically, right temporoparietal junction (RTPJ) was associated with social pride whereas dorsal striatum and dorsal anterior cingulate cortex (ACC) were related to reinforcement of behaviors leading to personal gain. The present study provides evidence that the RTPJ is an important region for determining whether self-generated behaviors are deserving of praise in a social context.  相似文献   

10.
We attempt to determine the discriminability and organization of neural activation corresponding to the experience of specific emotions. Method actors were asked to self-induce nine emotional states (anger, disgust, envy, fear, happiness, lust, pride, sadness, and shame) while in an fMRI scanner. Using a Gaussian Naïve Bayes pooled variance classifier, we demonstrate the ability to identify specific emotions experienced by an individual at well over chance accuracy on the basis of: 1) neural activation of the same individual in other trials, 2) neural activation of other individuals who experienced similar trials, and 3) neural activation of the same individual to a qualitatively different type of emotion induction. Factor analysis identified valence, arousal, sociality, and lust as dimensions underlying the activation patterns. These results suggest a structure for neural representations of emotion and inform theories of emotional processing.  相似文献   

11.
12.
Beliefs about the state of the world are an important influence on both normal behavior and psychopathology. However, understanding of the neural basis of belief processing remains incomplete, and several aspects of belief processing have only recently been explored. Specifically, different types of beliefs may involve fundamentally different inferential processes and thus recruit distinct brain regions. Additionally, neural processing of truth and falsity may differ from processing of certainty and uncertainty. The purpose of this study was to investigate the neural underpinnings of assessment of testable and non-testable propositions in terms of truth or falsity and the level of certainty in a belief. Functional magnetic resonance imaging (fMRI) was used to study 14 adults while they rated propositions as true or false and also rated the level of certainty in their judgments. Each proposition was classified as testable or non-testable. Testable propositions activated the DLPFC and posterior cingulate cortex, while non-testable statements activated areas including inferior frontal gyrus, superior temporal gyrus, and an anterior region of the superior frontal gyrus. No areas were more active when a proposition was accepted, while the dorsal anterior cingulate was activated when a proposition was rejected. Regardless of whether a proposition was testable or not, certainty that the proposition was true or false activated a common network of regions including the medial prefrontal cortex, caudate, posterior cingulate, and a region of middle temporal gyrus near the temporo-parietal junction. Certainty in the truth or falsity of a non-testable proposition (a strong belief without empirical evidence) activated the insula. The results suggest that different brain regions contribute to the assessment of propositions based on the type of content, while a common network may mediate the influence of beliefs on motivation and behavior based on the level of certainty in the belief.  相似文献   

13.
14.
The Scientific Basis for Probiotic Strains of Lactobacillus   总被引:7,自引:0,他引:7       下载免费PDF全文
  相似文献   

15.
16.
1. High-fat diets, modify the neuroendocrine response and, when prolonged, result in positive energy balance and obesity. Little is known about the effects of fat on the mechanisms operating in the initial steps of the neural and endocrine disturbances. 2. The studies reported here were designed to access the impact of the consumption of a single exclusively animal fat meal (lard), 24 h following its ingestion a) on the response of the hypothalamic serotonergic system to a standard laboratory chow meal and b) on the circulating levels of glucose, insulin, and leptin. The release of serotonin in the extracellular medial hypothalamic space (including the paraventricular-PVN and ventromedian-VMH nuclei) was determined using electrochemical detection following HPLC in samples obtained in vivo by microdialysis, in nonanesthetized adult male Wistar rats. 3. A lard meal resulted in decreased hypothalamic serotonin release postprandially and attenuated (24 h later) the hypothalamic serotonin response that normally follows a balanced meal. 4. In permanently catheterized rats, postprandial glucose and insulin levels measured in samples obtained in vivo, were either not, or only slightly, modified after a lard meal, whereas plasma leptin levels were increased. Interestingly, 24 h after a meal, insulin and leptin levels were increased in those animals eating a fat meal compared with those eating chow. Next-day glucose levels remained identical after the absorption either of a chow, or a lard meal. 5. The changes induced by the fat meal on peripheral and central regulators of energy and glucose homeostasis represent either adaptive mechanisms or early alterations that could render the organism vulnerable to further insults.  相似文献   

17.
Neural Induction by Previously Induced Epiblast in Avian Embryo in vitro   总被引:2,自引:0,他引:2  
Pieces of previously neurally induced and competent epiblast of chick and, respectively, quail primitive streak blastoderms were cultured in close contact with each other for 48 h. In several cases, both pieces differentiated into neural direction, which indicates the occurrence of a homoiogenetic induction. There was a considerable mixing of cells of different origin, especially in the undifferentiated controls. In general, the dorsoventral orientation of the previously induced epiblast was retained, but the orientation of the competent epiblast cells was more flexible and could be influenced by the neighbouring neuralised cells.  相似文献   

18.
Monoclonal antibodies constitute one of the largest groups of drugs to treat cancers and immune disorders, and are guiding the design of vaccines against infectious diseases. Fragments antigen-binding (Fabs) have been preferred over monoclonal antibodies for the structural characterization of antibody–antigen complexes due to their relatively low flexibility. Nonetheless, Fabs often remain challenging to crystallize because of the surface characteristics of complementary determining regions and the residual flexibility in the hinge region between the variable and constant domains. Here, we used a variable heavy-chain (VHH) domain specific for the human kappa light chain to assist in the structure determination of three therapeutic Fabs that were recalcitrant to crystallization on their own. We show that this ligand alters the surface properties of the antibody–ligand complex and lowers its aggregation temperature to favor crystallization. The VHH crystallization chaperone also restricts the flexible hinge of Fabs to a narrow range of angles, and so independently of the variable region. Our findings contribute a valuable approach to antibody structure determination and provide biophysical insight into the principles that govern the crystallization of macromolecules.  相似文献   

19.
20.
We describe here the application of a type of artificial neural network, the Gaussian radial basis function (RBF) network, in the identification of a large number of phytoplankton strains from their 11-dimensional flow cytometric characteristics measured by the European Optical Plankton Analyser instrument. The effect of network parameters on optimization is examined. Optimized RBF networks recognized 34 species of marine and freshwater phytoplankton with 91.5% success overall. The relative importance of each measured parameter in discriminating these data and the behavior of RBF networks in response to data from “novel” species (species not present in the training data) were analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号