首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Efforts to develop a broadly protective vaccine against the highly pathogenic avian influenza A (HPAI) H5N1 virus have focused on highly conserved influenza gene products. The viral nucleoprotein (NP) and ion channel matrix protein (M2) are highly conserved among different strains and various influenza A subtypes. Here, we investigate the relative efficacy of NP and M2 compared to HA in protecting against HPAI H5N1 virus. In mice, previous studies have shown that vaccination with NP and M2 in recombinant DNA and/or adenovirus vectors or with adjuvants confers protection against lethal challenge in the absence of HA. However, we find that the protective efficacy of NP and M2 diminishes as the virulence and dose of the challenge virus are increased. To explore this question in a model relevant to human disease, ferrets were immunized with DNA/rAd5 vaccines encoding NP, M2, HA, NP+M2 or HA+NP+M2. Only HA or HA+NP+M2 vaccination conferred protection against a stringent virus challenge. Therefore, while gene-based vaccination with NP and M2 may provide moderate levels of protection against low challenge doses, it is insufficient to confer protective immunity against high challenge doses of H5N1 in ferrets. These immunogens may require combinatorial vaccination with HA, which confers protection even against very high doses of lethal viral challenge.  相似文献   

2.
H7N9 has caused fatal infections in humans. A safe and effective vaccine is the best way to prevent large-scale outbreaks in the human population. Parainfluenza virus 5 (PIV5), an avirulent paramyxovirus, is a promising vaccine vector. In this work, we generated a recombinant PIV5 expressing the HA gene of H7N9 (PIV5-H7) and tested its efficacy against infection with influenza virus A/Anhui/1/2013 (H7N9) in mice and guinea pigs. PIV5-H7 protected the mice against lethal H7N9 challenge. Interestingly, the protection did not require antibody since PIV5-H7 protected JhD mice that do not produce antibody against lethal H7N9 challenge. Furthermore, transfer of anti-H7 serum did not protect mice against H7N9 challenge. PIV5-H7 generated high HAI titers in guinea pigs, however it did not protect against H7N9 infection or transmission. Intriguingly, immunization of guinea pigs with PIV5-H7 and PIV5 expressing NP of influenza A virus H5N1 (PIV5-NP) conferred protection against H7N9 infection and transmission. Thus, we have obtained a H7N9 vaccine that protected both mice and guinea pigs against lethal H7N9 challenge and infection respectively.  相似文献   

3.
Previously we demonstrated the versatile utility of the Parapoxvirus Orf virus (ORFV) as a vector platform for the development of potent recombinant vaccines. In this study we present the generation of new ORFV recombinants expressing the hemagglutinin (HA) or nucleoprotein (NP) of the highly pathogenic avian influenza virus (HPAIV) H5N1. Correct foreign gene expression was examined in vitro by immunofluorescence, Western blotting and flow cytometry. The protective potential of both recombinants was evaluated in the mouse challenge model. Despite adequate expression of NP, the recombinant D1701-V-NPh5 completely failed to protect mice from lethal challenge. However, the H5 HA-expressing recombinant D1701-V-HAh5n mediated solid protection in a dose-dependent manner. Two intramuscular (i.m.) injections of the HA-expressing recombinant protected all animals from lethal HPAIV infection without loss of body weight. Notably, the immunized mice resisted cross-clade H5N1 and heterologous H1N1 (strain PR8) influenza virus challenge. In vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T-cell subpopulations during immunization and/or challenge infection implicated the relevance of CD4-positive T-cells for induction of protective immunity by D1701-V-HAh5n, whereas the absence of CD8-positive T-cells did not significantly influence protection. In summary, this study validates the potential of the ORFV vectored vaccines also to combat HPAIV.  相似文献   

4.
New approaches for vaccination to prevent influenza virus infection are needed. Emerging viruses, such as the H5N1 highly pathogenic avian influenza (HPAI) virus, pose not only pandemic threats but also challenges in vaccine development and production. Parainfluenza virus 5 (PIV5) is an appealing vector for vaccine development, and we have previously shown that intranasal immunization with PIV5 expressing the hemagglutinin from influenza virus was protective against influenza virus challenge (S. M. Tompkins, Y. Lin, G. P. Leser, K. A. Kramer, D. L. Haas, E. W. Howerth, J. Xu, M. J. Kennett, J. E. Durbin, R. A. Tripp, R. A. Lamb, and B. He, Virology 362:139–150, 2007). While intranasal immunization is an appealing approach, PIV5 may have the potential to be utilized in other formats, prompting us to test the efficacy of rPIV5-H5, which encodes the HA from H5N1 HPAI virus, in different vaccination schemes. In the BALB/c mouse model, a single intramuscular or intranasal immunization with a live rPIV5-H5 (ZL46) rapidly induced robust neutralizing serum antibody responses and protected against HPAI challenge, although mucosal IgA responses primed by intranasal immunization more effectively controlled virus replication in the lung. The rPIV5-H5 vaccine incorporated the H5 HA into the virion, so we tested the efficacy of an inactivated form of the vaccine. Inactivated rPIV5-H5 primed neutralizing serum antibody responses and controlled H5N1 virus replication; however, similar to other H5 antigen vaccines, it required a booster immunization to prime protective immune responses. Taken together, these results suggest that rPIV5-HA vaccines and H5-specific vaccines in particular can be utilized in multiple formats and by multiple routes of administration. This could avoid potential contraindications based on intranasal administration alone and provide opportunities for broader applications with the use of a single vaccine vector.  相似文献   

5.
以鹅源H5亚型禽流感病毒(AIV)基因组为模板,用RTPCR扩增血凝素(Hemagglutinin, HA)基因,克隆入鸡痘病毒表达载体pFG1175,转染鸡痘病毒感染的鸡胚成纤维细胞,通过蓝斑筛选和间接免疫荧光检测,获得表达HA基因的重组鸡痘病毒(Recombinant fowlpox virus, rFPVHA)。rFPVHA经鸡胚成纤维细胞连续传15代后,报告基因LacZ和HA基因可稳定表达。用103PFU和105PFU的rFPVHA免疫无特定病原体的(Specific pathogen free, SPF)鸡,免疫后22d 血凝抑制(Hemagglutinin inhibition,HI)抗体监测阳性率分别为0%和20%,但均抵御了H5亚型毒株的致死性攻击,保护率为100%。结果表明,构建了表达HA基因的重组鸡痘病毒,该重组病毒具有良好遗传稳定性,免疫鸡可提供完全保护,显示出了一定的应用前景。  相似文献   

6.
The recent emergence of highly pathogenic avian influenza virus (HPAI) strains in poultry and their subsequent transmission to humans in Southeast Asia have raised concerns about the potential pandemic spread of lethal disease. In this paper we describe the development and testing of an adenovirus-based influenza A virus vaccine directed against the hemagglutinin (HA) protein of the A/Vietnam/1203/2004 (H5N1) (VN/1203/04) strain isolated during the lethal human outbreak in Vietnam from 2003 to 2005. We expressed different portions of HA from a recombinant replication-incompetent adenoviral vector, achieving vaccine production within 36 days of acquiring the virus sequence. BALB/c mice were immunized with a prime-boost vaccine and exposed to a lethal intranasal dose of VN/1203/04 H5N1 virus 70 days later. Vaccination induced both HA-specific antibodies and cellular immunity likely to provide heterotypic immunity. Mice vaccinated with full-length HA were fully protected from challenge with VN/1203/04. We next evaluated the efficacy of adenovirus-based vaccination in domestic chickens, given the critical role of fowl species in the spread of HPAI worldwide. A single subcutaneous immunization completely protected chickens from an intranasal challenge 21 days later with VN/1203/04, which proved lethal to all control-vaccinated chickens within 2 days. These data indicate that the rapid production and subsequent administration of recombinant adenovirus-based vaccines to both birds and high-risk individuals in the face of an outbreak may serve to control the pandemic spread of lethal avian influenza.  相似文献   

7.
Du L  Leung VH  Zhang X  Zhou J  Chen M  He W  Zhang HY  Chan CC  Poon VK  Zhao G  Sun S  Cai L  Zhou Y  Zheng BJ  Jiang S 《PloS one》2011,6(1):e16555
Development of effective vaccines to prevent influenza, particularly highly pathogenic avian influenza (HPAI) caused by influenza A virus (IAV) subtype H5N1, is a challenging goal. In this study, we designed and constructed two recombinant influenza vaccine candidates by fusing hemagglutinin 1 (HA1) fragment of A/Anhui/1/2005(H5N1) to either Fc of human IgG (HA1-Fc) or foldon plus Fc (HA1-Fdc), and evaluated their immune responses and cross-protection against divergent strains of H5N1 virus. Results showed that these two recombinant vaccines induced strong immune responses in the vaccinated mice, which specifically reacted with HA1 proteins and an inactivated heterologous H5N1 virus. Both proteins were able to cross-neutralize infections by one homologous strain (clade 2.3) and four heterologous strains belonging to clades 0, 1, and 2.2 of H5N1 pseudoviruses as well as three heterologous strains (clades 0, 1, and 2.3.4) of H5N1 live virus. Importantly, immunization with these two vaccine candidates, especially HA1-Fdc, provided complete cross-clade protection against high-dose lethal challenge of different strains of H5N1 virus covering clade 0, 1, and 2.3.4 in the tested mouse model. This study suggests that the recombinant fusion proteins, particularly HA1-Fdc, could be developed into an efficacious universal H5N1 influenza vaccine, providing cross-protection against infections by divergent strains of highly pathogenic H5N1 virus.  相似文献   

8.
Due to the high mortality associated with recent, widely circulating strains of H5N1 influenza virus in poultry, the recurring introduction of H5N1 viruses from birds to humans, and the difficulties in H5N1 eradication by elimination of affected flocks, an effective vaccine against HPAI (highly pathogenic avian influenza) is highly desirable. Using reverse genetics, a set of experimental live attenuated vaccine strains based on recombinant H5N1 influenza virus A/Viet Nam/1203/04 was generated. Each virus was attenuated through expression of a hemagglutinin protein in which the polybasic cleavage site had been removed. Viruses were generated which possessed a full-length NS1 or a C-terminally truncated NS1 protein of 73, 99, or 126 amino acids. Viruses with each NS genotype were combined with a PB2 polymerase gene which carried either a lysine or a glutamic acid at position 627. We predicted that glutamic acid at position 627 of PB2 would attenuate the virus in mammalian hosts, thus increasing the safety of the vaccine. All recombinant viruses grew to high titers in 10-day-old embryonated chicken eggs but were attenuated in mammalian cell culture. Induction of high levels of beta interferon by all viruses possessing truncations in the NS1 protein was demonstrated by interferon bioassay. The viruses were each found to be highly attenuated in a mouse model. Vaccination with a single dose of any virus conferred complete protection from death upon challenge with a mouse lethal virus expressing H5N1 hemagglutinin and neuraminidase proteins. In a chicken model, vaccination with a single dose of a selected virus encoding the NS1 1-99 protein completely protected chickens from lethal challenge with homologous HPAI virus A/Viet Nam/1203/04 (H5N1) and provided a high level of protection from a heterologous virus, A/egret/Egypt/01/06 (H5N1). Thus, recombinant influenza A/Viet Nam/1203/04 viruses attenuated through the introduction of mutations in the hemagglutinin, NS1, and PB2 coding regions display characteristics desirable for live attenuated vaccines and hold potential as vaccine candidates in poultry as well as in mammalian hosts.  相似文献   

9.
Chickens lack the retinoic acid-inducible gene I (RIG-I) and sense avian influenza virus (AIV) infections by means of the melanoma differentiation-associated gene 5 product (chMDA5). Plasmid-driven expression of the N-terminal half of chMDA5 containing the caspase activation and recruitment domains [chMDA5(1-483)] triggers interferon-β responses in chicken cells. We hypothesized that mimicking virus infection by chMDA5(1-483) expression may enhance vaccine-induced adaptive immunity. In order to test this, the potential genetic adjuvant properties of chMDA5(1-483) were evaluated in vivo in combination with a suboptimal quantity of a plasmid DNA vaccine expressing haemagglutinin (HA) of H5N1 AIV. Co-administration of the HA plasmid with plasmid DNA for chMDA5(1-483) expression resulted in approximately 10-fold higher HA-specific antibody responses than injection of the HA plasmid mixed with empty vector DNA as control. Accordingly, compared with HA DNA vaccination alone, the chMDA5(1-483)-adjuvanted HA DNA vaccine mediated enhanced protection against a lethal H5N1 challenge infection in chickens, with reduced clinical signs and cloacal virus shedding. These data demonstrate that innate immune activation by expression of signaling domains of RIG-I-like receptors can be exploited to enhance vaccine efficacy.  相似文献   

10.
Liu J  Chen P  Jiang Y  Wu L  Zeng X  Tian G  Ge J  Kawaoka Y  Bu Z  Chen H 《Journal of virology》2011,85(21):10989-10998
Ducks play an important role in the maintenance of highly pathogenic H5N1 avian influenza viruses (AIVs) in nature, and the successful control of AIVs in ducks has important implications for the eradication of the disease in poultry and its prevention in humans. The inactivated influenza vaccine is expensive, labor-intensive, and usually needs 2 to 3 weeks to induce protective immunity in ducks. Live attenuated duck enteritis virus (DEV; a herpesvirus) vaccine is used routinely to control lethal DEV infections in many duck-producing areas. Here, we first established a system to generate the DEV vaccine strain by using the transfection of overlapping fosmid DNAs. Using this system, we constructed two recombinant viruses, rDEV-ul41HA and rDEV-us78HA, in which the hemagglutinin (HA) gene of the H5N1 virus A/duck/Anhui/1/06 was inserted and stably maintained within the ul41 gene or between the us7 and us8 genes of the DEV genome. Duck studies indicated that rDEV-us78HA had protective efficacy similar to that of the live DEV vaccine against lethal DEV challenge; importantly, a single dose of 10(6) PFU of rDEV-us78HA induced complete protection against a lethal H5N1 virus challenge in as little as 3 days postvaccination. The protective efficacy against both lethal DEV and H5N1 challenge provided by rDEV-ul41HA inoculation in ducks was slightly weaker than that provided by rDEV-us78HA. These results demonstrate, for the first time, that recombinant DEV is suitable for use as a bivalent live attenuated vaccine, providing rapid protection against both DEV and H5N1 virus infection in ducks.  相似文献   

11.
Highly pathogenic avian influenza viruses (HPAIV) of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV) vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA) was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×108 infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA) by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade). Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.  相似文献   

12.
为了研究 H5N1 DNA 疫苗对小鼠和鸡的保护效率,用 H5N1 禽流感病毒 HA DNA 疫苗免疫 BALB/c 小鼠和 SPF 鸡 . 小鼠和鸡分别经电穿孔和肌肉注射免疫两次,间隔为 3 周 . 二次免疫后,用致死量的同源病毒进行攻毒实验 . 空白对照组在攻毒后全部死亡,而经电穿孔免疫的小鼠和鸡均获得了完全的保护,并能有效地抑制病毒在小鼠肺脏和鸡泄殖腔的繁殖 . 同时,电穿孔免疫的小鼠和鸡均产生了高水平的特异性抗体 . 经电穿孔免疫的小鼠攻毒后 CTL 反应明显加强 . 这些结果表明, HA DNA 疫苗能有效地保护小鼠和鸡对禽流感病毒的感染,同时也表明电穿孔免疫是 DNA 疫苗免疫的有效途径之一 .  相似文献   

13.
为了构建更为安全有效能同时抵抗高致病性H5亚型和低致病忡H9亚型禽流行性感冒(禽流感)病毒的基因工程疫苗,将H5和H9亚型禽流感病毒分离株的血凝素(HA)基因,分别由鸡痘病毒早晚期启动子PS和PE/L调控其转求,定向插入鸡痘病毒转移载体p11s中,获得H5A和H9A基因分别处于PS及PE/L启动子转录调控下的重组转移载体p11SH5H9。以FuGene^TM6转染法将p11SH5H9转染至已感染鸡痘病毒282E4疫苗株(wt-FPV)的鸡胚成纤维细胞(CEF)中。p11SH5H9与wt—FPV基因组DNA之间的同源重组产生了重组鸡痘病毒rFPV11SH5H9。通过在含X-gal的营养琼脂上连续挑选蓝色病毒蚀斑获得并纯化rFPV-11SH5H9。以间接免疫荧光法试验证实,纯化的rFPV-11SH5H9感染的CEF能同时表达H5A和H9A。初步的动物试验表明,用10^5PFU的rFPV-11SH5H9免疫无特定病原体(SPF)鸡,免疫后血凝抑制(HI)抗体监测阳性率均为100%(8/8);该重组病毒能显著抑制H9亚型AIV滴鼻、点眼后7日龄SPF鸡从气管和泄殖腔排毒,同时也能抵抗H5亚型AIV肌肉注射后对7日龄SPF鸡致死性攻击,保护率均为100%,显示出一定的应用前景。  相似文献   

14.
In Hong Kong in 1997, a highly lethal H5N1 avian influenza virus was apparently transmitted directly from chickens to humans with no intermediate mammalian host and caused 18 confirmed infections and six deaths. Strategies must be developed to deal with this virus if it should reappear, and prospective vaccines must be developed to anticipate a future pandemic. We have determined that unadapted H5N1 viruses are pathogenic in mice, which provides a well-defined mammalian system for immunological studies of lethal avian influenza virus infection. We report that a DNA vaccine encoding hemagglutinin from the index human influenza isolate A/HK/156/97 provides immunity against H5N1 infection of mice. This immunity was induced against both the homologous A/HK/156/97 (H5N1) virus, which has no glycosylation site at residue 154, and chicken isolate A/Ck/HK/258/97 (H5N1), which does have a glycosylation site at residue 154. The mouse model system should allow rapid evaluation of the vaccine’s protective efficacy in a mammalian host. In our previous study using an avian model, DNA encoding hemagglutinin conferred protection against challenge with antigenic variants that differed from the primary antigen by 11 to 13% in the HA1 region. However, in our current study we found that a DNA vaccine encoding the hemagglutinin from A/Ty/Ir/1/83 (H5N8), which differs from A/HK/156/97 (H5N1) by 12% in HA1, prevented death but not H5N1 infection in mice. Therefore, a DNA vaccine made with a heterologous H5 strain did not prevent infection by H5N1 avian influenza viruses in mice but was useful in preventing death.  相似文献   

15.
利用反向遗传技术获得表达H5亚型禽流感病毒(AIV)血凝素(HA)的新城疫病毒(NDV)。克隆NDV clone 30的全长基因,通过在NDV的融合蛋白基因和血凝素-神经氨酸酶(HN)基因之间插入编码高致病性AIV分离株A/chicken/italy/8/98(H5N2)的血凝素基因开放阅读框从而获得两株重组新城疫病毒NDVH5和NDVH5m。NDVH5感染的细胞可以检测到两种HA转录产物。对于重组病毒NDVH5m,NDV位于HA ORF的转录终止信号序列被沉默突变消除,产生2.7个全长HA转录产物的折叠,从而使修饰过的HA得到稳定地高表达。1日龄小鸡的脑内接种证实了两种重组病毒均无致病性。鸡群在NDVH5m诱导产生的NDV和H5亚型AIV HA特异性抗体的免疫力下能够免于致死剂量的NDV与高致病性AIV的感染。血清学研究结果表明NDVH5m免疫鸡群产生的抗体可结合NP蛋白抗体的检测从而用于区分免疫和感染AIV的动物。因此,NDVH5m重组病毒可作为抗NDV和AIV的"二联疫苗",也可成为控制AJ的标记疫苗。  相似文献   

16.

Background

Highly-pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are the two most important poultry viruses in the world. Natural low-virulence NDV strains have been used as vaccines over the past 70 years with proven track records. We have previously developed a reverse genetics system to produce low-virulent NDV vaccine strain LaSota from cloned cDNA. This system allows us to use NDV as a vaccine vector for other avian pathogens.

Methodology/Principal Finding

Here, we constructed two recombinant NDVs (rNDVs) each of which expresses the hemagglutinin (HA) gene of HPAIV H5N1strain A/Vietnam/1203/2004 from an added gene. In one, rNDV (rNDV-HA), the open reading frame (ORF) of HA gene was expressed without modification. In the second, rNDV (rNDV-HAF), the ORF was modified so that the transmembrane and cytoplasmic domains of the encoded HA gene were replaced with those of the NDV F protein. The insertion of either version of the HA ORF did not increase the virulence of the rNDV vector. The HA protein was found to be incorporated into the envelopes of both rNDV-HA and rNDV-HAF. However, there was an enhanced incorporation of the HA protein in rNDV-HAF. Chickens immunized with a single dose of either rNDV-HA or rNDV-HAF induced a high titer of HPAIV H5-specific antibodies and were completely protected against challenge with NDV as well as lethal challenges of both homologous and heterologous HPAIV H5N1.

Conclusion and Significance

Our results suggest that these chimeric viruses have potential as safe and effective bivalent vaccines against NDV and. HPAIV. These vaccines will be convenient and affordable, which will be highly beneficial to the poultry industry. Furthermore, immunization with these vaccines will permit serological differentiation of vaccinated and avian influenza field virus infected animals.  相似文献   

17.
The threat of a highly pathogenic avian influenza (HPAI) H5N1 virus causing the next pandemic remains a major concern. In this study, we evaluated the immunogenicity and efficacy of an inactivated whole-virus H5N1 pre-pandemic vaccine (MG1109) formulated by Green Cross Co., Ltd containing the hemagglutinin (HA) and neuraminidase (NA) genes of the clade 1 A/Vietnam/1194/04 virus in the backbone of A/Puerto Rico/8/34 (RgVietNam/04xPR8/34). Administration of the MG1109 vaccine (2-doses) in mice and ferrets elicited high HI and SN titers in a dose-dependent manner against the homologous (RgVietNam/04xPR8/34) and various heterologous H5N1 strains, (RgKor/W149/06xPR8/34, RgCambodia/04xPR8/34, RgGuangxi/05xPR8/34), including a heterosubtypic H5N2 (A/Aquatic bird/orea/W81/05) virus. However, efficient cross-reactivity was not observed against heterosubtypic H9N2 (A/Ck/Korea/H0802/08) and H1N1 (PR/8/34) viruses. Mice immunized with 1.9 μg HA/dose of MG1109 were completely protected from lethal challenge with heterologous wild-type HPAI H5N1 A/EM/Korea/W149/06 (clade 2.2) and mouse-adapted H5N2 viruses. Furthermore, ferrets administered at least 3.8 μg HA/dose efficiently suppressed virus growth in the upper respiratory tract and lungs. Vaccinated mice and ferrets also demonstrated attenuation of clinical disease signs and limited virus spread to other organs. Thus, this vaccine provided immunogenic responses in mouse and ferret models even against challenge with heterologous HPAI H5N1 and H5N2 viruses. Since the specific strain of HPAI H5N1 virus that would potentially cause the next outbreak is unknown, pre-pandemic vaccine preparation that could provide cross-protection against various H5 strains could be a useful approach in the selection of promising candidate vaccines in the future.  相似文献   

18.
Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype often cause severe pneumonia and multiple organ failure in humans, with reported case fatality rates of more than 60%. To develop a clinical antibody therapy, we generated a human-mouse chimeric monoclonal antibody (MAb) ch61 that showed strong neutralizing activity against H5N1 HPAI viruses isolated from humans and evaluated its protective potential in mouse and nonhuman primate models of H5N1 HPAI virus infections. Passive immunization with MAb ch61 one day before or after challenge with a lethal dose of the virus completely protected mice, and partial protection was achieved when mice were treated 3 days after the challenge. In a cynomolgus macaque model, reduced viral loads and partial protection against lethal infection were observed in macaques treated with MAb ch61 intravenously one and three days after challenge. Protective effects were also noted in macaques under immunosuppression. Though mutant viruses escaping from neutralization by MAb ch61 were recovered from macaques treated with this MAb alone, combined treatment with MAb ch61 and peramivir reduced the emergence of escape mutants. Our results indicate that antibody therapy might be beneficial in reducing viral loads and delaying disease progression during H5N1 HPAI virus infection in clinical cases and combined treatment with other antiviral compounds should improve the protective effects of antibody therapy against H5N1 HPAI virus infection.  相似文献   

19.
Highly pathogenic avian influenza (HPAI) and Newcastle disease (ND) are 2 devastating diseases of poultry, which cause great economic losses to the poultry industry. In the present study, we developed a bivalent vaccine containing antigens of inactivated ND and reassortant HPAI H5N1 viruses as a candidate poultry vaccine, and we evaluated its immunogenicity and protective efficacy in specific pathogen-free chickens. The 6∶2 reassortant H5N1 vaccine strain containing the surface genes of the A/Chicken/Korea/ES/2003(H5N1) virus was successfully generated by reverse genetics. A polybasic cleavage site of the hemagglutinin segment was replaced by a monobasic cleavage site. We characterized the reverse genetics-derived reassortant HPAI H5N1 clade 2.5 vaccine strain by evaluating its growth kinetics in eggs, minimum effective dose in chickens, and cross-clade immunogenicity against HPAI clade 1 and 2. The bivalent vaccine was prepared by emulsifying inactivated ND (La Sota strain) and reassortant HPAI viruses with Montanide ISA 70 adjuvant. A single immunization with this vaccine induced high levels of hemagglutination-inhibiting antibody titers and protected chickens against a lethal challenge with the wild-type HPAI and ND viruses. Our results demonstrate that the bivalent, inactivated vaccine developed in this study is a promising approach for the control of both HPAI H5N1 and ND viral infections.  相似文献   

20.
The nature of influenza virus to randomly mutate and evolve into new types with diverse antigenic determinants is an important challenge in the control of influenza infection. Particularly, variations within the amino acid sequences of major neutralizing epitopes of influenza virus hemagglutinin (HA) hindered the development of universal vaccines against H5N1 lineages. Based on distribution analyses of the identified major neutralizing epitopes of hemagglutinin, we selected three vaccine strains that cover the entire variants in the neutralizing epitopes among the H5N1 lineages. HA proteins of selected vaccine strains were expressed on the baculovirus surface (BacHA), and the preclinical efficacy of the vaccine formulations was evaluated in a mouse model. The combination of three selected vaccine strains could effectively neutralize viruses from clades 1, 2.1, 2.2, 4, 7, and 8 of influenza H5N1 viruses. In contrast, a vaccine formulation containing only adjuvanted monovalent BacHA (mono-BacHA) or a single strain of inactivated whole viral vaccine was able to neutralize only clade 1 (homologous), clade 2.1, and clade 8.0 viruses. Also, the trivalent BacHA vaccine was able to protect 100% of the mice against challenge with three different clades (clade 1.0, clade 2.1, and clade 7.0) of H5N1 strains compared to mono-BacHA or inactivated whole viral vaccine. The present findings provide a rationale for the development of a universal vaccine against H5N1 lineages. Furthermore, baculoviruses displaying HA will serve as an ideal choice for a vaccine in prepandemic or pandemic situations and expedite vaccine technology without the requirement of high-level-biocontainment facilities or tedious protein purification processes.The nature of influenza virus to randomly mutate and evolve into new types with diverse antigenic determinants is an important challenge in the control of influenza infection (20). This has been evidently recognized by the recent outbreaks of H5N1 avian influenza virus infection and the current pandemic situation with H1N1 swine-origin influenza A virus (S-OIV). In fact, it has been well documented in the literature that H5N1 had acquired the ability to infect human tissues due mainly to the occurrence of mutation events (1). Highly pathogenic avian influenza (HPAI) H5N1 viruses are antigenically distinguishable owing to differences in hemagglutinin (HA) sequences, the principal determinant of immunity to influenza virus, resulting in different lineages or clades of H5N1 (13, 33). The control of infection with current H5N1 vaccines does not appear to be effective against heterologous strains or phylogenetically variant clades of H5N1 in part due to variations in the HA sequences, particularly within the neutralizing epitope region. Since present vaccines are based solely on the induction of neutralizing antibodies against these epitopes, differences in these sequences may render current vaccines unqualified for the prevention of influenza globally (15, 28, 31). To overcome such limitations and to completely realize the potential of vaccines worldwide, the concept of universal vaccines based on conserved viral proteins has recently been proposed. The highly conserved ion channel protein (M2) and the nucleoprotein (NP) of influenza virus have been evaluated for the induction of cross-protective cellular immunity and viral clearance (2, 35). Antibodies generated against these conserved proteins may reduce viral spread and accelerate recovery from influenza (14). However, antibodies specific to these proteins are poorly immunogenic and were found previously to be infection permissive (5-7, 13). Thus, the development of a vaccine based on influenza virus hemagglutinin appears to be the only viable option to prevent infections by HPAI viruses such as H5N1 viruses. Nevertheless, amino acid variations within the major antigenic neutralizing epitope regions among H5 subtypes restrict the development of such universal vaccines against different H5N1 lineages.The development of a universal vaccine based entirely on HA of influenza virus is still feasible, if the variation or conservation of neutralizing epitopes among the several HPAI H5N1 virus clades can be identified. An understanding of the distribution pattern of such neutralizing epitopes could help in the design of future vaccines by incorporating two or more ideal H5N1 strains in the vaccine composition. The neutralizing epitopes of the selected viral strains should cover the variations among most H5 subtypes in order to acquire broad-range protective immunity against most H5N1 subtypes. Previous attempts to identify amino acid substitutions within HA sequences of variants that escaped from neutralization by monoclonal antibodies (MAbs) revealed the neutralizing epitope sites of HA (9, 10). Along with previous findings, we report here the identification of other major neutralizing epitopes of H5N1 by mapping their amino acid sequences using neutralizing monoclonal antibodies (n-MAbs). Analysis of the distribution of all identified neutralizing epitopes among H5 subtypes revealed variations within the antigenic determinants of H5N1 subtypes from both human and avian sources. Based on these results, we have selected three vaccine strains comprising the major neutralizing epitopes of HA to cover the entire variants within H5N1 lineages. In order to test our hypothesis in vivo, HA proteins of selected vaccine strains were expressed on the baculovirus surface (BacHA), and the efficacy of the vaccine formulations was evaluated with a mouse model challenged with phylogenetically variant H5N1 strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号