首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Allostery and cooperativity revisited   总被引:1,自引:0,他引:1  
  相似文献   

3.
We report on experimental and theoretical studies of plasmon-induced effects in a hybrid nanostructure composed of light-harvesting complexes and metallic nanoparticles in the form of semicontinuous silver film. The results of continuous-wave and time-resolved spectroscopy indicate that absorption of the light-harvesting complexes is strongly enhanced upon coupling with the metallic film spaced by 25 nm of a dielectric silica layer. This conclusion is corroborated by modeling, which confirms the morphology of the silver island film.  相似文献   

4.
5.
Relating ion channel (iCh) structural dynamics to physiological function remains a challenge. Current experimental and computational techniques have limited ability to explore this relationship in atomistic detail over physiological timescales. A framework associating iCh structure to function is necessary for elucidating normal and disease mechanisms. We formulated a modeling schema that overcomes the limitations of current methods through applications of artificial intelligence machine learning. Using this approach, we studied molecular processes that underlie human IKs voltage-mediated gating. IKs malfunction underlies many debilitating and life-threatening diseases. Molecular components of IKs that underlie its electrophysiological function include KCNQ1 (a pore-forming tetramer) and KCNE1 (an auxiliary subunit). Simulations, using the IKs structure-function model, reproduced experimentally recorded saturation of gating-charge displacement at positive membrane voltages, two-step voltage sensor (VS) movement shown by fluorescence, iCh gating statistics, and current-voltage relationship. Mechanistic insights include the following: 1) pore energy profile determines iCh subconductance; 2) the entire protein structure, not limited to the pore, contributes to pore energy and channel subconductance; 3) interactions with KCNE1 result in two distinct VS movements, causing gating-charge saturation at positive membrane voltages and current activation delay; and 4) flexible coupling between VS and pore permits pore opening at lower VS positions, resulting in sequential gating. The new modeling approach is applicable to atomistic scale studies of other proteins on timescales of physiological function.  相似文献   

6.
7.
8.
The distinctive lateral organization of the protein complexes in the thylakoid membrane investigated by Jan Anderson and co-workers is dependent on the balance of various attractive and repulsive forces. Modulation of these forces allows critical physiological regulation of photosynthesis that provides efficient light-harvesting in limiting light but dissipation of excess potentially damaging radiation in saturating light. The light-harvesting complexes (LHCII) are central to this regulation, which is achieved by phosphorylation of stromal residues, protonation on the lumen surface and de-epoxidation of bound violaxanthin. The functional flexibility of LHCII derives from a remarkable pigment composition and configuration that not only allow efficient absorption of light and efficient energy transfer either to photosystem II or photosystem I core complexes, but through subtle configurational changes can also exhibit highly efficient dissipative reactions involving chlorophyll–xanthophyll and/or chlorophyll–chlorophyll interactions. These changes in function are determined at a macroscopic level by alterations in protein–protein interactions in the thylakoid membrane. The capacity and dynamics of this regulation are tuned to different physiological scenarios by the exact protein and pigment content of the light-harvesting system. Here, the molecular mechanisms involved will be reviewed, and the optimization of the light-harvesting system in different environmental conditions described.  相似文献   

9.
Ion channels in cell membranes are targets for a multitude of ligands including naturally occurring toxins, illicit drugs, and medications used to manage pain and treat cardiovascular, neurological, autoimmune, and other health disorders. In the past decade, the x-ray crystallography revealed 3D structures of several ion channels in their open, closed, and inactivated states, shedding light on mechanisms of channel gating, ion permeation and selectivity. However, atomistic mechanisms of the channel modulation by ligands are poorly understood. Increasing evidence suggest that cationophilic groups in ion channels and in some ligands may simultaneously coordinate permeant cations, which form indispensible (but underappreciated) components of respective receptors. This review describes ternary ligand-metal-channel complexes predicted by means of computer-based molecular modeling. The models rationalize a large body of experimental data including paradoxes in structure-activity relationships, effects of mutations on the ligand action, sensitivity of the ligand action to the nature of current-carrying cations, and action of ligands that bind in the ion-permeation pathway but increase rather than decrease the current. Recent mutational and ligand-binding experiments designed to test the models have confirmed the ternary-complex concept providing new knowledge on physiological roles of metal ions and atomistic mechanisms of action of ion channel ligands.  相似文献   

10.
11.
12.
Plants respond to changes in the environment by triggering a suite of regulatory networks that control and synchronize molecular signaling in different tissues, organs, and the whole plant. Molecular studies through genetic and environmental perturbations, particularly in the model plant Arabidopsis thaliana, have revealed many of the mechanisms by which these responses are actuated. In recent years, mathematical modeling has become a complementary tool to the experimental approach that has furthered our understanding of biological mechanisms. In this review, we present modeling examples encompassing a range of different biological processes, in particular those regulated by light. Current issues and future directions in the modeling of plant systems are discussed.  相似文献   

13.
14.
Many cellular processes require the generation of highly curved regions of cell membranes by interfacial membrane proteins. A number of such proteins are now known, and several mechanisms of curvature generation have been suggested, but so far a quantitative understanding of the importance of the various potential mechanisms remains elusive. Following previous theoretical work, we consider the electrostatic attraction that underlies the scaffold mechanism of membrane bending in the context of the N-BAR domain of amphiphysin. Analysis of atomistic molecular dynamics simulations reveals considerable water between the membrane and the positively charged concave face of the BAR, even when it is tightly bound to highly curved membranes. This results in significant screening of electrostatic interactions, suggesting that electrostatic attraction is not the main driving force behind curvature sensing, supporting recent experimental work. These results also emphasize the need for care when building coarse-grained models of protein-membrane interactions. These results are emphasized by simulations of oligomerized amphiphysin N-BARs at the atomistic and coarse-grained level. In the coarse-grained simulations, we find a strong dependence of the induced curvature on the dielectric screening.  相似文献   

15.
16.
The motif Glu-X-X-His/Asn-X-Arg is conserved in the first and third membrane-spanning domains of all light-harvesting chlorophyll a/b- and a/c-binding proteins in chloroplasts. Molecular modeling of synthetic peptides containing the sequence Glu-Ile-Val-His-Ser-Arg, a motif found in the apoprotein of the major light-harvesting complex in plants, generated a loop structure formed by intrapeptide, electrostatic attraction between Glu and Arg. His, Asn, and charge-compensated Glu-Arg pairs are known ligands of the magnesium atom in chlorophyll. The prediction that this structure should bind two molecules of chlorophyll was confirmed experimentally with an assay based on fluorescence resonance energy transfer between peptides and chlorophyll a. Motifs with both potential ligands bound approximately two times the amount of chlorophyll as one in which His was replaced by Ala. These results support the conclusion that formation of this intermediate, within membranes of the envelope, is a crucial step in assembly of light-harvesting complexes and a mechanism that regulates import of the apoproteins into the chloroplast.  相似文献   

17.
An isolated light-harvesting pigment-protein complex contains polypeptides which bind chlorophyll a and b. The individual complexes can be purified from detergent-solubilized membranes. The isolated light-harvesting complex, when dialyzed to remove detergents, was examined by freeze-fracture electron microscopy. The material consisted of planar sheets of 80-Å subunits which interacted via an edge-to-edge contact. Addition of cations caused the planar light-harvesting complex sheets to become tightly appressed in multilamellar stacks, with distinct subunits still visible within each lamellar sheet. A transition of particle organization from random to crystalline occurred in parallel with the cation-induced lamellar association. Treatment of the dialyzed light-harvesting complex subunits with low levels of the proteolytic enzyme trypsin removed a 2000 molecular weight segment of the major polypeptide of the light-harvesting complex and blocked all subsequent cation-induced changes in structural organization of the isolated light-harvesting complex lamellar sheets.To gain further evidence for mechanisms of cation effects upon the organization of the light-harvesting complex in native membranes, the light-harvesting complex was incorporated into uncharged (phosphatidylcholine) lipid vesicles. The protein complexes spanned the lipid bilayer and were arranged in either a random pattern or in hexagonal crystalline lattices. Addition of either monovalent or divalent cations to ‘low-salt’ (20 mM monovalent cation) vesicles containing light-harvesting complex caused extensive regions of membrane appression to appear. It is concluded that this cation-induced membrane appression is mediated by surface-exposed segments of the light-harvesting complex since (a) phosphatidylcholine vesicles themselves did not undergo cation-induced aggregation, and (b) mild trypsin digestion of the surface-exposed regions of the light-harvesting complex blocked cation-induced lamellar appression. The particles in the appressed vesicle membranes tended to form long, linear arrays of particles, with occasional mixed quasi-crystalline arrays with an angular displacement near 72°. Surface-mediated interactions among light-harvesting complex subunits of different membranes are, therefore, related to changes in structural organization and interaction of the particles within the lipid phase of the membrane.Numerous previous studies have implicated the involvement of the light-harvesting complex in mediating grana stocking in intact chloroplast membranes. The data presented herein provide a simulation of the membrane appression phenomena using a single class of chloroplast-derived membrane subunits. The data demonstrate that specific surface-localized regions of the light-harvesting complex are involved in membrane-membrane interactions.  相似文献   

18.
Ion permeation through voltage-gated sodium channels is modulated by various drugs and toxins. The atomistic mechanisms of action of many toxins are poorly understood. A steroidal alkaloid batrachotoxin (BTX) causes persistent channel activation by inhibiting inactivation and shifting the voltage dependence of activation to more negative potentials. Traditionally, BTX is considered to bind at the channel-lipid interface and allosterically modulate the ion permeation. However, amino acid residues critical for BTX action are found in the inner helices of all four repeats, suggesting that BTX binds in the pore. In the octapeptide segment IFGSFFTL in IIIS6 of a cockroach sodium channel BgNa(V), besides Ser_3i15 and Leu_3i19, which correspond to known BTX-sensing residues of mammalian sodium channels, we found that Gly_3i14 and Phe_3i16 are critical for BTX action. Using these data along with published data as distance constraints, we docked BTX in the Kv1.2-based homology model of the open BgNa(V) channel. We arrived at a model in which BTX adopts a horseshoe conformation with the horseshoe plane normal to the pore axis. The BTX ammonium group is engaged in cation-π interactions with Phe_3i16 and BTX moieties interact with known BTX-sensing residues in all four repeats. Oxygen atoms at the horseshoe inner surface constitute a transient binding site for permeating cations, whereas the bulky BTX molecule would resist the pore closure, thus causing persistent channel activation. Our study reinforces the concept that steroidal sodium channel agonists bind in the inner pore of sodium channels and elaborates the atomistic mechanism of BTX action.  相似文献   

19.
The major protective coat of most viruses is a highly symmetric protein capsid that forms spontaneously from many copies of identical proteins. Structural and mechanical properties of such capsids, as well as their self-assembly process, have been studied experimentally and theoretically, including modeling efforts by computer simulations on various scales. Atomistic models include specific details of local protein binding but are limited in system size and accessible time, while coarse grained (CG) models do get access to longer time and length scales but often lack the specific local interactions. Multi-scale models aim at bridging this gap by systematically connecting different levels of resolution. Here, a CG model for CCMV (Cowpea Chlorotic Mottle Virus), a virus with an icosahedral shell of 180 identical protein monomers, is developed, where parameters are derived from atomistic simulations of capsid protein dimers in aqueous solution. In particular, a new method is introduced to combine the MARTINI CG model with a supportive elastic network based on structural fluctuations of individual monomers. In the parametrization process, both network connectivity and strength are optimized. This elastic-network optimized CG model, which solely relies on atomistic data of small units (dimers), is able to correctly predict inter-protein conformational flexibility and properties of larger capsid fragments of 20 and more subunits. Furthermore, it is shown that this CG model reproduces experimental (Atomic Force Microscopy) indentation measurements of the entire viral capsid. Thus it is shown that one obvious goal for hierarchical modeling, namely predicting mechanical properties of larger protein complexes from models that are carefully parametrized on elastic properties of smaller units, is achievable.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号