首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
目的:探讨64层螺旋CT血管成像(CTA)诊断胚胎型大脑后动脉(FTF)的准确性及其临床价值.方法:回顾性分析62例同时做了64层螺旋CTA和DSA脑血管检查患者的影像学资料,将CTA诊断FTP的结果与DSA检查结果进行比较,分析CTA诊断FTP的准确性.结果:62例中,DSA诊断FTP10例,CTA诊断FTP13例,CTA诊断FTP的敏感性为100%,特异性为96.40%,准确性为96.77%.经Kappa一致性检验,CTA与DSA诊断FTA的结果高度一致(P<0.001).结论:64层螺旋CTA能够无创性准确判断FTP的存在,对筛选FTP患者具有重要意义,能为脑血管疾病的诊断与治疗提供重要信息.  相似文献   

2.
3.

Purpose

To evaluate the scan-rescan reproducibility of high-resolution magnetic resonance imaging (MRI) of middle cerebral artery (MCA) plaque, and calculate the number of subjects needed for future longitudinal clinical studies.

Material and Methods

Twenty two patients with MCA plaque were scanned twice by a T2-weighted fast-spin-echo sequence at 3T. Areas and volumes of MCA lumen, total vessel and plaque were quantified and compared between two repeated scans. Agreement and measurement error was quantified by intraclass correlation coefficient (ICC) and coefficient of variance (CV) as defined by standard deviation (SD) of pair wise difference / mean. Sample size needed to detect 5% to 20% changes in area/volume was calculated using 80% power and 5% significance level.

Results

There was no significant different between the area and volume measurements of two repeated scans (p>0.05) with good agreement (ICC range 0.97–0.98 for area and 0.99 for volume). Relatively small measurement errors were observed with CVs range 6.1%-11.8% for area quantification and 4.9%-8.0% for volume quantification. Volume measurements tended to have 19.7% to 32.2% smaller CVs compared with area measurements. Sample size calculation showed a group of 47 patients was sufficient to detect 5% to 10% changes in MCA area/volume.

Conclusion

High resolution MRI is feasible for quantifying intracranial plaque area and volume in longitudinal clinical studies with low scan-rescan variability. Volume measurement tends to be more reproducible compared with area measurements.  相似文献   

4.

Background

The middle cerebral artery supplies long end-artery branches to perfuse the deep white matter and shorter peripheral branches to perfuse cortical and subcortical tissues. A generalized vasodilatory stimulus such as carbon dioxide not only results in an increase in flow to these various tissue beds but also redistribution among them. We employed a fast step increase in carbon dioxide to detect the dynamics of the cerebral blood flow response.

Methodology/Principal Findings

The study was approved by the Research Ethics Board of the University Health Network at the University of Toronto. We used transcranial ultrasound to measure the time course of middle cerebral artery blood flow velocity in 28 healthy adults. Normoxic, isoxic step increases in arterial carbon dioxide tension of 10 mmHg from both hypocapnic and normocapnic baselines were produced using a new prospective targeting system that enabled a more rapid step change than has been previously achievable. In most of the 28 subjects the responses at both carbon dioxide ranges were characterised by more complex responses than a single exponential rise. Most responses were characterised by a fast initial response which then declined rapidly to a nadir, followed by a slower secondary response, with some showing oscillations before stabilising.

Conclusions/Significance

A rapid step increase in carbon dioxide tension is capable of inducing instability in the cerebral blood flow control system. These dynamic aspects of the cerebral blood flow responses to rapid changes in carbon dioxide must be taken into account when using transcranial blood flow velocity in a single artery segment to measure cerebrovascular reactivity.  相似文献   

5.
In preclinical studies of ischemic brain disorders, it is crucial to measure cerebral blood flow (CBF); however, this requires radiological techniques with heavy instrumentation or invasive procedures. Here, we propose a noninvasive and easy-to-use optical imaging technique for measuring CBF in experimental small animals. Mice were injected with indocyanine green (ICG) via tail-vein catheterization. Time-series near-infrared fluorescence signals excited by 760 nm light-emitting diodes were imaged overhead by a charge-coupled device coupled with an 830 nm bandpass-filter. We calculated four CBF parameters including arrival time, rising time and mean transit time of a bolus and blood flow index based on time and intensity information of ICG fluorescence dynamics. CBF maps were generated using the parameters to estimate the status of CBF, and they dominantly represented intracerebral blood flows in mice even in the presence of an intact skull and scalp. We demonstrated that this noninvasive optical imaging technique successfully detected reduced local CBF during middle cerebral artery occlusion. We further showed that the proposed method is sufficiently sensitive to detect the differences between CBF status in mice anesthetized with either isoflurane or ketamine–xylazine, and monitor the dynamic changes in CBF after reperfusion during transient middle cerebral artery occlusion. The near-infrared optical imaging of ICG fluorescence combined with a time-series analysis of the molecular dynamics can be a useful noninvasive tool for preclinical studies of brain ischemia.  相似文献   

6.
To determine the optimal velocity values in diagnosing unilateral middle cerebral artery (MCA) stenosis by Transcranial Doppler (TCD), and improve the diagnostic accuracy using magnetic resonance angiography (MRA), a total of 302 unilateral MCA stenosis patients undergoing TCD also consented to a MRA of the intracranial arteries. The peak systolic velocity (PSV) and each MCA spectrum for each patient were recorded. Using the MRA to confirm, the degree of middle cerebral artery stenosis was categorized into four groups: normal (normal caliber and signal), mild (<50 %), moderate (50–69 %), severe (70–99 %, or no flow detected). The velocity difference among these four groups was significant (P < 0.001). The optimal PSV values for normal and stenosis were 160 cm/s. For mild and moderate were 200 cm/s, for moderate and severe were 280 cm/s. Using PSV as the diagnostic criteria, the Kappa number was >0.668. The optimal PSV differential value for mild and moderate was 70 cm/s, for moderate and severe at 120 cm/s. Optimal combined criteria for moderate stenosis were PSV >200 cm/s and PSV differential value >70 cm/s (specificity 87.2 %), for severe stenosis were PSV >280 cm/s and PSV differential value >120 cm/s (sensibility 81.6 %). Transcranial Doppler distinguishes normal and MCA stenosis with a reduced lumen diameter of less than 50 %. Using the PSV criteria, TCD has a high coincidence rate with MRA in the diagnosis of MCA stenosis. Combined PSV differential value and the abnormal spectrum may improve the accuracy of TCD in diagnosing moderate or severe stenosis.  相似文献   

7.

Purpose

Determination of mitral flow is an important aspect in assessment of cardiac function. Traditionally, mitral flow is measured by Doppler echocardiography which suffers from several challenges, particularly related to the direction and the spatial inhomogeneity of flow. These challenges are especially prominent in rodents. The purpose of this study was to establish a cardiovascular magnetic resonance (CMR) protocol for evaluation of three-directional mitral flow in a rodent model of cardiac disease.

Materials and Methods

Three-directional mitral flow were evaluated by phase contrast CMR (PC-CMR) in rats with aortic banding (AB) (N = 7) and sham-operated controls (N = 7). Peak mitral flow and deceleration rate from PC-CMR was compared to conventional Doppler echocardiography. The accuracy of PC-CMR was investigated by comparison of spatiotemporally integrated mitral flow with left ventricular stroke volume assessed by cine CMR.

Results

PC-CMR portrayed the spatial distribution of mitral flow and flow direction in the atrioventricular plane throughout diastole. Both PC-CMR and echocardiography demonstrated increased peak mitral flow velocity and higher deceleration rate in AB compared to sham. Comparison with cine CMR revealed that PC-CMR measured mitral flow with excellent accuracy. Echocardiography presented significantly lower values of flow compared to PC-CMR.

Conclusions

For the first time, we show that PC-CMR offers accurate evaluation of three-directional mitral blood flow in rodents. The method successfully detects alterations in the mitral flow pattern in response to cardiac disease and provides novel insight into the characteristics of mitral flow.  相似文献   

8.

Objectives

Pulse wave velocity (PWV) is the proposed gold-standard for the assessment of aortic elastic properties. The aim of this study was to compare aortic PWV determined by a recently developed oscillometric device with cardiac magnetic resonance imaging (CMR).

Methods

PWV was assessed in 40 volunteers with two different methods. The oscillometric method (PWVOSC) is based on a transfer function from the brachial pressure waves determined by oscillometric blood pressure measurements with a common cuff (Mobil-O-Graph, I.E.M. Stolberg, Germany). CMR was used to determine aortic PWVCMR with the use of the transit time method based on phase-contrast imaging at the level of the ascending and abdominal aorta on a clinical 1.5 Tesla scanner (Siemens, Erlangen, Germany).

Results

The median age of the study population was 34 years (IQR: 24–55 years, 11 females). A very strong correlation was found between PWVOSC and PWVCMR (r = 0.859, p < 0.001). Mean PWVOSC was 6.7 ± 1.8 m/s and mean PWVCMR was 6.1 ± 1.8 m/s (p < 0.001). Analysis of agreement between the two measurements using Bland-Altman method showed a bias of 0.57 m/s (upper and lower limit of agreement: 2.49 m/s and -1.34 m/s). The corresponding coefficient of variation between both measurements was 15%.

Conclusion

Aortic pulse wave velocity assessed by transformation of the brachial pressure waveform showed an acceptable agreement with the CMR-derived transit time method.  相似文献   

9.
The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF) was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles, as measured by the ultrasound probe, highly correlated with total flow determined by MRI, R = 0.89 and P = 10−7. Linear regression yielded a slope of 1.2 and a y-axis intercept of 259 mL/min. The mean total volume of the investigated muscle tissue corresponds to an offset perfusion of 4.7mL/(min ⋅ 100cm3). The DCE-MRI technique presented here uses a blood pool contrast medium in combination with a two-compartment tracer kinetic model and allows absolute quantification of low-perfused non-cerebral organs such as muscles.  相似文献   

10.
弥散加权成像联合磁共振波谱分析在脑梗死中的应用研究   总被引:1,自引:0,他引:1  
目的探讨脑梗死弥散加权成像(DWI)和磁共振波谱分析(MRS)的特点和影响因素,及二者对评估脑梗死的临床价值。方法采用Philips Achieva 1.5T双梯度超导磁共振扫描仪,对72例临床疑是脑梗死患者行常规T1WI、T2WI、FLAIR、DWI、MRS检查,在工作站上测定梗死核心区、内缘区、外缘区、周围区和镜像区的ADC值和代谢物Lac、NAA、Cr、Cho、NAA/Cr、Lac/Cr、Lac/NAA值。结果 DWI显示的梗死灶范围较常规MRI像更加准确、清晰;超急性期、急性期、亚急性期和慢性期梗死核心区的Lac/Cr值和Lac/NAA值高于对侧镜像区,ADC值和NAA/Cr值低于对侧镜像区,存在统计学差异(P〈0.05);DWI的影响因素有b值、扩散系数、T2穿透效应和各向异性等,MRS的影响因素有磁场均匀性、压水压脂性能、体素、TE与TR、组织代谢物浓度和波谱采集链等。结论 DWI结合MRS能更加全面地评估缺血半暗带,更精确地对脑梗死进行分期和定位。  相似文献   

11.
It is generally accepted that N-acetylaspartate (NAA) can be used a biochemical marker for assessing neuronal viability/integrity after cerebral ischemia. However, this view has recently been questioned based on observations showing that after a photothrombotic permanent ischemia the acute decline of NAA in the infracted regions, where massive neuronal loss persists, is reversible over time. In this study, we measured the longitudinal changes of NAA and total creatine (Cr) in ischemic rat brain after a 15-min transient middle cerebral artery occlusion (MCAO) by in vivo 1H magnetic resonance spectroscopy. The results showed that the levels of NAA and total Cr in the ischemic lesion decrease significantly at 1 day post-ichemia, followed by spontaneous recovery to the control levels by 2 weeks and remained stable thereafter up to 16 weeks. The normalization of NAA and total Cr levels was associated histologically with persisted neuronal loss up to 90 % in the ischemic core, and accompanied by marked reactive astrocytic responses occurring with a similar time course. The absolute T2 relaxation time in the ischemic lesion increased during acute phase, and declined afterwards during subacute and chronic phases of 15-min MCAO. The delayed decreases of T2 in the ischemic lesion might be associated with deposition of paramagnetic species, such as manganese and iron originated from chronic inflammation, vascular degradation and/or hemorrhagic transformation. The results of this study give further support to the hypothesis that the recovery of NAA after cerebral ischemia might have contributions from reactive glia cells, and caution the use of NAA as a specific neuronal marker during the chronic stage of cerebral ischemia.  相似文献   

12.
To gain insights into the working mechanism of morphine, regional cerebral blood flow (rCBF) patterns after morphine administration were assessed in dogs. In a randomized cross-over experimental study, rCBF was estimated with 99mTc-Ethylcysteinate Dimer single photon emission computed tomography in 8 dogs at baseline, at 30 minutes and at 120 minutes after a single bolus of morphine. Perfusion indices (PI) in the frontal, parietal, temporal and occipital cortex and in the subcortical and cerebellar region were calculated. PI was significantly decreased 30 min after morphine compared to baseline in the right frontal cortex. The left parietal cortex and subcortical region showed a significantly increased PI 30 min after morphine compared to baseline. No significant differences were noted for the other regions or at other time points. In conclusion, a single bolus of morphine generated a changing rCBF pattern at different time points.  相似文献   

13.
A simple and sensitive kinetic-spectrophotometric method is developed for the determination of trace amounts of iodine in blood serum samples based on its catalytic effect on the oxidation of Nile Blue A by potassium bromate in sulfuric acid medium and at 25°C. The absorbance is measured at 595.5?nm with the fixed-time method. The optimization of the operating conditions regarding concentration of the reagents, temperature, and interferences are also investigated. The calibration curve is linear over the concentration range between 20.0 to 500.0?ng?ml(-1) of iodine with good precision and accuracy. The detection limit of the method is down to 12.0?ng?ml(-1). The relative standard deviation for a standard solution of 100.0?ng?ml(-1) of iodine is 1.32% (n?=?10). The proposed method provides a highly sensitive, selective, and relatively rapid assay for iodine at ultra trace level without any pre-concentration and separation step. The method was applied to the determination of iodine in blood serum samples. The analytical results of the real samples were in excellent agreement with standard method.  相似文献   

14.

Background

Magnetic resonance imaging (MRI) is sensitive to early atherosclerotic changes such as positive remodeling in patients with coronary artery disease (CAD). We assessed prevalence, quality, and extent of coronary atherosclerosis in a group of healthy subjects compared to patients with confirmed CAD.

Methodology

Twenty-two patients with confirmed CAD (15M, 7F, mean age 60.4±10.4 years) and 26 healthy subjects without history of CAD (11M, 15F, mean age 56.1±4.4 years) underwent MRI of the right coronary artery (RCA) and vessel wall (MR-CVW) on a clinical 1.5T MR-scanner. Wall thickness measurements of both groups were compared.

Principal Findings

Stenoses of the RCA (both < and ≥50% on CAG) were present in all patients. In 21/22 patients, stenoses detected at MRI corresponded to stenoses detected with conventional angiography. In 19/26 asymptomatic subjects, there was visible luminal narrowing in the MR luminography images. Fourteen of these subjects demonstrated corresponding increase in vessel wall thickness. In 4/26 asymptomatic subjects, vessel wall thickening without luminal narrowing was present. Maximum and mean wall thicknesses in patients were significantly higher (2.16 vs 1.92 mm, and 1.38 vs 1.22 mm, both p<0.05).

Conclusions

In this cohort of middle-aged individuals, both patients with stable angina and angiographically proven coronary artery disease, as well as age-matched asymptomatic subjects. exhibited coronary vessel wall thickening detectable with MR coronary vessel wall imaging. Maximum and mean wall thicknesses were significantly higher in patients. The vast majority of asymptomatic subjects had either positive remodeling without luminal narrowing, or non-significant stenosis.

Trial registration

ClinicalTrials.gov NCT00456950  相似文献   

15.
This investigation tested the importance of excitatory amino acids' effects on regional cerebral O2 consumption and the concomitant changes in cerebral blood flow (rCBF) in isoflurane anesthetized rats. In the glutamate or N-methyl-D-aspartate (NMDA) groups, 10–2 M glutamate or NMDA was topically applied to the right cortex and the left cortex was used as a control. One mg/kg dizocilpine maleate (MK-801), a non-competitive NMDA receptor antagonist, was administered (iv) to the MK-801 group and saline was given to the control group. Cortical rCBF was determined using 14C-iodoantipyrine and regional O2 extraction was measured microspectrophotometrically. Cerebral O2 consumption increased 77% after glutamate (contralateral cortex: 9.0 ± 1.1 ml O2/min/100 g, glutamate treated cortex: 15.9 ± 3.9), while a 46% increase was observed with the same concentration of NMDA (contralateral cortex: 9.8 ± 2.0, NMDA treated cortex: 14.3 ± 5.5). After MK-801, the O2 consumption decreased to 37% of the control value (control cortex: 7.0 ± 1.3, MK-801 treated cortex: 2.6 ± 3.9). MK-801 significantly decreased cerebral O2 extraction from 7.1 ± 1.3 ml O2/100 ml (control cortex) to 5.3 ± 0.6 (MK-801 treated cortex). However, there was no significant difference in cerebral O2 extraction between treated and contralateral cortex in either the glutamate or NMDA groups. The increase in O2 consumption caused by glutamate or NMDA was coupled with increased rCBF. Glutamate increased rCBF from 95 ± 5 ml/min/100 g (contralateral cortex) to 165 ± 31 (treated cortex), while NMDA increased rCBF from 114 ± 12 (contralateral cortex) to 178 ± 60 (treated cortex). MK-801 decreased O2 consumption with a lesser decrease of rCBF. The rCBF was 48 ± 9 in the MK-801 treated cortex and 99 ± 22 in the control cortex. Some substances produced by the activation of NMDA receptors may be related to the coupling of cerebral metabolism and blood flow, since after blockade of NMDA receptors with MK-801, this relationship is uncoupled. These findings suggest that glutamatergic processes have a major effect on cerebral O2 consumption and that this is at least partly due to NMDA receptors.  相似文献   

16.
Under control conditions, superfused hippocampal slices exhibited a significantly higher phosphocreatine (PCr)/ATP ratio than cortical slices; the evidence suggests that this is due to lower concentrations of ATP, rather than higher concentrations of PCr. Glutamate caused relatively rapid decreases in PCr and ATP levels to approximately 45%, accompanied or immediately followed by an increased free intracellular calcium concentration ([Ca2+]i) and the release of Zn2+ in the cortex. In the hippocampus PCr and ATP decreased further to approximately 20% of control values, but the changes in [Ca2+]i and Zn2+ content were slower. This is in contrast to the effects of depolarisation, which produced the same rapid changes in the energy state and [Ca2+]i, with no detectable Zn2+, in both tissues. NMDA causes effects similar to those of glutamate in the cortex (decreases in the energy state, increased [Ca2+]i, and release of Zn2+). Pretreatment of the cortex for 1 h with the NMDA blocker MK-801 prevented all of the observed effects of NMDA. In contrast, pretreatment with MK-801 had no detectable effect on the increase in [Ca2+]i or the decreases in PCr and ATP caused by glutamate, although it prevented the release of zinc. The results are discussed in relation to the function of the NMDA subtype of glutamate receptor in excitotoxicity.  相似文献   

17.

Background and Objectives

Carotid artery stenting (CAS) is an important therapeutic strategy for patients with carotid artery stenosis. However, the potential influence of CAS on cognitive function in patients with carotid artery stenosis and cerebral lacunar infarction has not been determined. This study investigated changes in cognitive function associated with CAS and the factors related to these changes.

Methods

This prospective cohort study comprised 579 Chinese patients with cerebral lacunar infarction and carotid artery stenosis for whom CAS was indicated, and a matched control group of 552 healthy individuals. Cognitive function before CAS and at scheduled intervals from 6 months to 3 years was assessed with instruments that included the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scale. Potential factors that might affect cognitive function were analyzed via logistic regression.

Results

The MMSE and MoCA scores of the patients before CAS were significantly lower than that of the control subjects. These scores were significantly higher 6 months after CAS and sustained or increased throughout the 3-year follow-up. Also significantly improved after CAS from baseline were scores for an alternating trail test, cube copying, clock-drawing, attention, and delayed recall in an auditory-verbal learning test. Logistic regression analyses showed that age greater than 65 y, little education, diabetes, and hypertension were independent risk factors for deteriorated MoCA scores 3 years after CAS.

Conclusion

CAS was associated with significantly improved cognitive function in cerebral lacunar infarction patients with severe stenosis.  相似文献   

18.
Liu X  Chi OZ  Weiss HR 《Neurochemical research》2003,28(12):1799-1804
This investigation was performed to evaluate the effects of ACPD [(1S, 3R)-1-aminocyclopentane-1,3-dicarboxylic acid], a metabotropic glutamate receptor agonist, on cerebral O2 consumption during focal cerebral ischemia. Male Wistar rats were placed in control (n = 7) and ACPD (n = 7) groups under isoflurane anesthesia. Twenty minutes after middle cerebral artery (MCA) occlusion, gauze sponges with 10–5 M ACPD or normal saline were placed on the ischemic cortex (IC) for a period of 40 min and were changed every 10 min. One hour after MCA occlusion, regional cerebral blood flow (rCBF) was determined using the C14-iodoantipyrine autoradiographic technique. Regional arterial and venous oxygen saturation were determined using microspectrophotometry. There were no statistical differences in vital signs, blood gases, and hemoglobin between the groups. In the control group, the cerebral blood flow and oxygen consumption of the IC were significantly lower than the contralateral cortex (rCBF: 45 ± 11 vs. 110 ± 11 ml/min/100 g, O2 consumption: 2.9 ± 0.4 vs. 5.4 ± 1.1 ml O2/min/100 g). ACPD did not change regional cerebral blood flow of the IC, but did significantly increase the oxygen extraction (7.8 ± 0.2 vs. 6.9 ± 0.3 ml O2/100 ml) and oxygen consumption of the IC (4.3 ± 1.5 vs. 2.9 ± 0.4) compared to the control IC. Our data demonstrated that topical application of 10–25 M ACPD to the ischemic area worsened cerebral O2 balance. These data suggest that metabotropic glutamate receptors are not maximally activated during ischemia in the temporal cortex.  相似文献   

19.
Electrophysiological and hemodynamic data can be integrated to accurately and precisely identify the generators of abnormal electrical activity in drug-resistant focal epilepsy. Arterial Spin Labeling (ASL), a magnetic resonance imaging (MRI) technique for quantitative noninvasive measurement of cerebral blood flow (CBF), can provide a direct measure of variations in cerebral perfusion associated with the epileptic focus. In this study, we aimed to confirm the ASL diagnostic value in the identification of the epileptogenic zone, as compared to electrical source imaging (ESI) results, and to apply a template-based approach to depict statistically significant CBF alterations. Standard video-electroencephalography (EEG), high-density EEG, and ASL were performed to identify clinical seizure semiology and noninvasively localize the epileptic focus in 12 drug-resistant focal epilepsy patients. The same ASL protocol was applied to a control group of 17 healthy volunteers from which a normal perfusion template was constructed using a mixed-effect approach. CBF maps of each patient were then statistically compared to the reference template to identify perfusion alterations. Significant hypo- and hyperperfused areas were identified in all cases, showing good agreement between ASL and ESI results. Interictal hypoperfusion was observed at the site of the seizure in 10/12 patients and early postictal hyperperfusion in 2/12. The epileptic focus was correctly identified within the surgical resection margins in the 5 patients who underwent lobectomy, all of which had good postsurgical outcomes. The combined use of ESI and ASL can aid in the noninvasive evaluation of drug-resistant epileptic patients.  相似文献   

20.
应用鼠颈动脉结扎模型,采用原位杂交、免疫组化技术观察血管单核细胞趋化蛋白-1(monocyte chemoattractant protein-1, MCP-1)的表达及内膜增生情况,探讨辛伐他汀抗内膜增生机制.结果发现损伤血管内膜增生明显,MCP-1的表达增加;辛伐他汀干预可明显抑制血管MCP-1的表达及新生内膜形成.提示血管内膜增生可能与MCP-1表达上调有关,辛伐他汀抑制内膜增生也许通过MCP-1介导.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号