首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor hypoxia induces epithelial-mesenchymal transition (EMT), which induces invasion and metastasis, and is linked to cancer stem cells (CSCs). Whether EMT generates CSCs de novo, enhances migration of existing CSCs or both is unclear. We examined patient tissue of pancreatic ductal adenocarcinoma (PDA) along with carcinomas of breast, lung, kidney, prostate and ovary. For in vitro studies, five established PDA cell lines classified as less (CSClow) and highly aggressive CSC-like cells (CSChigh) were examined by single and double immunofluorescence microscopy, wound-, transwell-, and time-lapse microscopy. HIF-1α and Slug, as well as HIF-2α and CD133 were co-expressed pointing to a putative co-existence of hypoxia, EMT and CSCs in vivo. CSChigh cells exhibited high basal expression of the mesenchymal Vimentin protein but low or absent expression of the epithelial marker E-cadherin, with the opposite result in CSClow cells. Hypoxia triggered altering of cell morphology from an epithelial to a mesenchymal phenotype, which was more pronounced in CSChigh cells. Concomitantly, E-cadherin expression was reduced and expression of Vimentin, Slug, Twist2 and Zeb1 enhanced. While hypoxia caused migration in all cell lines, velocity along with the percentage of migrating, polarized and pseudopodia-forming cells was significantly higher in CSChigh cells. These data indicate that hypoxia-induced EMT occurs in PDA and several other tumor entities. However although hypoxia-induced EMT signaling occurs in all tumor cell populations, only the stem-like cells acquire high migratory potential and thus may be responsible for invasion and metastasis.  相似文献   

2.
Subpopulations of cancer stem cells (CSCs) or cancer stem-like cells (CSLCs) have been identified from most tumors, including pancreatic cancer (PC), and the existence of these cells is clinically relevant. Emerging evidence suggests that CSLCs participate in cell growth/proliferation, migration/invasion, metastasis, and chemo-radiotherapy resistance, ultimately contributing to poor clinical outcome. However, the pathogenesis and biological significance of CSLCs in PC has not been well characterized. In the present study, we found that isolated triple-marker-positive (CD44+/CD133+/EpCAM+) cells of human PC MiaPaCa-2 and L3.6pl cells behave as CSLCs. These CSLCs exhibit aggressive behavior, such as increased cell growth, migration, clonogenicity, and self-renewal capacity. The mRNA expression profiling analysis showed that CSLCs (CD44+/CD133+/EpCAM+) exhibit differential expression of more than 1,600 mRNAs, including FoxQ1, compared with the triple-marker-negative (CD44/CD133/EpCAM) cells. The knockdown of FoxQ1 by its siRNA in CSLCs resulted in the inhibition of aggressive behavior, consistent with the inhibition of EpCAM and Snail expression. Mouse xenograft tumor studies showed that CSLCs have a 100-fold higher potential for tumor formation and rapid tumor growth, consistent with overexpression of CSC-associated markers/mediators, including FoxQ1, compared with its parental MiaPaCa-2 cells. The inhibition of FoxQ1 attenuated tumor formation and growth, and expression of CSC markers in the xenograft tumor derived from CSLCs of MiaPaCa-2 cells. These data clearly suggest the role of differentially expressed genes in the regulation of CSLC characteristics, further suggesting that targeting some of these genes could be important for the development of novel therapies for achieving better treatment outcome of PC.  相似文献   

3.
Hepatocellular carcinoma (HCC) is a prevalent disease worldwide, and the majority of HCC-related deaths occur due to local invasion and distant metastasis. Cancer stem cells (CSCs) are a small subpopulation of cancer cells that have been hypothesized to be responsible for metastatic disease. Recently, we and others have identified a CSC population from human HCC cell lines and xenograft tumors characterized by their expression of CD133. However, the precise molecular mechanisms by which CD133+ cancer stem-like cells mediate HCC metastasis have not been sufficiently analyzed. Here, we have sorted HCC cells using CD133 as a cancer stem cell (CSC) marker by magnetic-activated cell sorting (MACS) and demonstrated that the CD133+ HCC cells not only possess greater migratory and invasive capacity in vitro but are also endowed with enhanced metastatic capacity in vivo and in human HCC specimens when compared to CD133 HCC cells. Gene expression analysis of the CD133+ and CD133 cells of the HCC line SMMC-7721 revealed that G protein-coupled receptor 87 (GPR87) is highly expressed in CD133+ HCC cells. In this study, we explored the role of GPR87 in the regulation of CD133 expression. We demonstrated that the overexpression of GPR87 up-regulated CD133 expression, promoted CSC-associated migratory and invasive properties in vitro, and increased tumor initiation in vivo. Conversely, silencing of GPR87 expression reduced the levels of CD133 expression. Conclusion: GPR87 promotes the growth and metastasis of CD133+ cancer stem-like cells, and our findings may reveal new targets for HCC prevention or therapy.  相似文献   

4.
p97/VCP, an evolutionarily concerned ATPase, partakes in multiple cellular proteostatic processes, including the endoplasmic reticulum (ER)-associated protein degradation (ERAD). Elevated expression of p97 is common in many cancers and is often associated with poor survival. Here we report that the levels of p97 positively correlated with the histological grade, tumor size, and lymph node metastasis in breast cancers. We further examined p97 expression in the stem-like cancer cells or cancer stem cells (CSCs), a cell population that purportedly underscores cancer initiation, therapeutic resistance, and recurrence. We found that p97 was consistently at a higher level in the CD44+/CD24, ALDH+, or PKH26+ CSC populations than the respective non-CSC populations in human breast cancer tissues and cancer cell lines and p97 expression also positively correlated with that of SOX2, another CSC marker. To assess the role of p97 in breast cancers, cancer proliferation, mammosphere, and orthotopic growth were analyzed. Similarly as p97 depletion, two pharmacological inhibitors, which targets the ER-associated p97 or globally inhibits p97’s ATPase activity, markedly reduced cancer growth and the CSC population. Importantly, depletion or inhibition of p97 greatly suppressed the proliferation of the ALDH+ CSCs and the CSC-enriched mammospheres, while exhibiting much less or insignificant inhibitory effects on the non-CSC cancer cells. Comparable phenotypes produced by blocking ERAD suggest that ER proteostasis is essential for the CSC integrity. Loss of p97 gravely activated the unfolded protein response (UPR) and modulated the expression of multiple stemness and pluripotency regulators, including C/EBPδ, c-MYC, SOX2, and SKP2, which collectively contributed to the demise of CSCs. In summary, p97 controls the breast CSC integrity through multiple targets, many of which directly affect cancer stemness and are induced by UPR activation. Our findings highlight the importance of p97 and ER proteostasis in CSC biology and anticancer therapy.Subject terms: Breast cancer, Endoplasmic reticulum, ER-associated degradation  相似文献   

5.
Patients with advanced head and neck squamous cell carcinoma (HNSCC) have a poor prognosis with the currently available therapy, and tumor recurrence is frequently observed. The discovery of specific membrane-associated cancer stem cell (CSC) markers is crucial for the development of novel therapeutic strategies to target these CSCs. To address this issue, we established sphere cultures to enrich CSCs and used them for plasma membrane proteomics to identify specific membrane signatures of the HNSCC spheres. Of a dataset that included a total of 376 identified proteins, 200 were bona fide membrane proteins. Among them, 123 proteins were at least 1.5-fold up- or down-regulated in the spheres relative to the adherent cultures. These proteins included cell adhesion molecules, receptors, and transporter proteins. Some of them play key roles in wnt, integrin, and TGFβ signaling pathways. When we compared our dataset with two published hESC membrane protein signatures, we found 18 proteins common to all three of the databases. CD166 and CD44 were two such proteins. Interestingly, the expression of CD166, rather than that of the well-established HNSCC CSC marker CD44, was significantly related to the malignant behavior of HNSCC. Relative to CD166low HNSCC cells, CD166high HNSCC cells had a greater sphere-formation ability in vitro and tumor formation ability in vivo. Patients whose tumors expressed high levels of CD166 had a significantly poorer clinical outcome than those whose tumors expressed low levels of CD166 (cohort 1: 96 cases, p = 0.040), whereas the level of CD44 expression had only a marginal influence on the clinical outcome of patients with HNSCC (p = 0.078). The level of CD166 expression in HNSCC tumors was also associated with the tumor recurrence rate (cohort 2: 104 cases, p = 0.016). This study demonstrates that CD166 is a valuable cell surface marker for the enrichment of HNSCC stem cells and that plasma membrane proteomics is a promising biological tool for investigating the membrane proteins of CSCs.Head and neck squamous cell carcinoma (HNSCC)1 is the sixth most common cancer worldwide. Despite ongoing improvement in traditional treatments, the long-term survival rate of patients with HNSCC has not significantly improved over the past several decades. More than 60% of patients with advanced tumors or localized lymph node metastases die within five years of their diagnosis (1). Tumor recurrence and resistance to therapy are the major causes of death. Recently, newly recognized cancer stem cells (CSCs) or tumor-initiating cells have been associated in a cause-and-effect manner with tumor recurrence and resistance to therapy. The concept of CSCs was established because of the heterogeneous nature of cancer and suggests that CSCs are a subpopulation of cancer cells with stem-cell-like traits and the source of all cells in the cancer. Conventional cancer therapies such as chemotherapy and radiotherapy may destroy only those cells that form the bulk of the tumor, leaving the CSCs intact and able to give rise to tumor recurrence. Based on this theory, researchers are searching for therapies that would destroy CSCs in the hope of finally curing cancer (2). In order to develop strategies that target CSCs, experimental assays are required to determine how to distinguish CSCs from their progeny. Different methods have been used to isolate CSCs from a range of hematopoietic and solid tumors, and some CSC-specific cell surface markers have been found. These markers are primarily selected from the corresponding normal stem-cell markers based on their heterogeneous expression in the pertinent cancers. Despite some controversy, the CD34+CD38- marker signature was chosen to define the CSCs of leukemia (3), the CD44+CD24- signature was chosen to define breast cancer CSCs (4), and the CD44 marker was chosen to define the CSCs of HNSCC (5). Though membrane proteins represent only one-third of the proteins encoded by the human genome, they represent more than two-thirds of the known protein targets of drugs. These cell surface markers are not only useful for enriching CSCs from different tumors, but also of significant interest for drug discovery.However, as more cell surface markers for different cancers have been identified, conflicting results have been reported regarding the usefulness of some of the markers and the reproducibility of some of the marker profiles (6). Quintana et al. examined the expression of 22 common CSC markers in melanoma and found that none of them were exclusively enriched in tumorigenic cells relative to non-tumorigenic cells derived from melanoma (7). CD133 is a widely accepted cell surface marker for glioblastoma CSCs, but Beier et al. found that some glioblastoma CSCs were CD133- (8). CD44 is a CSC marker that is commonly expressed by different malignancies of hematopoietic and epithelial origin, including HNSCC (5). However, increasing data have demonstrated a high level of expression of CD44 in the great majority of cells in head and neck tissues, including normal mucosa and carcinomas, and its subsequent expression could not be used to distinguish normal from benign or malignant epithelia of the head and neck. These observations suggest the need for a comprehensive investigation and greater understanding of the cell surface molecules of CSCs.Many different “omic” technologies have shown promise as means to identify markers for cancer stem cells and tumors (9). Among them, membrane proteomics can directly detect changes in the cell surface content and provide insights into the post-translational regulation of cell surface functions. Therefore, in this study, we chose to use membrane proteomics both to investigate the cell surface molecules of CSCs that were enriched from the HNSCC cell populations based on their ability to form spheres and to relate their expression to that of stem cell traits. Our results may contribute to further clinical applications of CSCs by providing tools for purifying and identifying CSCs.  相似文献   

6.
Identifying and sorting highly tumorigenic and metastatic tumor cells from a heterogeneous cell population is a daunting challenge. Here, we show that microfluidic devices can be used to sort marker‐based heterogeneous cancer stem cells (CSC) into mechanically stiff and soft subpopulations. The isolated soft tumor cells (< 400 Pa) but not the stiff ones (> 700 Pa) can form a tumor in immunocompetent mice with 100 cells per inoculation. Notably, only the soft, but not the stiff cells, isolated from CD133+, ALDH+, or side population CSCs, are able to form a tumor with only 100 cells in NOD‐SCID or immunocompetent mice. The Wnt signaling protein BCL9L is upregulated in soft tumor cells and regulates their stemness and tumorigenicity. Clinically, BCL9L expression is correlated with a worse prognosis. Our findings suggest that the intrinsic softness is a unique marker of highly tumorigenic and metastatic tumor cells.  相似文献   

7.
CD90 (Thy-1) plays important roles in oncogenesis and shows potential as a candidate marker for cancer stem cells (CSCs) in various malignancies. Herein, we investigated the expression of CD90 in pancreatic adenocarcinoma (PDAC), with a comparison to normal pancreas and non-malignant pancreatic disease, by immunohistochemical (IHC) analysis of tissue microarrays containing 183 clinical tissue specimens. Statistical analysis was performed to evaluate the correlation between CD90 expression and the major clinicopathological factors after adjustment of age and gender. The IHC data showed that CD90 was significantly overexpressed in PDAC and its metastatic cancers as compared to chronic pancreatitis and benign islet tumors, while it was negative in normal pancreas and 82.7% of adjacent normal pancreas tissues. The abundant CD90 expression was predominantly present in PDAC stroma, such as fibroblasts and vascular endothelial cells, which could serve as a promising marker to distinguish pancreatic adenocarcinoma from normal pancreas and non-malignant pancreatic diseases. Double immunostaining of CD90 with CD24, a CSC marker for PDAC, showed that there was little overlap between these two markers. However, CD90+ fibroblast cells were clustered around CD24+ malignant ducts, suggesting that CD90 may be involved in the tumor-stroma interactions and promote pancreatic cancer development. Furthermore, CD90 mostly overlapped with α-smooth muscle actin (αSMA, a marker of activated pancreatic stellate cells (PSCs)) in PDAC stroma, which demonstrated that CD90+ stromal cells consist largely of activated PSCs. Double immunostaining of CD90 and a vascular endothelial cell marker CD31 demonstrated that CD90 expression on vascular endothelial cells was significantly increased in PDACs as compared to normal pancreas and non-malignant pancreatic diseases. Our findings suggest that CD90 could serve as a promising marker for pancreatic adenocarcinoma where desmoplastic stroma plays an important role in tumor growth and angiogenesis.  相似文献   

8.
Reconstitution of tumor development in immunodeficient mice from disaggregated primary human tumor cells is always challenging. The main goal of the present study is to establish a reliable assay system that would allow us to reproducibly reconstitute human prostate tumor regeneration in mice using patient tumor-derived single cells. Using many of the 114 untreated primary human prostate cancer (HPCa) samples we have worked on, here we show that: 1) the subcutaneum represents the most sensitive site that allows the grafting of the implanted HPCa pieces; 2) primary HPCa cells by themselves fail to regenerate tumors in immunodeficient hosts; 3) when coinjected in Matrigel with rUGM (rat urogenital sinus mesenchyme), CAF (carcinoma-associated fibroblasts), or Hs5 (immortalized bone marrow derived stromal) cells, primary HPCa cells fail to initiate serially transplantable tumors in NOD/SCID mice; and 4) however, HPCa cells coinjected with the Hs5 cells into more immunodeficient NOD/SCID-IL2Rγ−/− (NSG) mice readily regenerate serially transplantable tumors. The HPCa/Hs5 reconstituted ‘prostate’ tumors present an overall epithelial morphology, are of the human origin, and contain cells positive for AR, CK8, and racemase. Cytogenetic analysis provides further evidence for the presence of karyotypically abnormal HPCa cells in the HPCa/Hs5 tumors. Of importance, HPCa/Hs5 xenograft tumors contain EpCAM+ cells that are both clonogenic and tumorigenic. Surprisingly, all HPCa/Hs5 reconstituted tumors are undifferentiated, even for HPCa cells derived from Gleason 7 tumors. Our results indicate that primary HPCa cells coinjected with the immortalized Hs5 stromal cells generate undifferentiated tumors in NSG mice and we provide evidence that undifferentiated HPCa cells might be the cells that possessed tumorigenic potential and regenerated HPCa/Hs5 xenograft tumors.  相似文献   

9.
According to the cancer stem cell (CSC) model, higher CD133 expression in tumor tissue is associated with metastasis and poor prognosis in colon cancer. As such, the CD133-positive (CD133+) subpopulation of cancer cells is believed to play a central role in tumor development and metastatic progression. Although CD133+ cells are believed to display more CSC-like behavior and be solely responsible for tumor colonization, recent research indicates that CD133 cells from metastatic colon tumors not only also possess colonization capacity but also promote the growth of larger tumors in a mouse model than CD133+ cells, suggesting that an alternative mechanism of metastasis exists. This study investigated this possibility by examining the cell viability, tumorigenicity, and proliferation and growth capacity of the CD133+ and CD133 subpopulations of the SW620 cell line, a human metastatic colon cancer cell line, in both an in vitro cell model and an in vivo mouse model. While both SW620 CD133− and SW620CD133+ cells were found to engage in bidirectional cell-type switching in reaction to exposure to environmental stressors, including hypoxia, a cell adhesion-free environment, and extracellular matrix stimulation, both in vitro and in vivo, CD133 cells were found to have a growth advantage during early colonization due to their greater resistance to proliferation inhibition. Based on these findings, a hypothetical model in which colon cancer cells engage in cell-type switching in reaction to exposure to environmental stressors is proposed. Such switching may provide a survival advantage during early colonization, as well as that explain previous conflicting observations.  相似文献   

10.
Although chemotherapy is used to treat most advanced solid tumors, recurrent disease is still the major cause of cancer-related mortality. Cancer stem cells (CSCs) have been the focus of intense research in recent years because they provide a possible explanation for disease relapse. However, the precise role of CSCs in recurrent disease remains poorly understood and surprisingly little attention has been focused on studying the cells responsible for re-initiating tumor growth within the original host after chemotherapy treatment. We utilized both xenograft and genetically engineered mouse models of non-small cell lung cancer (NSCLC) to characterize the residual tumor cells that survive chemotherapy treatment and go on to cause tumor regrowth, which we refer to as tumor re-initiating cells (TRICs). We set out to determine whether TRICs display characteristics of CSCs, and whether assays used to define CSCs also provide an accurate readout of a cell’s ability to cause tumor recurrence. We did not find consistent enrichment of CSC marker positive cells or enhanced tumor initiating potential in TRICs. However, TRICs from all models do appear to be in EMT, a state that has been linked to chemoresistance in numerous types of cancer. Thus, the standard CSC assays may not accurately reflect a cell’s ability to drive disease recurrence.  相似文献   

11.
12.
Patients with advanced head and neck squamous cell carcinomas (HNSCCs) are often treated with concomitant chemotherapy and radiotherapy, but only 50% is cured. A possible explanation for treatment failure is therapy resistance of the cancer stem cells (CSCs). The application of compounds specifically targeting these CSCs, in addition to routinely used therapeutics, would likely improve clinical outcome. We demonstrate that the previously described monoclonal antibody K984 recognizes the CD98 cell surface protein, which is specifically expressed by cells forming the squamous basal cell layer, the region where the squamous stem cells reside. Moreover, CD98 is highly resistant to the proteolytic enzymes required for CSC enrichment procedures. We show that CD98high cells, in contrast to CD98low cells, are able to generate tumors in immunodeficient mice, indicating that CD98high cells have stem cell characteristics. Furthermore, the CD98high subpopulation expresses high levels of cell cycle control and DNA repair genes, while the CD98low fraction shows expression patterns that represent the more differentiated cells forming the bulk of the tumor. CD98 is a promising CSC enrichment marker in HNSCC. Our data support the CSC concept in head and neck cancer and the potential relevance of these cells for treatment outcome.  相似文献   

13.
Cancer stem cells contribute to the malignant phenotypes of a variety of cancers, but markers to identify human hypopharyngeal cancer (HPC) stem cells remain poorly understood. Here, we report that the CD271+ population sorted from xenotransplanted HPCs possesses an enhanced tumor-initiating capability in immunodeficient mice. Tumors generated from the CD271+ cells contained both CD271+ and CD271 cells, indicating that the population could undergo differentiation. Immunohistological analyses of the tumors revealed that the CD271+ cells localized to a perivascular niche near CD34+ vasculature, to invasive fronts, and to the basal layer. In accordance with these characteristics, a stemness marker, Nanog, and matrix metalloproteinases (MMPs), which are implicated in cancer invasion, were significantly up-regulated in the CD271+ compared to the CD271 cell population. Furthermore, using primary HPC specimens, we demonstrated that high CD271 expression was correlated with a poor prognosis for patients. Taken together, our findings indicate that CD271 is a novel marker for HPC stem-like cells and for HPC prognosis.  相似文献   

14.
Lung cancer (LC) with its different subtypes is generally known as a therapy resistant cancer with the highest morbidity rate worldwide. Therapy resistance of a tumor is thought to be related to cancer stem cells (CSCs) within the tumors. There have been indications that the lung cancer is propagated and maintained by a small population of CSCs. To study this question we established a panel of 15 primary lung cancer cell lines (PLCCLs) from 20 fresh primary tumors using a robust serum-free culture system. We subsequently focused on identification of lung CSCs by studying these cell lines derived from 4 representative lung cancer subtypes such as small cell lung cancer (SCLC), large cell carcinoma (LCC), squamous cell carcinoma (SCC) and adenocarcinoma (AC). We identified a small population of cells strongly positive for CD44 (CD44high) and a main population which was either weakly positive or negative for CD44 (CD44low/−). Co-expression of CD90 further narrowed down the putative stem cell population in PLCCLs from SCLC and LCC as spheroid-forming cells were mainly found within the CD44highCD90+ sub-population. Moreover, these CD44highCD90+ cells revealed mesenchymal morphology, increased expression of mesenchymal markers N-Cadherin and Vimentin, increased mRNA levels of the embryonic stem cell related genes Nanog and Oct4 and increased resistance to irradiation compared to other sub-populations studied, suggesting the CD44highCD90+ population a good candidate for the lung CSCs. Both CD44highCD90+ and CD44highCD90 cells in the PLCCL derived from SCC formed spheroids, whereas the CD44low/− cells were lacking this potential. These results indicate that CD44highCD90+ sub-population may represent CSCs in SCLC and LCC, whereas in SCC lung cancer subtype, CSC potentials were found within the CD44high sub-population.  相似文献   

15.
Cancer stem cells (CSCs) drive tumor progression, metastases, treatment resistance, and recurrence. Understanding CSC kinetics and interaction with their nonstem counterparts (called tumor cells, TCs) is still sparse, and theoretical models may help elucidate their role in cancer progression. Here, we develop a mathematical model of a heterogeneous population of CSCs and TCs to investigate the proposed “tumor growth paradox”—accelerated tumor growth with increased cell death as, for example, can result from the immune response or from cytotoxic treatments. We show that if TCs compete with CSCs for space and resources they can prevent CSC division and drive tumors into dormancy. Conversely, if this competition is reduced by death of TCs, the result is a liberation of CSCs and their renewed proliferation, which ultimately results in larger tumor growth. Here, we present an analytical proof for this tumor growth paradox. We show how numerical results from the model also further our understanding of how the fraction of cancer stem cells in a solid tumor evolves. Using the immune system as an example, we show that induction of cell death can lead to selection of cancer stem cells from a minor subpopulation to become the dominant and asymptotically the entire cell type in tumors.  相似文献   

16.
17.
Cancer stem cells (CSCs) or tumor-initiating cells are thought to play critical roles in tumorigenesis, metastasis, drug resistance, and tumor recurrence. For the diagnosis and targeted therapy of CSCs, the molecular identity of biomarkers or therapeutic targets for CSCs needs to be clarified. In this study, we identified CD166 as a novel marker expressed in the sphere-forming CSC population of A2780 epithelial ovarian cancer cells and primary ovarian cancer cells. The CD166+ cells isolated from A2780 cells and primary ovarian cancer cells highly expressed CSC markers, including ALDH1a1, OCT4, and SOX2, and ABC transporters, which are implicated in the drug resistance of CSCs. The CD166+ cells exhibited enhanced CSC-like properties, such as increased sphere-forming ability, cell migration and adhesion abilities, resistance to conventional anti-cancer drugs, and high tumorigenic potential in a xenograft mouse model. Knockdown of CD166 expression in the sphere-forming ovarian CSCs abrogated their CSC-like properties. Moreover, silencing of CD166 expression in the sphere-forming CSCs suppressed the phosphorylation of focal adhesion kinase, paxillin, and SRC. These results suggest that CD166 plays a key role in the regulation of CSC-like properties and focal adhesion kinase signaling in ovarian cancer.  相似文献   

18.
Basic studies of human pluripotential stem cells have advanced rapidly and stem cell products are now seeing therapeutic applications. However, questions remain regarding the tumorigenic potential of such cells. Here, we report the tumorigenic potential of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of wet-type, age-related macular degeneration (AMD). First, immunodeficient mouse strains (nude, SCID, NOD-SCID and NOG) were tested for HeLa cells’ tumor-forming capacity by transplanting various cell doses subcutaneously with or without Matrigel. The 50% Tumor Producing Dose (TPD50 value) is the minimal dose of transplanted cells that generated tumors in 50% of animals. For HeLa cells, the TPD50 was the lowest when cells were embedded in Matrigel and transplanted into NOG mice (TPD50 = 101.1, n = 75). The TPD50 for undifferentiated iPSCs transplanted subcutaneously to NOG mice in Matrigel was 102.12; (n = 30). Based on these experiments, 1×106 iPSC-derived RPE were transplanted subcutaneously with Matrigel, and no tumor was found during 15 months of monitoring (n = 65). Next, to model clinical application, we assessed the tumor-forming potential of HeLa cells and iPSC 201B7 cells following subretinal transplantation of nude rats. The TPD50 for iPSCs was 104.73 (n = 20) and for HeLa cells 101.32 (n = 37) respectively. Next, the tumorigenicity of iPSC-derived RPE was tested in the subretinal space of nude rats by transplanting 0.8–1.5×104 iPSC-derived RPE in a collagen-lined (1 mm×1 mm) sheet. No tumor was found with iPSC-derived RPE sheets during 6–12 months of monitoring (n = 26). Considering the number of rodents used, the monitoring period, the sensitivity of detecting tumors via subcutaneous and subretinal administration routes and the incidence of tumor formation from the iPSC-derived RPE, we conclude that the tumorigenic potential of the iPSC-derived RPE was negligible.  相似文献   

19.

Introduction

Breast cancer grows, metastasizes and relapses from rare, therapy resistant cells with a stem cell phenotype (cancer stem cells/CSCs). However, there is a lack of studies comparing the functions of CSCs isolated using different phenotypes in order to determine if CSCs are homogeneous or heterogeneous.

Methods

Cells with various stem cell phenotypes were isolated by sorting from Clone 66 murine breast cancer cells that grow orthotopically in immune intact syngeneic mice. These populations were compared by in vitro functional assays for proliferation, growth, sphere and colony formation; and in vivo limiting dilution analysis of tumorigenesis.

Results

The proportion of cells expressing CD44highCD24low/neg, side population (SP) cells, ALDH1+, CD49fhigh, CD133high, and CD34high differed, suggesting heterogeneity. Differences in frequency and size of tumor spheres from these populations were observed. Higher rates of proliferation of non-SP, ALDH1+, CD34low, and CD49fhigh suggested properties of transit amplifying cells. Colony formation was higher from ALDH1 and non-SP cells than ALDH1+ and SP cells suggesting a progenitor phenotype. The frequency of clonal colonies that grew in agar varied and was differentially altered by the presence of Matrigel™. In vivo, fewer cells with a stem cell phenotype were needed for tumor formation than “non-stem” cells. Fewer SP cells were needed to form tumors than ALDH1+ cells suggesting further heterogeneities of cells with stem phenotypes. Different levels of cytokines/chemokines were produced by Clone 66 with RANTES being the highest. Whether the heterogeneity reflects soluble factor production remains to be determined.

Conclusions

These data demonstrate that Clone 66 murine breast cancer cells that express stem cell phenotypes are heterogeneous and exhibit different functional properties, and this may also be the case for human breast cancer stem cells.  相似文献   

20.
Sensitivity to promotion of transformation by tumor promoters in mouse epidermal JB6 cells appears to have a genetic basis since the phenotypes of both promotable and nonpromotable JB6 cells derived from a common parent line are stable. Hybridization of promotable (P+) and nonpromotable (P) cells previously indicated that promotability appears to behave as a dominant trait. These results suggest that it should be possible to find DNA sequences which specify sensitivity to promotion of anchorage independence by 12-o-tetradecanoyl-phorbol-13-acetate (TPA). Cellular DNA isolated from one of two P+ lines, JB6 Cl 41 or JB6 Cl 22, was CaPO4 precipitated and used to transfect the P cell line JB6 Cl 30. At 7 days posttransfection, the cells were suspended in agar with or without TPA at 1.6 × 10−8 M and assayed 10 days later for TPA-dependent colony formation. Untreated or Cl 30 DNA-treated P JB6 Cl 30 cells yielded 40 to 50 colonies per 105 cells. In contrast, transfection of Cl 30 cells with “P+ DNA” derived from either Cl 41 or Cl 22 yielded 200 to 500 TPA-induced colonies per 105 cells, or a five- to eightfold enhancement of promotability. The enhanced promotability obtained after transfection with P+ DNA was stable, as judged by the retention of promotability for at least eight passages in cell lines derived from TPA-induced agar colonies. Other transfectants showed irreversible transformation by TPA, as observed in the parental P+ lines. When NIH 3T3 cells instead of the putative preneoplastic JB6 Cl 30 cells were used as recipients for transfection of P+ DNA, no evidence for acquisition of promotability was obtained. P JB6 Cl 25, like Cl 30, also permitted expression of transfected P+ DNA. These results suggest that sensitivity to phorbol ester promotion of transformation in JB6 cells is determined by DNA sequence(s) present in the P+ DNA and requires recipient cells of the appropriate phenotype for expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号