共查询到20条相似文献,搜索用时 15 毫秒
1.
Kislay Parvatiyar Glen N. Barber Edward W. Harhaj 《The Journal of biological chemistry》2010,285(20):14999-15009
2.
Zexing Li Ge Liu Liwei Sun Yan Teng Xuejiang Guo Jianhang Jia Jiahao Sha Xiao Yang Dahua Chen Qinmiao Sun 《PLoS pathogens》2015,11(3)
Stimulator of interferon genes (STING, also known as MITA and ERIS) is critical in protecting the host against DNA pathogen invasion. However, the molecular mechanism underlying the regulation of STING remains unclear. Here, we show that PPM1A negatively regulates antiviral signaling by targeting STING in its phosphatase activity-dependent manner, and in a line with this, PPM1A catalytically dephosphorylates STING and TBK1 in vitro. Importantly, we provide evidence that whereas TBK1 promotes STING aggregation in a phosphorylation-dependent manner, PPM1A antagonizes STING aggregation by dephosphorylating both STING and TBK1, emphasizing that phosphorylation is crucial for the efficient activation of STING. Our findings demonstrate a novel regulatory circuit in which STING and TBK1 reciprocally regulate each other to enable efficient antiviral signaling activation, and PPM1A dephosphorylates STING and TBK1, thereby balancing this antiviral signal transduction. 相似文献
3.
Induction of type I interferons can be triggered by viral components through Toll-like receptors or intracellular viral receptors such as retinoic acid-inducible gene I. Here, we demonstrate that the TRAF (tumor necrosis factor receptor-associated factor) family member-associated NF-kappaB activator (TANK) plays an important role in interferon induction through both retinoic acid-inducible gene I- and Toll-like receptor-dependent pathways. TANK forms complexes with both upstream signal mediators, such as Cardif/MAVS/IPS-1/VISA, TRIF (Toll-interleukin-1 receptor domain-containing adaptor inducing interferon-beta), and TRAF3 and downstream mediators TANK-binding kinase 1, inducible IkappaB kinase, and interferon regulatory factor 3. In addition, it synergizes with these signaling components in interferon induction. Specific knockdown of TANK results in reduced type I interferon production, increased viral titers, and enhanced cell sensitivity to viral infection. Thus, TANK may be a critical adaptor that regulates the assembly of the TANK-binding kinase 1-inducible IkappaB kinase complex with upstream signaling molecules in multiple antiviral pathways. 相似文献
4.
5.
6.
植物SnRKs家族在胁迫信号通路中的调节作用 总被引:2,自引:0,他引:2
蔗糖非发酵1(SNF1)相关蛋白激酶家族(SnRKs)是植物胁迫响应过程中的一类关键蛋白激酶。在响应生物胁迫时,SnRKs可通过参与活性氧和水杨酸介导的信号转导途径,增强植物对生物侵害的耐受性。在响应非生物胁迫时,SnRKs通过脱落酸(ABA)介导的信号通路,增强植株对干旱、盐碱和高温等的耐受性;且通过独立于ABA的信号通路,SnRKs可调控胞内能量状态,维持离子平衡。该文总结了SnRKs蛋白激酶作为胁迫信号通路中的主要调节因子的最新研究进展,并展望了未来的研究方向。 相似文献
7.
Xusheng Qiu Qiang Fu Chunchun Meng Shengqing Yu Yuan Zhan Luna Dong Cuiping Song Yingjie Sun Lei Tan Shunlin Hu Xiaoquan Wang Xiaowen Liu Daxin Peng Xiufan Liu Chan Ding 《PloS one》2016,11(2)
Newcastle disease virus (NDV) V protein is considered as an effector for IFN antagonism, however, the mechanism remains unknown. In this study, the expression of STAT1 and phospho-STAT1 in cells infected with NDV or transfected with V protein-expressing plasmids were analyzed. Our results showed that NDV V protein targets phospho-STAT1 reduction in the cells depends on the stimulation of IFN-α. In addition, a V-deficient genotype VII recombinant NDV strain rZJ1-VS was constructed using reverse genetic technique to confirm the results. The rZJ1-VS lost the ability to reduce phospho-STAT1 and induced higher expression of IFN-responsive genes in infected cells. Furthermore, treatment with an ubiquitin E1 inhibitor PYR-41 demonstrated that phospho-STAT1 reduction was caused by degradation, but not de-phosphorylation. We conclude that NDV V protein targets phospho-STAT1 degradation to block IFN-α signaling, which adds novel knowledge to the strategies used by paramyxoviruses to evade IFN. 相似文献
8.
9.
10.
Chi-Sheng Lu Lan N. Truong Aaron Aslanian Linda Z. Shi Yongjiang Li Patty Yi-Hwa Hwang Kwi Hye Koh Tony Hunter John R. Yates III Michael W. Berns Xiaohua Wu 《The Journal of biological chemistry》2012,287(52):43984-43994
Ubiquitination plays an important role in the DNA damage response. We identified a novel interaction of the E3 ubiquitin ligase RNF8 with Nbs1, a key regulator of DNA double-strand break (DSB) repair. We found that Nbs1 is ubiquitinated both before and after DNA damage and is a direct ubiquitination substrate of RNF8. We also identified key residues on Nbs1 that are ubiquitinated by RNF8. By using laser microirradiation and live-cell imaging, we observed that RNF8 and its ubiquitination activity are important for promoting optimal binding of Nbs1 to DSB-containing chromatin. We also demonstrated that RNF8-mediated ubiquitination of Nbs1 contributes to the efficient and stable binding of Nbs1 to DSBs and is important for HR-mediated DSB repair. Taken together, these studies suggest that Nbs1 is one important target of RNF8 to regulate DNA DSB repair. 相似文献
11.
首次从麻疯树胚乳cDNA丈库中克隆得到一个RJNG型锌指蛋白基(GenBank登录号为JF920726),命名为JcRFP1。该cDNA长度为728bp,包含编码JcRFP1蛋白的完整开放阅读框(516bp)。脚,基因在麻疯树各器官中均检测到表达且表达量依次为:叶〉茎〉花〉果实〉种子〉根。将克隆到的JcRFP1基因的cDNA序列连接到表达载体pET32a(+)上,导入BL21(DE3)pLysS菌株,成功诱导表达相对分子质量为33.2kDa的可溶性融合蛋白。该融合蛋白免疫新西兰大白兔,得到效价为1:6500的抗血清。研究表明,JcRFP1蛋白具有体外泛素连接酶E3活性,在麻疯树体内可能参与油菜素甾醇信号转导途径。 相似文献
12.
KR Chen CH Chang CY Huang CY Lin WY Lin YC Lo CY Yang EW Hsing LF Chen SR Shih AL Shiau HY Lei TH Tan P Ling 《The Journal of biological chemistry》2012,287(38):32216-32221
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are key RNA viral sensors for triggering antiviral immunity. The underlying mechanisms for RLRs to trigger antiviral immunity have yet to be explored. Here we report the identification of TAPE (TBK1-associated protein in endolysosomes) as a novel regulator of the RLR pathways. TAPE functionally and physically interacts with RIG-I, MDA5, and IPS-1 to activate the IFN-β promoter. TAPE knockdown impairs IFN-β activation induced by RLRs but not IPS-1. TAPE-deficient cells are defective in cytokine production upon RLR ligand stimulation. During RNA virus infection, TAPE knockdown or deficiency diminishes cytokine production and antiviral responses. Our data demonstrate a critical role for TAPE in linking RLRs to antiviral immunity. 相似文献
13.
Ivo A. Hendriks Joost Schimmel Karolin Eifler Jesper V. Olsen Alfred C. O. Vertegaal 《The Journal of biological chemistry》2015,290(25):15526-15537
Ring finger protein 4 (RNF4) is a SUMO-targeted ubiquitin E3 ligase with a pivotal function in the DNA damage response (DDR). SUMO interaction motifs (SIMs) in the N-terminal part of RNF4 tightly bind to SUMO polymers, and RNF4 can ubiquitinate these polymers in vitro. Using a proteomic approach, we identified the deubiquitinating enzyme ubiquitin-specific protease 11 (USP11), a known DDR-component, as a functional interactor of RNF4. USP11 can deubiquitinate hybrid SUMO-ubiquitin chains to counteract RNF4. SUMO-enriched nuclear bodies are stabilized by USP11, which functions downstream of RNF4 as a counterbalancing factor. In response to DNA damage induced by methyl methanesulfonate, USP11 could counteract RNF4 to inhibit the dissolution of nuclear bodies. Thus, we provide novel insight into cross-talk between ubiquitin and SUMO and uncover USP11 and RNF4 as a balanced SUMO-targeted ubiquitin ligase/protease pair with a role in the DDR. 相似文献
14.
利用RT-PCR方法,从强抗逆植物蒙古沙冬青克隆到1个受寒旱诱导的锌指蛋白基因AmRFP1。预测其编码蛋白由366个氨基酸残基组成,其中含有1个C3H2C3型锌指结构域,故属于RING-H2(C3H2C3)型锌指蛋白。该蛋白还含有2个跨膜区,很可能定位于细胞质膜。半定量RT-PCR分析表明,在不同季节野外生长沙冬青植株嫩叶中,AmRFP1在夏季只有低水平表达,进入秋季后表达量明显增加,尤其在秋末冬初其表达量迅速增加并达到全年最高峰,但在进入最寒冷的隆冬后又回落至秋季水平并维持到翌年春季基本未变。将该基因在拟南芥中超表达,则明显降低了转基因拟南芥的抗冻性。 相似文献
15.
16.
《Cell cycle (Georgetown, Tex.)》2013,12(16):1966-1969
The Par-1 protein kinases are conserved from yeast to man and belong to a subfamily of kinases that includes the energy sensor and metabolic regulator, AMPK. Par-1 is regulated by LKB1 and atypical PKC and has been shown in multiple organisms and cell types to be critical for regulation of cellular polarity. Recent studies using knockout mice have revealed several surprising physiological functions for Par-1b/MARK2/EMK1. Our recent study shows that Par-1b regulates metabolic rate, adiposity and insulin sensitivity. This is the first study to implicate these kinases in metabolic functions akin to those previously defined for AMPK. Conversely, another series of recent publications now implicate AMPK in regulation of polarity. Here we discuss the metabolic phenotype seen in Par-1b deficient mice and the synthesis of several findings that link Par-1 and AMPK to a degree that has not been previously appreciated. 相似文献
17.
Persistent Activation of Mitogen-Activated Protein Kinases p42 and p44 and ets-2 Phosphorylation in Response to Colony-Stimulating Factor 1/c-fms Signaling 总被引:2,自引:5,他引:2 下载免费PDF全文
Lindsay F. Fowles Michele L. Martin Lori Nelsen Katryn J. Stacey Douglas Redd Ying Mei Clark Yoshikune Nagamine Martin McMahon David A. Hume Michael C. Ostrowski 《Molecular and cellular biology》1998,18(9):5148-5156
An antibody that specifically recognized phosphothreonine 72 in ets-2 was used to determine the phosphorylation status of endogenous ets-2 in response to colony-stimulating factor 1 (CSF-1)/c-fms signaling. Phosphorylation of ets-2 was detected in primary macrophages, cells that normally express c-fms, and in fibroblasts engineered to express human c-fms. In the former cells, ets-2 was a CSF-1 immediate-early response gene, and phosphorylated ets-2 was detected after 2 to 4 h, coincident with expression of ets-2 protein. In fibroblasts, ets-2 was constitutively expressed and rapidly became phosphorylated in response to CSF-1. In both cell systems, ets-2 phosphorylation was persistent, with maximal phosphorylation detected 8 to 24 h after CSF-1 stimulation, and was correlated with activation of the CSF-1 target urokinase plasminogen activator (uPA) gene. Kinase assays that used recombinant ets-2 protein as a substrate demonstrated that mitogen-activated protein (MAP) kinases p42 and p44 were constitutively activated in both cell types in response to CSF-1. Immune depletion experiments and the use of the MAP kinase kinase inhibitor PD98059 indicate that these two MAP kinases are the major ets-2 kinases activated in response to CSF-1/c-fms signaling. In the macrophage cell line RAW264, conditional expression of raf kinase induced ets-2 expression and phosphorylation, as well as uPA mRNA expression. Transient assays mapped ets/AP-1 response elements as critical for basal and CSF-1-stimulated uPA reporter gene activity. These results indicate that persistent activation of the raf/MAP kinase pathway by CSF-1 is necessary for both ets-2 expression and posttranslational activation in macrophages. 相似文献
18.
Hak Joo Lee Denis Feliers Meenalakshmi M. Mariappan Kavithalakshmi Sataranatarajan Goutam Ghosh Choudhury Yves Gorin Balakuntalam S. Kasinath 《The Journal of biological chemistry》2015,290(19):12014-12026
Diabetes-induced kidney cell injury involves an increase in matrix protein expression that is only partly alleviated by current treatment, prompting a search for new modalities. We have previously shown that hydrogen sulfide (H2S) inhibits high glucose-induced protein synthesis in kidney podocytes. We tested whether tadalafil, a phosphodiesterase 5 inhibitor used to treat erectile dysfunction, ameliorates high glucose stimulation of matrix proteins by generating H2S in podocytes. Tadalafil abrogated high glucose stimulation of global protein synthesis and matrix protein laminin γ1. Tadalafil inhibited high glucose-induced activation of mechanistic target of rapamycin complex 1 and laminin γ1 accumulation in an AMP-activated protein kinase (AMPK)-dependent manner. Tadalafil increased AMPK phosphorylation by stimulating calcium-calmodulin kinase kinase β. Tadalafil rapidly increased the expression and activity of the H2S-generating enzyme cystathionine γ-lyase (CSE) by promoting its translation. dl-Propargylglycine, a CSE inhibitor, and siRNA against CSE inhibited tadalafil-induced AMPK phosphorylation and abrogated the tadalafil effect on high glucose stimulation of laminin γ1. In tadalafil-treated podocytes, we examined the interaction between H2S and nitric oxide (NO). Nω-Nitro-l-arginine methyl ester and 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one, inhibitors of NO synthase (NOS) and soluble guanylyl cyclase, respectively, abolished tadalafil induction of H2S and AMPK phosphorylation. Tadalafil rapidly augmented inducible NOS (iNOS) expression by increasing its mRNA, and siRNA for iNOS and 1400W, an iNOS blocker, inhibited tadalafil stimulation of CSE expression and AMPK phosphorylation. We conclude that tadalafil amelioration of high glucose stimulation of synthesis of proteins including matrix proteins in podocytes requires integration of the NO-H2S-AMPK axis leading to the inhibition of high glucose-induced mechanistic target of rapamycin complex 1 activity and mRNA translation. 相似文献
19.
《Cell cycle (Georgetown, Tex.)》2013,12(4):437-440
Cell cycle events must be faithfully executed and properly integrated to ensure genetic stability. The Mps1 family of protein kinases has recently emerged as a critical regulator of genetic stability, because they regulate several processes central to mitotic fidelity. The spindle checkpoint monitors alignment of mitotic chromosomes, and centrosomes control cell cycle entry, mitotic spindle assembly, and cytokinesis. Several studies have shown that vertebrate orthologues of budding yeast Mps1p regulate the spindle checkpoint. More recently it has been demonstrated that human Mps1 is also required for centrosome duplication, normal mitotic progression, and cytokinesis. 相似文献