首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MicroRNAs (miRNAs) are small, endogenous RNAs that play important gene-regulatory roles by binding to the imperfectly complementary sequences at the 3′-UTR of mRNAs and directing their gene expression. Here, we first discovered that miR-576-3p was down-regulated in human bladder cancer cell lines compared with the non-malignant cell line. To better characterize the role of miR-576-3p in bladder cancer cells, we over-expressed or down-regulated miR-576-3p in bladder cancer cells by transfecting with chemically synthesized mimic or inhibitor. The overexpression of miR-576-3p remarkably inhibited cell proliferation via G1-phase arrest, and decreased both mRNA and protein levels of cyclin D1 which played a key role in G1/S phase transition. The knock-down of miR-576-3p significantly promoted the proliferation of bladder cancer cells by accelerating the progression of cell cycle and increased the expression of cyclin D1. Moreover, the dual-luciferase reporter assays indicated that miR-576-3p could directly target cyclin D1 through binding its 3′-UTR. All the results demonstrated that miR-576-3p might be a novel suppressor of bladder cancer cell proliferation through targeting cyclin D1.  相似文献   

2.
Recent studies have suggested that interferons (IFNs) have an antifibrotic effect in the liver independent of their antiviral effect although its detailed mechanism remains largely unknown. Some microRNAs have been reported to regulate pathophysiological activities of hepatic stellate cells (HSCs). We performed analyses of the antiproliferative effects of IFNs in HSCs with special regard to microRNA-195 (miR-195). We found that miR-195 was prominently down-regulated in the proliferative phase of primary-cultured mouse HSCs. Supporting this fact, IFN-β induced miR-195 expression and inhibited the cell proliferation by delaying their G1 to S phase cell cycle progression in human HSC line LX-2. IFN-β down-regulated cyclin E1 and up-regulated p21 mRNA levels in LX-2 cells. Luciferase reporter assay revealed the direct interaction of miR-195 with the cyclin E1 3'UTR. Overexpression of miR-195 lowered cyclin E1 mRNA and protein expression levels, increased p21 mRNA and protein expression levels, and inhibited cell proliferation in LX-2 cells. Moreover miR-195 inhibition restored cyclin E1 levels that were down-regulated by IFN-β. In conclusion, IFN-β inhibited the proliferation of LX-2 cells by delaying cell cycle progression in G1 to S phase, partially through the down-regulation of cyclin E1 and up-regulation of p21. IFN-induced miR-195 was involved in these processes. These observations reveal a new mechanistic aspect of the antifibrotic effect of IFNs in the liver.  相似文献   

3.
Our previous studies have shown that microRNA-383 (miR-383) expression is downregulated in the testes of infertile men with maturation arrest (MA). However, the underlying mechanisms of miR-383 involved in the pathogenesis of MA remain unknown. In this study, we showed that downregulation of miR-383 was associated with hyperactive proliferation of germ cells in patients with mixed patterns of MA. Overexpression of miR-383 in NT2 (testicular embryonal carcinoma) cells resulted in suppression of proliferation, G1-phase arrest and induction of apoptosis, whereas silencing of miR-383 reversed these effects. The effects of miR-383 were mediated through targeting a tumor suppressor, interferon regulatory factor-1 (IRF1), and miR-383 was negatively correlated with IRF1 protein expression in vivo. miR-383 inhibited IRF1 by affecting its mRNA stability, which subsequently reduced the levels of the targets of IRF1, namely cyclin D1, CDK2 and p21. Downregulation of IRF1 or cyclin D1, but not that of CDK2, enhanced miR-383-mediated effects, whereas silencing of p21 partially inhibited the effects of miR-383. Moreover, miR-383 downregulated CDK4 by increasing proteasome-dependent degradation of CDK4, which in turn resulted in an inhibition of phosphorylated retinoblastoma protein (pRb) phosphorylation. These results suggest that miR-383 functions as a negative regulator of proliferation by targeting IRF1, in part, through inactivation of the pRb pathway. Abnormal testicular miR-383 expression may potentiate the connections between male infertility and testicular germ cell tumor.  相似文献   

4.
5.
为研究siRNA干扰瘢痕疙瘩成纤维细胞cyclin D1基因表达,对瘢痕疙瘩成纤维细胞的增殖、细胞周期和G1期调控的影响,构建了靶向cyclin D1的siRNA表达质粒.利用LipofecmmineTM2000转染体外培养的瘢痕疙瘩成纤维细胞,应用荧光定量PCR、RT-PCR检测cyclin D1 mRNA的干扰效果,应用MTT法、流式细胞仪检测细胞增殖和细胞周期的变化,应用免疫组织化学染色检测成纤维细胞中cyclin D1、CDK4、P16、pRb蛋白表达的影响.主要结果如F:a.靶向cyclin D1的特异性siRNA序列可以高效地抑制成纤维细胞cyclin D1基因表达,对照组与实验组在mRNA水平其表达抑制率分别为63.68%和92.83%(P<0.01);b.可以显著抑制瘢痕疙瘩成纤维细胞的增殖,改变细胞周期分布,G0/G1期细胞比例显著高于各对照组(P<0.05),细胞分裂被阻滞;c.免疫组化染色发现,转染72 h后,过表达的cyclin D1、CDK4和pRb蛋白,在瘢痕疙瘩成纤维细胞中均出现了不同程度的表达下调,而低表达的P16则呈上调表现.由上述结果可见,构建的靶向cyclin D1的RNAi表达质粒,可有效地抑制瘢痕疙瘩成纤维细胞cyclin D1基因表达,通过改变Gl期相关周期蛋白的水平,影响G1/S期的进程,显著地抑制成纤维细胞的增殖.  相似文献   

6.
7.
The activation of CDK2-cyclin E in late G1 phase has been shown to play a critical role in retinoblastoma protein (pRb) inactivation and G1-S phase progression of the cell cycle. The phosphatidylinositol 3-OH-kinase inhibitor LY294002 has been shown to block cyclin D1 accumulation, CDK4 activity and, thus, G1 progression in alpha-thrombin-stimulated IIC9 cells (Chinese hamster embryonic fibroblasts). Our previous results show that expression of cyclin E rescues S phase progression in alpha-thrombin-stimulated IIC9 cells treated with LY294002, arguing that cyclin E renders CDK4 activity dispensable for G1 progression. In this work we investigate the ability of alpha-thrombin-induced CDK2-cyclin E activity to inactivate pRb in the absence of prior CDK4-cyclin D1 activity. We report that in the absence of CDK4-cyclin D1 activity, CDK2-cyclin E phosphorylates pRb in vivo on at least one residue and abolishes pRb binding to E2F response elements. We also find that expression of cyclin E rescues E2F activation and cyclin A expression in cyclin D kinase-inhibited, alpha-thrombin-stimulated cells. Furthermore, the rescue of E2F activity, cyclin A expression, and DNA synthesis by expression of E can be blocked by the expression of either CDK2(D145N) or RbDeltaCDK, a constitutively active mutant of pRb. However, restoring four known cyclin E-CDK2 phosphorylation sites to RbDeltaCDK renders it susceptible to inactivation in late G1, as assayed by E2F activation, cyclin A expression, and S phase progression. These data indicate that CDK2-cyclin E, without prior CDK4-cyclin D activity, can phosphorylate and inactivate pRb, activate E2F, and induce DNA synthesis.  相似文献   

8.
We have created fibroblast cell lines that express cyclin A under the control of a tetracycline-repressible promoter. When stimulated to reenter the cell cycle after serum withdrawal, these cells were advanced prematurely into S phase by induction of cyclin A. In an asynchronous population, induction of cyclin A caused a decrease in the percentage of cells in G1. These results demonstrate that expression of cyclin A is rate limiting for the G1-to-S transition and suggest that cyclin A can function as a G1 cyclin. Although the level of exogenous cyclin A was constant throughout the cell cycle, its associated kinase activity increased as cells approached S phase. Low kinase activity in early G1 was found to correlate with the presence of p27Kip1 in cyclin A-associated complexes, while high kinase activity in late G1 was correlated with its absence. These results suggest that a function of p27Kip1 in G1 is to prevent premature activation of cyclin A-associated kinase. Cyclin A expression in early G1 led to phosphorylation of the product of the retinoblastoma susceptibility gene (pRb). Thus, cyclin A expression can be rate limiting for pRb phosphorylation, implicating pRb as a physiological substrate of the cyclin A-dependent kinase. Taken together, these results demonstrate that deregulated expression of cyclin A can perturb the normal regulation of the G1-to-S transition.  相似文献   

9.
10.
Cyclin D1 is known as a promoting factor for cell growth. We previously showed, however, that the expression of cyclin D1 increases markedly in senescent human fibroblastsin vitro.Here we investigate whether the overexpression of cyclin D1 inhibits cell proliferation. Colony formation after transfection with the cyclin D1 expression vector was repressed in NIH-3T3, TIG-1, CHO-K1, and HeLa cells, compared with those with mock and cyclin E expression vectors. A transient transfection assay demonstrated that the overexpression of cyclin D1 inhibited DNA synthesis of TIG-1 cells. The complexes of cyclin D1 with PCNA and cdk2 increased remarkably in senescent cells, compared with young counterparts. Excessive glutathioneS-transferase (GST)–cyclin D1 inhibited DNA replication and repressed cdk2-dependent kinase activityin vitro.DNA synthesis of NIH-3T3 transfectants with PCNA or cdk2 expression vectors was not inhibited by the overexpression of cyclin D1. These results indicate that an excessive level of cyclin D1 represses cell proliferation by inhibiting DNA replication and cdk2 activity through the binding of cyclin D1 to PCNA and cdk2, as it does in senescent cells.  相似文献   

11.
miR-206, a member of the so-called myomiR family, is largely acknowledged as a specific, positive regulator of skeletal muscle differentiation. A growing body of evidence also suggests a tumor suppressor function for miR-206, as it is frequently downregulated in various types of cancers. In this study, we show that miR-206 directly targets cyclin D1 and contributes to the regulation of CCND1 gene expression in both myogenic and non-muscle, transformed cells. We demonstrate that miR-206, either exogenous or endogenous, reduces cyclin D1 levels and proliferation rate in C2C12 cells without promoting differentiation, and that miR-206 knockdown in terminally differentiated C2C12 cells leads to cyclin D1 accumulation in myotubes, indicating that miR-206 might be involved in the maintenance of the post-mitotic state. Targeting of cyclin D1 might also account, at least in part, for the tumor-suppressor activity suggested for miR-206 in previous studies. Accordingly, the analysis of neoplastic and matched normal lung tissues reveals that miR-206 downregulation in lung tumors correlates, in most cases, with higher cyclin D1 levels. Moreover, gain-of-function experiments with cancer-derived cell lines and with in vitro transformed cells indicate that miR-206-mediated cyclin D1 repression is directly coupled to growth inhibition. Altogether, our data highlight a novel activity for miR-206 in skeletal muscle differentiation and identify cyclin D1 as a major target that further strengthens the tumor suppressor function proposed for miR-206.  相似文献   

12.
The proto-oncogene c-myc is a key player in cell-cycle regulation and is deregulated in a broad range of human cancers and cell proliferation disorders. Here we reported that overexpression of c-myc in human embryonic lung fibroblasts (HEL) that have low endogenous c-myc enriched S phase cells with increased expression of cyclin D3, E, A, Cdk2, and Cdk4, and decreased expression of p21 and p27. To the opposite, using RNAi to downregulate c-myc expression in A549 cells that have high endogenous c-myc enriched G1 phase cells with decreased expression of cyclin D3, E, A, Cdk2, Cdk4, and increased expression of p21 and p27. We found that cyclin A expression was the most susceptive to changes in c-myc levels and essential in c-myc-modulated cell cycle pathway via co-transfection, however, cyclin D1 showed no change between treated and control groups in either HEL or A549 cells. Our results indicated that upregulation of c-myc expression promotes cell cycling in HEL cells, whereas downregulation of c-myc expression causes G1 phase arrest in A549 cells, and the c-myc-mediated cell-cycle regulation pathway was dependent on cyclin A and involved cyclin D3, E, Cdk2, Cdk4, p21, and p27, but not cyclin D1.  相似文献   

13.
Prostate cancer (CaP) is the second most common cancer in men worldwide in 2012, and radiation therapy is one of the most common definitive treatment options for localized CaP. However, radioresistance is a major challenge for the current radiotherapy, accumulating evidences suggest microRNAs (miRNAs), as an important regulator in cellular ionizing radiation (IR) responses, are closely correlated with radiosensitivity in many cancers. Here, we identified microRNA-16-5p(miR-16-5p) is significantly upregulated in CaP LNCaP cells following IR and can enhance radiosensitivity through modulating Cyclin D1/E1–pRb–E2F1 pathway. To identify the expression profile of miRNAs in CaP cells exposed to IR, we performed human miRNA probe hybridization chip analysis and miR-16-5p was found to be significantly overexpressed in all treatment groups that irradiated with different doses of X-rays and heavy ions (12C6+). Furthermore, overexpression of miR-16-5p suppressed cell proliferation, reduced cell viability, and induced cell cycle arrest at G0/G1 phase, resulting in enhanced radiosensitivity in LNCaP cells. Additionally, miR-16-5p specifically targeted the Cyclin D1/E1–3′-UTR in LNCaP cells and affected the expression of Cyclin D1/E1 in both mRNA and protein levels. Taken together, miR-16-5p enhanced radiosensitivity of CaP cells, the mechanism may be through modulating Cyclin D1/Cyclin E1/pRb/E2F1 pathway to cause cell cycle arrest at G0/G1 phase. These findings provided new insight into the correlation between miR-16-5p, cell cycle arrest, and radiosensitivity in CaP, revealed a previously unrecognized function of miR-16-5p–Cyclin D1/E1–pRb–E2F1 regulation in response to IR and may offer an alternative therapy to improve the efficiency of conventional radiotherapy.  相似文献   

14.
Much of our current understanding of the cell cycle involves analyses of its induction in quiescent cells. To better understand the control of cell cycle propagation and termination, studies have been performed in actively cycling cultures using time-lapse photography and quantitative image analysis. These studies reveal a highly ordered sequence of events required for promotion of continued proliferation. The decision to continue cell cycle progression takes place in G2 phase, when cellular Ras induces the elevation of cyclin D1 levels. These levels are maintained through G1 phase and are required for the initiation of S phase, at which time cyclin D1 levels are automatically reduced to low levels. The reduction of cyclin D1 to low levels during S phase is required for DNA synthesis, and forces the cell to induce high cyclin D1 levels once again when it enters G2 phase. In this way, cyclin D1 is proposed to serve as an active switch in the regulation of continued cell cycle progression.  相似文献   

15.
16.
Genomic changes disrupting the expression of cyclin D3 are associated with aberrant growth of several human B-lymphoid malignancies. We demonstrate that the human diffuse large B-cell lymphoma (DLBCL), OCI-LY18 (LY18) expresses cyclin D3 but not cyclins D1 and D2. RNA interference was used to deplete cyclin D3 from LY18 cells. Surprisingly, knockdown of cyclin D3 did not inhibit pRb phosphorylation on cdk4/6- and cdk2-specific residues or measurably affect viability and proliferation. These results suggest that cyclin D3 is dispensable in LY18 cell proliferation and survival. Similar results were obtained following depletion of cyclin E. By contrast, combined knockdown of cyclins D3 and E had substantial consequences leading to G1-phase arrest and inhibition of proliferation. Whereas cell cycle distribution was not affected following individual depletion of cdk4, cdk6, or cdk2, the combined knockdown of cdk4 and cdk6 led to accumulation of LY18 cells in G1-phase of the cell cycle and inhibition of proliferation. Likewise treatment of LY18 cells with 2-Bromo-12,13-dihydro-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazole-5,7(6H)-dione, a selective inhibitor of cdk4/6, led to inhibition of proliferation. Taken together, these results uncover a built-in redundancy with cyclins D3 and E for G1-S progression. Moreover these findings highlight the rationale for simultaneous disruption of cdk4/6 as a potential therapeutic cancer strategy.  相似文献   

17.
This study examines in vivo the role and functional interrelationships of components regulating exit from the G1 resting phase into the DNA synthetic (S) phase of the cell cycle. Our approach made use of several key experimental attributes of the developing mouse lens, namely its strong dependence on pRb in maintenance of the postmitotic state, the down-regulation of cyclins D and E and up-regulation of the p57KIP2 inhibitor in the postmitotic lens fiber cell compartment, and the ability to target transgene expression to this compartment. These attributes provide an ideal in vivo context in which to examine the consequences of forced cyclin expression and/or of loss of p57KIP2 inhibitor function in a cellular compartment that permits an accurate quantitation of cellular proliferation and apoptosis rates in situ. Here, we demonstrate that, despite substantial overlap in cyclin transgene expression levels, D-type and E cyclins exhibited clear functional differences in promoting entry into S phase. In general, forced expression of the D-type cyclins was more efficient than cyclin E in driving lens fiber cells into S phase. In the case of cyclins D1 and D2, ectopic proliferation required their enhanced nuclear localization through CDK4 coexpression. High nuclear levels of cyclin E and CDK2, while not sufficient to promote efficient exit from G1, did act synergistically with ectopic cyclin D/CDK4. The functional differences between D-type and E cyclins was most evident in the p57KIP2-deficient lens wherein cyclin D overexpression induced a rate of proliferation equivalent to that of the pRb null lens, while overexpression of cyclin E did not increase the rate of proliferation over that induced by the loss of p57KIP2 function. These in vivo analyses provide strong biological support for the prevailing view that the antecedent actions of cyclin D/CDK4 act cooperatively with cyclin E/CDK2 and antagonistically with p57KIP2 to regulate the G1/S transition in a cell type highly dependent upon pRb.  相似文献   

18.
Zhu Y  Lu Y  Zhang Q  Liu JJ  Li TJ  Yang JR  Zeng C  Zhuang SM 《Nucleic acids research》2012,40(10):4615-4625
The functional association between intronic miRNAs and their host genes is still largely unknown. We found that three gene loci, which produced miR-26a and miR-26b, were embedded within introns of genes coding for the proteins of carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase (CTDSP) family, including CTDSPL, CTDSP2 and CTDSP1. We conducted serum starvation-stimulation assays in primary fibroblasts and two-thirds partial-hepatectomies in mice, which revealed that miR-26a/b and CTDSP1/2/L were expressed concomitantly during the cell cycle process. Specifically, they were increased in quiescent cells and decreased during cell proliferation. Furthermore, both miR-26 and CTDSP family members were frequently downregulated in hepatocellular carcinoma (HCC) tissues. Gain- and loss-of-function studies showed that miR-26a/b and CTDSP1/2/L synergistically decreased the phosphorylated form of pRb (ppRb), and blocked G1/S-phase progression. Further investigation disclosed that miR-26a/b directly suppressed the expression of CDK6 and cyclin E1, which resulted in reduced phosphorylation of pRb. Moreover, c-Myc, which is often upregulated in cancer cells, diminished the expression of both miR-26 and CTDSP family members, enhanced the ppRb level and promoted the G1/S-phase transition. Our findings highlight the functional association of miR-26a/b and their host genes and provide new insight into the regulatory network of the G1/S-phase transition.  相似文献   

19.
20.
Tissue homeostasis requires precise control of cell proliferation and arrest in response to environmental cues. In situation such as wound healing, injured cells are stimulated to divide, but as soon as confluence is reached proliferation must be blocked. Such reversible cell cycle exit occurs in G1, requires pRb family members, and is driven by p27Kip1-dependent Cdk inactivation. This implies that, while dividing, cells should simultaneously prepare the exit once mitosis is accomplished. For a long time, the decision to cycle or not was presumed to occur in G1, prior to the restriction point, beyond which the cells were bound to divide even in the absence of mitogens, before finally arresting after mitosis. However, more recent reports suggested that the commitment to cycle in response to serum occurs already in G2 phase and requires the Ras-dependent induction of cyclin D1, which promotes following G1/S transition. To test whether this hypothesis applies to arrest induced by contact inhibition, we used an in vitro wounding model where quiescent human dermal fibroblasts, stimulated to proliferate by mechanical injury, synchronously exit cell cycle after mitosis due to renewed confluence. We show that this exit is preceded by p27-dependent inhibition of cyclin A-Cdk1/2, cyclin D1 downregulation and reduced pre-mitotic pRb pocket protein phosphorylation. Over-expression of cyclin D1 but not p27 depletion reversed this phenotype and compromised confluence-driven cell cycle exit. Thus, a balance between cyclin D1 and p27 may provide sensitive responses to variations in proliferative cues operating throughout the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号