首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
2.
Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and HCMV infection in immunocompromised patients may trigger devastating disease. Cytotoxic lymphocytes control HCMV by releasing granzymes towards virus-infected cells. In mice, granzyme M (GrM) has a physiological role in controlling murine CMV infection. However, the underlying mechanism remains poorly understood. In this study, we showed that human GrM was expressed by HCMV-specific CD8+ T cells both in latently infected healthy individuals and in transplant patients during primary HCMV infection. We identified host cell heterogeneous nuclear ribonucleoprotein K (hnRNP K) as a physiological GrM substrate. GrM most efficiently cleaved hnRNP K in the presence of RNA at multiple sites, thereby likely destroying hnRNP K function. Host cell hnRNP K was essential for HCMV replication not only by promoting viability of HCMV-infected cells but predominantly by regulating viral immediate-early 2 (IE2) protein levels. Furthermore, hnRNP K interacted with IE2 mRNA. Finally, GrM decreased IE2 protein expression in HCMV-infected cells. Our data suggest that targeting of hnRNP K by GrM contributes to the mechanism by which cytotoxic lymphocytes inhibit HCMV replication. This is the first evidence that cytotoxic lymphocytes target host cell proteins to control HCMV infections.  相似文献   

3.
4.
Human Cytomegalovirus (HCMV), an ubiquitous β-herpesvirus, is a significant pathogen that causes medically severe diseases in immunocompromised individuals and in congenitally infected neonates. RhoB belongs to the family of Rho GTPases, which regulates diverse cellular processes. Rho proteins are implicated in the entry and egress from the host cell of mainly α- and γ-herpesviruses, whereas β-herpesviruses are the least studied in this regard. Here, we studied the role of RhoB GTPase during HCMV lytic infection. Microscopy analysis, both in fixed and live infected cells showed that RhoB was translocated to the assembly complex/compartment (AC) of HCMV, a cytoplasmic zone in infected cells where many viral structural proteins are known to accumulate and assembly of new virions takes place. Furthermore, RhoB was localized at the AC even when the expression of the late HCMV AC proteins was inhibited. At the very late stages of infection, cellular projections were formed containing RhoB and HCMV virions, potentially contributing to the successful viral spread. Interestingly, the knockdown of RhoB in HCMV-infected cells resulted in a significant reduction of the virus titer and could also affect the accumulation of AC viral proteins at this subcellular compartment. RhoB knockdown also affected actin fibers'' structure. Actin reorganization was observed at late stages of infection originating from the viral AC and surrounding the cellular projections, implying a potential interplay between RhoB and actin during HCMV assembly and egress. In conclusion, our results demonstrate for the first time that RhoB is a constituent of the viral AC and is required for HCMV productive infection.  相似文献   

5.
Several human cytomegalovirus (HCMV) genes encode products that modulate cellular functions in a manner likely to enhance viral pathogenesis. This includes UL111A, which encodes homologs of human interleukin-10 (hIL-10). Depending upon signals received, monocytes and macrophages become polarized to either classically activated (M1 proinflammatory) or alternatively activated (M2 anti-inflammatory) subsets. Skewing of polarization toward an M2 subset may benefit the virus by limiting the proinflammatory responses to infection, and so we determined whether HCMV-encoded viral IL-10 influenced monocyte polarization. Recombinant viral IL-10 protein polarized CD14+ monocytes toward an anti-inflammatory M2 subset with an M2c phenotype, as demonstrated by high expression of CD163 and CD14 and suppression of major histocompatibility complex (MHC) class II. Significantly, in the context of productive HCMV infection, viral IL-10 produced by infected cells polarized uninfected monocytes toward an M2c phenotype. We also assessed the impact of viral IL-10 on heme oxygenase 1 (HO-1), which is an enzyme linked with suppression of inflammatory responses. Polarization of monocytes by viral IL-10 resulted in upregulation of HO-1, and inhibition of HO-1 function resulted in a loss of capacity of viral IL-10 to suppress tumor necrosis factor alpha (TNF-α) and IL-1β, implicating HO-1 in viral IL-10-induced suppression of proinflammatory cytokines by M2c monocytes. In addition, a functional consequence of monocytes polarized with viral IL-10 was a decreased capacity to activate CD4+ T cells. This study identifies a novel role for viral IL-10 in driving M2c polarization, which may limit virus clearance by restricting proinflammatory and CD4+ T cell responses at sites of infection.  相似文献   

6.
Current data suggest that Neisseria gonorrhoeae is able to suppress the protective immune response at different levels, such as B and T lymphocytes and antigen-presenting cells. The present report is focused on gonococcus evasion mechanism on macrophages (MФ) and its impact in the subsequent immune response. In response to various signals MФ may undergo classical-M1 (M1-MФ) or alternative-M2 (M2-MФ) activation. Until now there are no reports of the gonococcus effects on human MФ polarization. We assessed the phagocytic ability of monocyte-derived MФ (MDM) upon gonococcal infection by immunofluorescence and gentamicin protection experiments. Then, we evaluated cytokine profile and M1/M2 specific-surface markers on MФ challenged with N. gonorrhoeae and their proliferative effect on T cells. Our findings lead us to suggest N. gonorrhoeae stimulates a M2-MФ phenotype in which some of the M2b and none of the M1-MФ-associated markers are induced. Interestingly, N. gonorrhoeae exposure leads to upregulation of a Programmed Death Ligand 1 (PD-L1), widely known as an immunosuppressive molecule. Moreover, functional results showed that N. gonorrhoeae-treated MФ are unable to induce proliferation of human T-cells, suggesting a more likely regulatory phenotype. Taken together, our data show that N. gonorroheae interferes with MФ polarization. This study has important implications for understanding the mechanisms of clearance versus long-term persistence of N. gonorroheae infection and might be applicable for the development of new therapeutic strategies.  相似文献   

7.
Infection by human cytomegalovirus (HCMV) is associated with the development of vascular diseases and may cause severe brain damage in infected fetuses. Platelet-derived growth factor receptors alpha and beta (PDGFR-α and -β) control important cellular processes associated with atherosclerosis and fetal development. In the present investigation, our goal was to determine whether infection by HCMV can influence the expression of PDGFR-α and -β in human smooth muscle cells (SMCs). In connection with HCMV infection in vitro the levels of PDGFR-α and -β at the cell surface and in the total cellular protein of SMCs were reduced in parallel with decreases in the levels of the corresponding mRNAs. These effects were dependent on immediate-early (IE) or early (E) HCMV gene products, since inhibition of late genes did not prevent HCMV from affecting the expression of PDGFR-α and -β. The downregulation of PDGFR caused by HCMV was dose dependent. Furthermore, confocal microscopy revealed that the localization of PDGFR-β was altered in HCMV-infected cells, in which this protein colocalized with proteins associated with endosomes (Rab4 and -5) and lysosomes (Lamp1 and -2), indicating entrance into pathways for protein degradation. Altogether these observations indicate that an IE and/or E HCMV protein(s) downregulates the expression of PDGFR-α and -β in SMCs. This phenomenon may disrupt cellular processes of importance in connection with cellular differentiation, migration, and/or proliferation. These observations may explain why congenital infection with HCMV can cause fetal brain damage.  相似文献   

8.
During the first trimester of pregnancy the uterus is massively infiltrated by decidual natural killer cells (dNK). These cells are not killers, but they rather provide a microenvironment that is propitious to healthy placentation. Human cytomegalovirus (HCMV) is the most common cause of intrauterine viral infections and a known cause of severe birth defects or fetal death. The rate of HCMV congenital infection is often low in the first trimester of pregnancy. The mechanisms controlling HCMV spreading during pregnancy are not yet fully revealed, but evidence indicating that the innate immune system plays a role in controlling HCMV infection in healthy adults exists. In this study, we investigated whether dNK cells could be involved in controlling viral spreading and in protecting the fetus against congenital HCMV infection. We found that freshly isolated dNK cells acquire major functional and phenotypic changes when they are exposed to HCMV-infected decidual autologous fibroblasts. Functional studies revealed that dNK cells, which are mainly cytokines and chemokines producers during normal pregnancy, become cytotoxic effectors upon their exposure to HCMV-infected autologous decidual fibroblasts. Both the NKG2D and the CD94/NKG2C or 2E activating receptors are involved in the acquired cytotoxic function. Moreover, we demonstrate that CD56pos dNK cells are able to infiltrate HCMV-infected trophoblast organ culture ex-vivo and to co-localize with infected cells in situ in HCMV-infected placenta. Taken together, our results present the first evidence suggesting the involvement of dNK cells in controlling HCMV intrauterine infection and provide insights into the mechanisms through which these cells may operate to limit the spreading of viral infection to fetal tissues.  相似文献   

9.
Human cytomegalovirus (HCMV) stimulates arrested cells to enter the cell cycle by activating cyclin-dependent kinases (Cdks), notably Cdk2. Several mechanisms are involved in the activation of Cdk2. HCMV causes a substantial increase in the abundance of cyclin E and stimulates translocation of Cdk2 from the cytoplasm to the nucleus. Further, the abundance of the Cdk inhibitors (CKIs) p21cip1/waf1 (p21cip1) and p27kip1 is substantially reduced. The activity of cyclin E/Cdk2 increases as levels of CKIs, particularly p21cip1, fall. We have previously shown that these phenomena contribute to priming the cell for efficient replication of HCMV. In this study, the mechanisms responsible for the decrease in p21cip1 levels after HCMV infection were investigated by measuring p21cip1 RNA and protein levels in permissive human lung (LU) fibroblasts after HCMV infection. Northern blot analysis revealed that p21cip1 RNA levels increased briefly at 3 h after HCMV infection and then decreased to their nadir at 24 h; thereafter, RNA levels increased to about 60% of the preinfection level. Western blot analysis demonstrated that the relative abundance of p21cip1 protein roughly paralleled the observed changes in initial RNA levels; however, the final levels of protein were much lower than preinfection levels. After a transient increase at 3 h postinfection, p21cip1 abundance declined sharply over the next 24 h and remained at a very low level through 96 h postinfection. The disparity between p21cip1 RNA and protein levels suggested that the degradation of p21cip1 might be affected in HCMV-infected cells. Treatment of HCMV-infected cells with MG132, an inhibitor of proteasome-mediated proteolysis, provided substantial protection of p21cip1 in mock-infected cells, but MG132 was much less effective in protecting p21cip1 in HCMV-infected cells. The addition of E64d or Z-Leu-Leu-H, each an inhibitor of calpain activity, to HCMV-infected cells substantially increased the abundance of p21cip1 in a concentration-dependent manner. To verify that p21cip1 was a substrate for calpain, purified recombinant p21cip1 was incubated with either m-calpain or mu-calpain, which resulted in rapid proteolysis of p21cip1. E64d inhibited the proteolysis of p21cip1 catalyzed by either m-calpain or mu-calpain. Direct measurement of calpain activity in HCMV-infected LU cells indicated that HCMV infection induced a substantial and sustained increase in calpain activity, although there was no change in the abundance of either m- or mu-calpain or the endogenous calpain inhibitor calpastatin. The observed increase of calpain activity was consistent with the increases in intracellular free Ca2+ and phospholipid degradation in HCMV-infected LU cells reported previously from our laboratory. Considered together, these results suggest that the increase in calpain activity observed following HCMV infection contributes significantly to the reduction of p21cip1 levels and the resultant cell cycle progression.  相似文献   

10.
After a primary infection, human cytomegalovirus (HCMV) establishes lifelong latency in myeloid lineage cells, and the virus has developed several mechanisms to avoid immune recognition and destruction of infected cells. In this study, we show that HCMV utilizes two different strategies to reduce the constitutive expression of HLA-DR, -DP, and -DQ on infected macrophages and that infected macrophages are unable to stimulate a specific CD4+ T-cell response. Downregulation of the HLA class II molecules was observed in 90% of the donor samples and occurred in two phases: at an early (1 day postinfection [dpi]) time point postinfection and at a late (4 dpi) time point postinfection. The early inhibition of HLA class II expression and antigen presentation was not dependent on active virus replication, since UV-inactivated virus induced downregulation of HLA-DR and inhibition of T-cell proliferation at 1 dpi. In contrast, the late effect required virus replication and was dependent on the expression of the HCMV unique short (US) genes US1 to -9 or US11 in 77% of the samples. HCMV-treated macrophages were completely devoid of T-cell stimulation capacity at 1 and 4 dpi. However, while downregulation of HLA class II expression was rather mild, a 66 to 90% reduction in proliferative T-cell response was observed. This discrepancy was due to undefined soluble factors produced in HCMV-infected cell cultures, which did not include interleukin-10 and transforming growth factor beta1. These results suggest that HCMV reduces expression of HLA class II molecules on HCMV-infected macrophages and inhibits T-cell proliferation by different distinct pathways.  相似文献   

11.
Immunity to the murine cytomegalovirus (MCMV) is critically dependent on the innate response for initial containment of viral replication, resolution of active infection, and proper induction of the adaptive phase of the anti-viral response. In contrast to NK cells, the Vα14 invariant natural killer T cell response to MCMV has not been examined. We found that Vα14i NK T cells become activated and produce significant levels of IFN-γ, but do not proliferate or produce IL-4 following MCMV infection. In vivo treatment with an anti-CD1d mAb and adoptive transfer of Vα14i NK T cells into MCMV-infected CD1d−/− mice demonstrate that CD1d is dispensable for Vα14i NK T cell activation. In contrast, both IFN-α/β and IL-12 are required for optimal activation. Vα14i NK T cell–derived IFN-γ is partially dependent on IFN-α/β but highly dependent on IL-12. Vα14i NK T cells contribute to the immune response to MCMV and amplify NK cell–derived IFN-γ. Importantly, mortality is increased in CD1d−/− mice in response to high dose MCMV infection when compared to heterozygote littermate controls. Collectively, these findings illustrate the plasticity of Vα14i NK T cells that act as effector T cells during bacterial infection, but have NK cell–like behavior during the innate immune response to MCMV infection.  相似文献   

12.
Human cytomegalovirus (HCMV) infections in immunocompromised patients are associated with impaired immunological functions. Blood monocytes, which can differentiate into dendritic cells upon cytokine stimulation, play a central role in adequate immune reactivity and are believed to carry latent HCMV. We demonstrate here that HCMV infection of monocytes results in a block in the cytokine-induced differentiation of monocytes into functionally active CD1a-positive dendritic cells, which exhibited severely depressed immunological functions in vitro. The HCMV-infected cells exhibited a significantly reduced ability to endocytose fluorescein isothiocyanate-labeled dextran particles as well as a more than 90% reduced ability to migrate in response to the chemoattractant factors RANTES, MIP-1alpha, and MIP-3beta. Interestingly, HCMV-infected cells expressed high levels of the costimulatory molecule CD86, in contrast to the low levels of expression that was observed on uninfected monocytes and uninfected immature dendritic cells. Furthermore, HCMV-infected CD1a-negative cells were unable to induce a T-cell response. Thus, these observations suggest that HCMV infection of monocytes in vitro blocks cytokine-induced dendritic cell differentiation, and since dendritic cells play a central role in initiating immune responses, these findings suggest a powerful tactic to avoid immune recognition and to blunt the immune response at early phases of infection.  相似文献   

13.
Macrophages (MΦ) are increasingly recognized as HIV-1 target cells involved in the pathogenesis and persistence of infection. Paradoxically, in vitro infection assays suggest that virus isolates are mostly T-cell-tropic and rarely MΦ-tropic. The latter are assumed to emerge under CD4+ T-cell paucity in tissues such as the brain or at late stage when the CD4 T-cell count declines. However, assays to qualify HIV-1 tropism use cell-free viral particles and may not fully reflect the conditions of in vivo MΦ infection through cell-to-cell viral transfer. Here, we investigated the capacity of viruses expressing primary envelope glycoproteins (Envs) with CCR5 and/or CXCR4 usage from different stages of infection, including transmitted/founder Envs, to infect MΦ by a cell-free mode and through cell-to-cell transfer from infected CD4+ T cells. The results show that most viruses were unable to enter MΦ as cell-free particles, in agreement with the current view that non-M-tropic viruses inefficiently use CD4 and/or CCR5 or CXCR4 entry receptors on MΦ. In contrast, all viruses could be effectively cell-to-cell transferred to MΦ from infected CD4+ T cells. We further showed that viral transfer proceeded through Env-dependent cell-cell fusion of infected T cells with MΦ targets, leading to the formation of productively infected multinucleated giant cells. Compared to cell-free infection, infected T-cell/MΦ contacts showed enhanced interactions of R5 M- and non-M-tropic Envs with CD4 and CCR5, resulting in a reduced dependence on receptor expression levels on MΦ for viral entry. Altogether, our results show that virus cell-to-cell transfer overcomes the entry block of isolates initially defined as non-macrophage-tropic, indicating that HIV-1 has a more prevalent tropism for MΦ than initially suggested. This sheds light into the role of this route of virus cell-to-cell transfer to MΦ in CD4+ T cell rich tissues for HIV-1 transmission, dissemination and formation of tissue viral reservoirs.  相似文献   

14.
Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 12 with Dengue, 12 with Influenza, 3 with Adenovirus infection and 3 with fevers of unknown etiology. Virus-specific (EBV, HCMV, Influenza) pentamer+ and total CD8 T cells were analyzed for activation (CD38/HLA-DR), proliferation (Ki-67/Bcl-2low) and cytokine production. We observed that all acute viral infections trigger an expansion of activated/proliferating CD8 T cells, which differs in size depending on the infection but is invariably inflated by CD8 T cells specific for persistent herpesviruses (HCMV/EBV). CD8 T cells specific for other non-related non persistent viral infection (i.e. Influenza) were not activated. IL-15, which is produced during acute viral infections, is the likely contributing mechanism driving the selective activation of herpesvirus specific CD8 T cells. In addition we were able to show that herpesvirus specific CD8 T cells displayed an increased ability to produce the anti-viral cytokine interferon-γ during the acute phase of heterologous viral infection. Taken together, these data demonstrated that activated herpesvirus specific CD8 T cells inflate the activated/proliferating CD8 T cells population present during acute viral infections in human and can contribute to the heterologous anti-viral T cell response.  相似文献   

15.
Human Cytomegalovirus (HCMV) encodes multiple microRNAs (miRNAs) whose functions are just beginning to be uncovered. Using in silico approaches, we identified the Toll-Like Receptor (TLR) innate immunity pathway as a possible target of HCMV miRNAs. Luciferase reporter assay screens further identified TLR2 as a target of HCMV miR-UL112-3p. TLR2 plays a major role in innate immune response by detecting both bacterial and viral ligands, including HCMV envelope proteins gB and gH. TLR2 activates a variety of signal transduction routes including the NFκB pathway. Furthermore, TLR2 plays an important role in controlling CMV infection both in humans and in mice. Immunoblot analysis of cells transfected with a miR-UL112-3p mimic revealed that endogenous TLR2 is down-regulated by miR-UL112-3p with similar efficiency as a TLR2-targeting siRNA (siTLR2). We next found that TLR2 protein level decreases at late times during HCMV infection and correlates with miR-UL112-3p accumulation in fibroblasts and monocytic THP1 cells. Confirming direct miR-UL112-3p targeting, down-regulation of endogenous TLR2 was not observed in cells infected with HCMV mutants deficient in miR-UL112-3p expression, but transfection of miR-UL112-3p in these cells restored TLR2 down-regulation. Using a NFκB reporter cell line, we found that miR-UL112-3p transfection significantly inhibited NFκB-dependent luciferase activity with similar efficiency as siTLR2. Consistent with this observation, miR-UL112-3p transfection significantly reduced the expression of multiple cytokines (IL-1β, IL-6 and IL-8) upon stimulation with a TLR2 agonist. Finally, miR-UL112-3p transfection significantly inhibited the TLR2-induced post-translational activation of IRAK1, a kinase located in the upstream section of the TLR2/NFκB signaling axis. To our knowledge, this is the first identified mechanism of TLR2 modulation by HCMV and is the first report of functional targeting of TLR2 by a viral miRNA. These results provide a novel mechanism through which a HCMV miRNA regulates the innate immune response by down-regulating TLR-2 expression.  相似文献   

16.
Human cytomegalovirus (HCMV) masterfully evades adaptive and innate immune responses, allowing infection to be maintained and periodically reactivated for the life of the host. Here we show that cells also possess an intrinsic immune defense against HCMV that is disarmed by the virus. In HCMV-infected cells, the promyelocytic leukemia nuclear body (PML-NB) protein Daxx silences viral immediate-early gene expression through the action of a histone deacetylase. However, this antiviral tactic is efficiently neutralized by the viral pp71 protein, which is incorporated into virions, delivered to cells upon infection, and mediates the proteasomal degradation of Daxx. This work demonstrates the mechanism through which pp71 activates viral immediate-early gene expression in HCMV-infected cells. Furthermore, it provides insight into how a PML-NB protein institutes an intrinsic immune defense against a DNA virus and how HCMV pp71 inactivates this defense.  相似文献   

17.
18.
PKR-like endoplasmic reticulum (ER) kinase (PERK) is an ER-associated stress sensor protein which phosphorylates eukaryotic initiation factor 2α (eIF2α) to induce translation attenuation in response to ER stress. PERK is also a regulator of lipogenesis during adipocyte differentiation through activation of the cleavage of sterol regulatory element binding protein 1 (SREBP1), resulting in the upregulation of lipogenic enzymes. Our recent studies have shown that human cytomegalovirus (HCMV) infection in human fibroblasts (HF) induces adipocyte-like lipogenesis through the activation of SREBP1. Here, we report that PERK expression is highly increased in HCMV-infected cells and is necessary for HCMV growth. Depletion of PERK, using short hairpin RNA (shRNA), resulted in attenuation of HCMV growth, inhibition of lipid synthesis and reduction of lipogenic gene expression. Examination of the cleavage of SREBP proteins showed PERK depletion inhibited the cleavage of SREBP1, but not SREBP2, in HCMV-infected cells, suggesting different cleavage regulatory mechanisms for SREBP1 and 2. Further studies showed that the depletion of SREBP1, but not SREBP2, reduced lipid synthesis in HCMV infection, suggesting that activation of SREBP1 is sufficient to induce lipogenesis in HCMV infection. The reduction of lipid synthesis by PERK depletion can be partially restored by expressing a Flag-tagged nuclear form of SREBP1a. Our studies also suggest that the induction of PERK in HCMV-infected cells stimulates SREBP1 cleavage by reducing levels of Insig1 (Insulin inducible gene 1) protein; this occurs independent of the phosphorylation of eIF2α. Introduction of an exogenous Insig1-Myc into HCMV infected cells significantly reduced HCMV growth and lipid synthesis. Our data demonstrate that the induction of PERK during HCMV infection is necessary for full activation of lipogenesis; this effect appears to be mediated by limiting the levels of Insig1 thus freeing SREBP1-SCAP complexes for SREBP1 processing.  相似文献   

19.
Macrophages (Mφs) play a crucial role in the development of atherosclerosis by engulfing modified LDL particles and forming foam cells, the hallmark of atherosclerosis. Many studies suggest that myeloperoxidase-oxidized LDL (Mox-LDL) is an important pathophysiological model for LDL modification in vivo. Classically (M1) and alternatively activated (M2) Mφs are both implicated in the process of atherogenesis. Mφs are highly plastic cells whereby they undergo repolarization from M1 to M2 and vice versa. Since little is known about the effects of Mox-LDL on Mφ polarization and repolarization, our study aimed at evaluating the in vitro effects of Mox-LDL at this level through making use of the well-established model of human THP-1-derived Mφs. Resting M0-Mφs were polarized toward M1- and M2-Mφs, then M0-, M1- and M2-Mφs were all treated with physiological concentrations of Mox-LDL to assess the effect of Mox-LDL treatment on Mφ polarization and repolarization. Treatment of M0-Mφs with a physiological concentration of Mox-LDL had no significant effects at the level of their polarization. However, treatment of M1-Mφs with Mox-LDL resulted in a significant reduction in their IL-10 cytokine secretion. Our results point to a potential role of Mox-LDL in increasing the pro-inflammatory state in Mφs through reducing the release of the anti-inflammatory cytokine, IL-10.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号