首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosynthesis powers nearly all life on Earth. Light absorbed by photosystems drives the conversion of water and carbon dioxide into sugars. In plants, photosystem I (PSI) and photosystem II (PSII) work in series to drive the electron transport from water to NADP+. As both photosystems largely work in series, a balanced excitation pressure is required for optimal photosynthetic performance. Both photosystems are composed of a core and light-harvesting complexes (LHCI) for PSI and LHCII for PSII. When the light conditions favor the excitation of one photosystem over the other, a mobile pool of trimeric LHCII moves between both photosystems thus tuning their antenna cross-section in a process called state transitions. When PSII is overexcited multiple LHCIIs can associate with PSI. A trimeric LHCII binds to PSI at the PsaH/L/O site to form a well-characterized PSI–LHCI–LHCII supercomplex. The binding site(s) of the “additional” LHCII is still unclear, although a mediating role for LHCI has been proposed. In this work, we measured the PSI antenna size and trapping kinetics of photosynthetic membranes from Arabidopsis (Arabidopsis thaliana) plants. Membranes from wild-type (WT) plants were compared to those of the ΔLhca mutant that completely lacks the LHCI antenna. The results showed that “additional” LHCII complexes can transfer energy directly to the PSI core in the absence of LHCI. However, the transfer is about two times faster and therefore more efficient, when LHCI is present. This suggests LHCI mediates excitation energy transfer from loosely bound LHCII to PSI in WT plants.

The light-harvesting antennae of photosystem I facilitate energy transfer from trimeric light-harvesting complex II to photosystem I in the stroma lamellae membrane.  相似文献   

2.
Light drives photosynthesis. In plants it is absorbed by light-harvesting antenna complexes associated with Photosystem I (PSI) and photosystem II (PSII). As PSI and PSII work in series, it is important that the excitation pressure on the two photosystems is balanced. When plants are exposed to illumination that overexcites PSII, a special pool of the major light-harvesting complex LHCII is phosphorylated and moves from PSII to PSI (state 2). If instead PSI is over-excited the LHCII complex is dephosphorylated and moves back to PSII (state 1). Recent findings have suggested that LHCII might also transfer energy to PSI in state 1. In this work we used a combination of biochemistry and (time-resolved) fluorescence spectroscopy to investigate the PSI antenna size in state 1 and state 2 for Arabidopsis thaliana. Our data shows that 0.7 ± 0.1 unphosphorylated LHCII trimers per PSI are present in the stroma lamellae of state-1 plants. Upon transition to state 2 the antenna size of PSI in the stroma membrane increases with phosphorylated LHCIIs to a total of 1.2 ± 0.1 LHCII trimers per PSI. Both phosphorylated and unphosphorylated LHCII function as highly efficient PSI antenna.  相似文献   

3.
In higher plants, the photosystem (PS) II core and its several light harvesting antenna (LHCII) proteins undergo reversible phosphorylation cycles according to the light intensity. High light intensity induces strong phosphorylation of the PSII core proteins and suppresses the phosphorylation level of the LHCII proteins. Decrease in light intensity, in turn, suppresses the phosphorylation of PSII core, but strongly induces the phosphorylation of LHCII. Reversible and differential phosphorylation of the PSII-LHCII proteins is dependent on the interplay between the STN7 and STN8 kinases, and the respective phosphatases. The STN7 kinase phosphorylates the LHCII proteins and to a lesser extent also the PSII core proteins D1, D2 and CP43. The STN8 kinase, on the contrary, is rather specific for the PSII core proteins. Mechanistically, the PSII-LHCII protein phosphorylation is required for optimal mobility of the PSII-LHCII protein complexes along the thylakoid membrane. Physiologically, the phosphorylation of LHCII is a prerequisite for sufficient excitation of PSI, enabling the excitation and redox balance between PSII and PSI under low irradiance, when excitation energy transfer from the LHCII antenna to the two photosystems is efficient and thermal dissipation of excitation energy (NPQ) is minimised. The importance of PSII core protein phosphorylation is manifested under highlight when the photodamage of PSII is rapid and phosphorylation is required to facilitate the migration of damaged PSII from grana stacks to stroma lamellae for repair. The importance of thylakoid protein phosphorylation is highlighted under fluctuating intensity of light where the STN7 kinase dependent balancing of electron transfer is a prerequisite for optimal growth and development of the plant. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

4.
In this work, the transfer of excitation energy was studied in native and cation-depletion induced, unstacked thylakoid membranes of spinach by steady-state and time-resolved fluorescence spectroscopy. Fluorescence emission spectra at 5 K show an increase in photosystem I (PSI) emission upon unstacking, which suggests an increase of its antenna size. Fluorescence excitation measurements at 77 K indicate that the increase of PSI emission upon unstacking is caused both by a direct spillover from the photosystem II (PSII) core antenna and by a functional association of light-harvesting complex II (LHCII) to PSI, which is most likely caused by the formation of LHCII-LHCI-PSI supercomplexes. Time-resolved fluorescence measurements, both at room temperature and at 77 K, reveal differences in the fluorescence decay kinetics of stacked and unstacked membranes. Energy transfer between LHCII and PSI is observed to take place within 25 ps at room temperature and within 38 ps at 77 K, consistent with the formation of LHCII-LHCI-PSI supercomplexes. At the 150–160 ps timescale, both energy transfer from LHCII to PSI as well as spillover from the core antenna of PSII to PSI is shown to occur at 77 K. At room temperature the spillover and energy transfer to PSI is less clear at the 150 ps timescale, because these processes compete with charge separation in the PSII reaction center, which also takes place at a timescale of about 150 ps.  相似文献   

5.
We investigated the organization of photosystem II (PSII) in agranal bundle sheath thylakoids from a C(4) plant maize. Using blue native/SDS-PAGE and single particle analysis, we show for the first time that PSII in the bundle sheath (BS) chloroplasts exists in a dimeric form and forms light-harvesting complex II (LHCII).PSII supercomplexes. We also demonstrate that a similar set of photosynthetic membrane complexes exists in mesophyll and agranal BS chloroplasts, including intact LHCI.PSI supercomplexes, PSI monomers, PSII core dimers, PSII monomers devoid of CP43, LHCII trimers, LHCII monomers, ATP synthase, and cytochrome b(6)f complex. Fluorescence functional measurements clearly indicate that BS chloroplasts contain PSII complexes that are capable of performing charge separation and are efficiently sensitized by the associated LHCII. We identified a fraction of LHCII present within BS thylakoids that is weakly energetically coupled to the PSII reaction center; however, the majority of BS LHCII is shown to be tightly connected to PSII. Overall, we demonstrate that organization of the photosynthetic apparatus in BS agranal chloroplasts of a model C(4) plant is clearly distinct from that of the stroma lamellae of the C(3) plants. In particular, supramolecular organization of the dimeric LHCII.PSII in the BS thylakoids strongly suggests that PSII in the BS agranal membranes may donate electrons to PSI. We propose that the residual PSII activity may supply electrons to poise cyclic electron flow around PSI and prevent PSI overoxidation, which is essential for the CO(2) fixation in BS cells, and hence, may optimize ATP production within this compartment.  相似文献   

6.
The light reactions of photosynthesis in green plants are mediated by four large protein complexes, embedded in the thylakoid membrane of the chloroplast. Photosystem I (PSI) and Photosystem II (PSII) are both organized into large supercomplexes with variable amounts of membrane-bound peripheral antenna complexes. PSI consists of a monomeric core complex with single copies of four different LHCI proteins and has binding sites for additional LHCI and/or LHCII complexes. PSII supercomplexes are dimeric and contain usually two to four copies of trimeric LHCII complexes. These supercomplexes have a further tendency to associate into megacomplexes or into crystalline domains, of which several types have been characterized. Together with the specific lipid composition, the structural features of the main protein complexes of the thylakoid membranes form the main trigger for the segregation of PSII and LHCII from PSI and ATPase into stacked grana membranes. We suggest that the margins, the strongly folded regions of the membranes that connect the grana, are essentially protein-free, and that protein-protein interactions in the lumen also determine the shape of the grana. We also discuss which mechanisms determine the stacking of the thylakoid membranes and how the supramolecular organization of the pigment-protein complexes in the thylakoid membrane and their flexibility may play roles in various regulatory mechanisms of green plant photosynthesis.  相似文献   

7.
A project to investigate the supramolecular structure of photosystems was initiated, which is based on protein solubilizations by digitonin, protein separations by Blue native (BN)-polyacrylamide gel electrophoresis (PAGE) and protein identifications by mass spectrometry (MS). Under the conditions applied, nine photosystem supercomplexes could be described for chloroplasts of Arabidopsis, which have apparent molecular masses between 600 and 3200 kDa on BN gels. Identities of the supercomplexes were determined on the basis of their subunit compositions as documented by 2D BN/SDS-PAGE and BN/BN-PAGE. Two supercomplexes of 1060 and approximately 1600 kDa represent dimeric and trimeric forms of photosystem I (PSI), which include tightly bound LHCI proteins. Compared to monomeric PSI, these protein complexes are of low abundance. In contrast, photosystem II mainly forms part of dominant supercomplexes of 850, 1000, 1050 and 1300 kDa. According to our interpretation, these supercomplexes contain dimeric PSII, 1-4 LHCII trimers and additionally monomeric LHCII proteins. The 1300-kDa PSII supercomplex (containing four LHCII trimers) is partially converted into the 1000-kDa PSII supercomplex (containing two LHCII trimers) in the presence of dodecylmaltoside on 2D BN/BN gels. Analyses of peptides of the trypsinated 1300-kDa PSII supercomplex by mass spectrometry allowed to identify known subunits of the PSII core complex and additionally LHCII proteins encoded by eight different genes in Arabidopsis. Further application of this experimental approach will allow new insights into the supermolecular organization of photosystems in plants.  相似文献   

8.
The biological conversion of light energy into chemical energy is performed by a flexible photosynthetic machinery located in the thylakoid membranes. Photosystems I and II (PSI and PSII) are the two complexes able to harvest light. PSI is the last complex of the electron transport chain and is composed of multiple subunits: the proteins building the catalytic core complex that are well conserved between oxygenic photosynthetic organisms, and, in green organisms, the membrane light‐harvesting complexes (Lhc) necessary to increase light absorption. In plants, four Lhca proteins (Lhca1–4) make up the antenna system of PSI, which can be further extended to optimize photosynthesis by reversible binding of LHCII, the main antenna complex of photosystem II. Here, we used biochemistry and electron microscopy in Arabidopsis to reveal a previously unknown supercomplex of PSI with LHCII that contains an additional Lhca1–a4 dimer bound on the PsaB–PsaI–PsaH side of the complex. This finding contradicts recent structural studies suggesting that the presence of an Lhca dimer at this position is an exclusive feature of algal PSI. We discuss the features of the additional Lhca dimer in the large plant PSI–LHCII supercomplex and the differences with the algal PSI. Our work provides further insights into the intricate structural plasticity of photosystems.  相似文献   

9.
State transitions represent a photoacclimation process that regulates the light‐driven photosynthetic reactions in response to changes in light quality/quantity. It balances the excitation between photosystem I (PSI) and II (PSII) by shuttling LHCII, the main light‐harvesting complex of green algae and plants, between them. This process is particularly important in Chlamydomonas reinhardtii in which it is suggested to induce a large reorganization in the thylakoid membrane. Phosphorylation has been shown to be necessary for state transitions and the LHCII kinase has been identified. However, the consequences of state transitions on the structural organization and the functionality of the photosystems have not yet been elucidated. This situation is mainly because the purification of the supercomplexes has proved to be particularly difficult, thus preventing structural and functional studies. Here, we have purified and analysed PSI and PSII supercomplexes of C. reinhardtii in states 1 and 2, and have studied them using biochemical, spectroscopic and structural methods. It is shown that PSI in state 2 is able to bind two LHCII trimers that contain all four LHCII types, and one monomer, most likely CP29, in addition to its nine Lhcas. This structure is the largest PSI complex ever observed, having an antenna size of 340 Chls/P700. Moreover, all PSI‐bound Lhcs are efficient in transferring energy to PSI. A projection map at 20 Å resolution reveals the structural organization of the complex. Surprisingly, only LHCII type I, II and IV are phosphorylated when associated with PSI, while LHCII type III and CP29 are not, but CP29 is phosphorylated when associated with PSII in state2.  相似文献   

10.
Prasinophyceae are a broad class of early-branching eukaryotic green algae. These picophytoplankton are found ubiquitously throughout the ocean and contribute considerably to global carbon-fixation. Ostreococcus tauri, as the first sequenced prasinophyte, is a model species for studying the functional evolution of light-harvesting systems in photosynthetic eukaryotes. In this study we isolated and characterized O. tauri pigment-protein complexes. Two photosystem I (PSI) fractions were obtained by sucrose density gradient centrifugation in addition to free light-harvesting complex (LHC) fraction and photosystem II (PSII) core fractions. The smaller PSI fraction contains the PSI core proteins, LHCI, which are conserved in all green plants, Lhcp1, a prasinophyte-specific LHC protein, and the minor, monomeric LHCII proteins CP26 and CP29. The larger PSI fraction contained the same antenna proteins as the smaller, with the addition of Lhca6 and Lhcp2, and a 30% larger absorption cross-section. When O. tauri was grown under high-light conditions, only the smaller PSI fraction was present. The two PSI preparations were also found to be devoid of the far-red chlorophyll fluorescence (715-730 nm), a signature of PSI in oxygenic phototrophs. These unique features of O. tauri PSI may reflect primitive light-harvesting systems in green plants and their adaptation to marine ecosystems. Possible implications for the evolution of the LHC-superfamily in photosynthetic eukaryotes are discussed.  相似文献   

11.
Monoclonal antibodies have been raised against the light-harvesting chlorophyll a/b-binding proteins of photosystem I (LHCI) using a photosystem (PS) I preparation (PSI-200) wild-type from barley (Hordeum vulgare L. cv. Svaløf's Bonus) as the antigen. These antibodies cross-reacted with a minor light-harvesting chlorophyll a/b-protein of PSII (Chla/b-P1=CP29), but not with the major one, LHCII (=Chla/b-P2**). Similarly, a monoclonal antibody to Chla/b-P1, elicited by a PSII preparation as the antigen, cross-reacted with LHCI, but not LHCII. This explains why an antigen consisting of LHCII, free of LHCI, but contaminated with Chla/b-P1, can elicit antibodies which cross-react with LHCI. Immunoblot assays showed that LHCI and Chla/b-P1 have at least two epitopes in common. Immunogold labelling of thin-sectioned wild-type thylakoids confirmed a preferential localisation of Chla/b-P1 in grana partition membranes and LHCI in stroma lamellae. The presence of LHCI was demonstrated in barley mutants lacking the PSI reaction centre (viridis-zb 63) and chlorophyll b (chlorina-f2), and was correlated with the presence of long-wavelength (730 nm) fluorescence emission at 77 K. The mutant viridis-k 23, which has a 77 K long-wavelength fluorescence peak at 720 nm, was shown by immune-blot assay to lack LHCI, although Chla/b-P1 was present.Abbreviations Chl-P chlorophyll-protein - CM Carlsberg Monoclonal - Da dalton - LHC light-harvesting complex - PAGE polyacrylamide gel electrophoresis - PSI, II photosystem I, II - PSI-200 PSI containing LHCI polypeptides - SDS sodium dodecyl sulphate  相似文献   

12.
Ben-Shem A  Frolow F  Nelson N 《FEBS letters》2004,564(3):274-280
The evolution of photosystem (PS) I was probably initiated by the formation of a homodimeric reaction center similar to the one currently present in green bacteria. Gene duplication has generated a heterodimeric reaction center that subsequently evolved to the PSI present in cyanobacteria, algae and plant chloroplasts. During the evolution of PSI several attempts to maximize the efficiency of light harvesting took place in the various organisms. In the Chlorobiaceae, chlorosomes and FMO were added to the homodimeric reaction center. In cyanobacteria phycobilisomes and CP43' evolved to cope with the light limitations and stress conditions. The plant PSI utilizes a modular arrangement of membrane light-harvesting proteins (LHCI). We obtained structural information from the two ends of the evolutionary spectrum. Novel features in the structure of Chlorobium tepidum FMO are reported in this communication. Our structure of plant PSI reveals that the addition of subunit G provided the template for LHCI binding, and the addition of subunit H prevented the possibility of trimer formation and provided a binding site for LHCII and the onset of energy spillover from PSII to PSI.  相似文献   

13.
植物光合机构的状态转换   总被引:9,自引:0,他引:9  
植物光合机构的状态转换是一种通过光系统Ⅱ的捕光天线色素蛋白复合体(LHCⅡ)的可逆磷酸化调节激发能在两个光系统间的分配来适应环境中光质等短期变化的机制.一般植物光合机构的LHCⅡ磷酸化主要受电子递体质醌和细胞色素b6f复合体氧化还原状态的调节,从而影响其在两种光系统间的移动。植物光合机构的状态转换也可以通过两种光系统相互接近导致激发能满溢来平衡两个光系统的激发能分配。外界离子浓度骤变可以引起盐藻LHCⅡ磷酸化,其调节过程与电子递体的氧化还原状态无关。绿藻的状态转换可以调节细胞内的ATP供求关系。  相似文献   

14.
Nonphotochemical quenching (NPQ) is a mechanism of regulating light harvesting that protects the photosynthetic apparatus from photodamage by dissipating excess absorbed excitation energy as heat. In higher plants, the major light-harvesting antenna complex (LHCII) of photosystem (PS) II is directly involved in NPQ. The aggregation of LHCII is proposed to be involved in quenching. However, the lack of success in isolating native LHCII aggregates has limited the direct interrogation of this process. The isolation of LHCII in its native state from thylakoid membranes has been problematic because of the use of detergent, which tends to dissociate loosely bound proteins, and the abundance of pigment–protein complexes (e.g. PSI and PSII) embedded in the photosynthetic membrane, which hinders the preparation of aggregated LHCII. Here, we used a novel purification method employing detergent and amphipols to entrap LHCII in its natural states. To enrich the photosynthetic membrane with the major LHCII, we used Arabidopsis thaliana plants lacking the PSII minor antenna complexes (NoM), treated with lincomycin to inhibit the synthesis of PSI and PSII core proteins. Using sucrose density gradients, we succeeded in isolating the trimeric and aggregated forms of LHCII antenna. Violaxanthin- and zeaxanthin-enriched complexes were investigated in dark-adapted, NPQ, and dark recovery states. Zeaxanthin-enriched antenna complexes showed the greatest amount of aggregated LHCII. Notably, the amount of aggregated LHCII decreased upon relaxation of NPQ. Employing this novel preparative method, we obtained a direct evidence for the role of in vivo LHCII aggregation in NPQ.  相似文献   

15.
Light-harvesting chlorophyll a/b-binding proteins (LHCI) associated with photosystem I (PSI) and the genes encoding these proteins have been characterized in the unicellular green alga Chlamydomonas reinhardtii, extending previous studies of the PSII-LHCII [Teramoto et al. (2001) Plant Cell Physiol. 42: 849]. In order to assign LHCI proteins in the thylakoid membranes, the PSI-LHCI supercomplex that retains all of the major LHCI proteins was purified. Seven distinct LHCI proteins were resolved from the purified supercomplex by a high-resolution SDS polyacrylamide gel electrophoresis, and their N-terminal amino acid sequences were determined. One LHCI protein (band e) was newly found, although the other six LHCI proteins corresponded to those previously reported. Genomic clones encoding these seven LHCI proteins were newly isolated and the nucleotide sequences were determined. A comprehensive characterization of all members of Lhc gene family in this alga revealed that LHCI proteins are more highly diverged than LHCII, suggesting functional differentiation of the protein components in LHCI. Neighbor joining trees were constructed for LHC proteins from C. reinhardtii and those of Arabidopsis thaliana or Galdieria sulphuraria to assess evolutionary relationships. Phylogenetic analysis revealed that (1). green algal LHCI and LHCII proteins are more closely related to one another than to LHCI proteins in red algae, (2). green algae and higher plants possess seven common lineages of LHC proteins, and (3). Type I and III LHCI proteins are conserved between green algae and higher plants, while Type II and IV are not. These findings are discussed in the context of evolution of multiple diverse antenna complexes.  相似文献   

16.
Structure and function of chloroplasts are known to after during senescence. The senescence-induced specific changes in light harvesting antenna of photosystem II (PSII) and photosystem I (PSI) were investigated in Cucumis cotyledons. Purified light harvesting complex II (LHCII) and photosystem I complex were isolated from 6-day non-senescing and 27-day senescing Cucumis cotyledons. The chlorophyll a/b ratio of LHCII obtained from 6-day-old control cotyledons and their absorption, chlorophyll a fluorescence emission and the circular dichroism (CD) spectral properties were comparable to the LHCII preparations from other plants such as pea and spinach. The purified LHCII obtained from 27-day senescing cotyledons had a Chl a/b ratio of 1.25 instead of 1.2 as with 6-day LHCII and also exhibited significant changes in the visible CD spectrum compared to that of 6-day LHCII, indicating some specific alterations in the organisation of chlorophylls of LHCII. The light harvesting antenna of photosystems are likely to be altered due to aging. The room temperature absorption spectrum of LHCII obtained from 27-day senescing cotyledons showed changes in the peak positions. Similarly, comparison of 77K chlorophyll a fluorescence emission characteristics of LHCII preparation from senescing cotyledons with that of control showed a small shift in the peak position and the alteration in the emission profile, which is suggestive of possible changes in energy transfer within LHCII chlorophylls. Further, the salt induced aggregation of LHCII samples was lower, resulting in lower yields of LHCII from 27-day cotyledons than from normal cotyledons. Moreover, the PSI preparations of 6-day cotyledons showed Chl a/b ratios of 5 to 5.5, where as the PSI sample of 27-day cotyledons had a Chl a/b ratio of 2.9 suggesting LHCII association with PSI. The absorption, fluorescence emission and visible CD spectral measurements as well as the polypeptide profiles of 27-day cotyledon-PSI complexes indicated age-induced association of LHCII of PSII with PSI obtained from 27-day cotyledons. We modified our isolation protocols by increasing the duration of detergent Triton X-100 treatment for preparing the PSI and LHCII complexes from 27-day cotyledons. However, the PSI complexes isolated from senescing samples invariably proved to have significantly low Chl a/b ratio suggesting an age induced lateral movement and possible association of LHCII with PSI complexes. The analyses of polypeptide compositions of LHCII and PSI holocomplexes isolated from 6-day control and 27-day senescing cotyledons showed distinctive differences in their profiles. The presence of 26-28 kDa polypeptide in PSI complexes from 27-day cotyledons, but not in 6-day control PSI complexes is in agreement with the notion that senescence induced migration of LHCII to stroma lamellae and its possible association with PSI. We suggest that the migration of LHCII to the stroma lamellae region and its possible association with PSI might cause the destacking and flattening of grana structure during senescence of the chloroplasts. Such structural changes in light harvesting antenna are likely to alter energy transfer between two photosystems. The nature of aging induced migration and association of LHCII with PSI and its existence in other senescing systems need to be estimated in the future.  相似文献   

17.
State transitions, or the redistribution of light-harvesting complex II (LHCII) proteins between photosystem I (PSI) and photosystem II (PSII), balance the light-harvesting capacity of the two photosystems to optimize the efficiency of photosynthesis. Studies on the migration of LHCII proteins have focused primarily on their reassociation with PSI, but the molecular details on their dissociation from PSII have not been clear. Here, we compare the polypeptide composition, supramolecular organization, and phosphorylation of PSII complexes under PSI- and PSII-favoring conditions (State 1 and State 2, respectively). Three PSII fractions, a PSII core complex, a PSII supercomplex, and a multimer of PSII supercomplex or PSII megacomplex, were obtained from a transformant of the green alga Chlamydomonas reinhardtii carrying a His-tagged CP47. Gel filtration and single particles on electron micrographs showed that the megacomplex was predominant in State 1, whereas the core complex was predominant in State 2, indicating that LHCIIs are dissociated from PSII upon state transition. Moreover, in State 2, strongly phosphorylated LHCII type I was found in the supercomplex but not in the megacomplex. Phosphorylated minor LHCIIs (CP26 and CP29) were found only in the unbound form. The PSII subunits were most phosphorylated in the core complex. Based on these observations, we propose a model for PSII remodeling during state transitions, which involves division of the megacomplex into supercomplexes, triggered by phosphorylation of LHCII type I, followed by LHCII undocking from the supercomplex, triggered by phosphorylation of minor LHCIIs and PSII core subunits.  相似文献   

18.
The stability of chlorophyll-protein complexes of photosystem I (PSI) and photosystem II (PSII) was investigated by chlorophyll (Chl) fluorescence spectroscopy, absorption spectra and native green gel separation system during flag leaf senescence of two rice varieties (IIyou 129 and Shanyou 63) grown under outdoor conditions. During leaf senescence, photosynthetic CO(2) assimilation rate, carboxylase activity of Rubisco, chlorophyll and carotenoids contents, and the chlorophyll a/b ratio decreased significantly. The 77 K Chl fluorescence emission spectra of thylakoid membranes from mature leaves had two peaks at around 685 and 735 nm emitting mainly from PSII and PSI, respectively. The total Chl fluorescence yields of PSI and PSII decreased significantly with senescence progressing. However, the decrease in the Chl fluorescence yield of PSI was greater than in the yield of PSII, suggesting that the rate of degradation in chlorophyll-protein complexes of PSI was greater than in chlorophyll-protein complexes of PSII. The fluorescence yields for all chlorophyll-protein complexes decreased significantly with leaf senescence in two rice varieties but the extents of their decrease were significantly different. The greatest decrease in the Chl fluorescence yield was in PSI core, followed by LHCI, CP47, CP43, and LHCII. These results indicate that the rate of degradation for each chlorophyll-protein complex was different and the order for the stability of chlorophyll-protein complexes during leaf senescence was: LHCII>CP43>CP47>LHCI>PSI core, which was partly supported by the green gel electrophoresis of the chlorophyll-protein complexes.  相似文献   

19.
Leaves and chloroplast suspensions of severely and slightly iron deficient cucumber ( Cucumis sativus L.) plants were characterized by low-temperature fluorescence emission spectroscopy and Deriphat polyacrylamide gel electrophoresis. The emission spectra of the chloroplast suspensions were resolved into Gaussian components and those changes induced by iron deficiency were related to the variations in the chlorophyll-protein pattern. The symptoms described with these methods were also correlated with the iron content of the leaves. It was concluded that the lack of physiologically active iron caused a relative decrease of photosystem I (PSI) and light harvesting complex I (LHCI), together with the long wavelength fluorescence, especially the 740 nm Gaussian component, and. to a much lesser extent, of the photosystem II (PSII) core complexes (relative increase of 685, 695 nm components). However, the relative decrease in the amount of light harvesting complex II (LHCII) was followed by a relative increase in its fluorescence band at 680 nm, showing that energy transfer from LHCII to core complex II (CCII) was partly disturbed. Thus iron deficiency affected the photosynthetic apparatus in a complex way: it decreased the synthesis of chlorophylls (Chls) and influenced the expression and assembly of Chl-binding proteins.  相似文献   

20.
In photosynthesis in chloroplasts and cyanobacteria, redox control of thylakoid protein phosphorylation regulates distribution of absorbed excitation energy between the two photosystems. When electron transfer through chloroplast photosystem II (PSII) proceeds at a rate higher than that through photosystem I (PSI), chemical reduction of a redox sensor activates a thylakoid protein kinase that catalyses phosphorylation of light-harvesting complex II (LHCII). Phosphorylation of LHCII increases its affinity for PSI and thus redistributes light-harvesting chlorophyll to PSI at the expense of PSII. This short-term redox signalling pathway acts by means of reversible, post-translational modification of pre-existing proteins. A long-term equalisation of the rates of light utilisation by PSI and PSII also occurs: by means of adjustment of the stoichiometry of PSI and PSII. It is likely that the same redox sensor controls both state transitions and photosystem stoichiometry. A specific mechanism for integration of these short- and long-term adaptations is proposed. Recent evidence shows that phosphorylation of LHCII causes a change in its 3-D structure, which implies that the mechanism of state transitions in chloroplasts involves control of recognition of PSI and PSII by LHCII. The distribution of LHCII between PSII and PSI is therefore determined by the higher relative affinity of phospho-LHCII for PSI, with lateral movement of the two forms of the LHCII being simply a result of their diffusion within the membrane plane. Phosphorylation-induced dissociation of LHCII trimers may induce lateral movement of monomeric phospho-LHCII, which binds preferentially to PSI. After dephosphorylation, monomeric, unphosphorylated LHCII may trimerize at the periphery of PSII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号