首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to better define the extent of linkage disequilibrium (LD) in populations of large-breed dogs and its variation by breed and chromosomal region. Understanding the extent of LD is a crucial component for successful utilization of genome-wide association studies and allows researchers to better define regions of interest and target candidate genes. Twenty-four Golden Retriever dogs, 28 Rottweiler dogs, and 24 Newfoundland dogs were genotyped for single-nucleotide polymorphism (SNP) data using a high-density SNP array. LD was calculated for all autosomes using Haploview. Decay of the squared correlation coefficient (r 2) was plotted on a per-breed and per-chromosome basis as well as in a genome-wide fashion. The point of 50 % decay of r 2 was used to estimate the difference in extent of LD between breeds. Extent of LD was significantly shorter for Newfoundland dogs based upon 50 % decay of r 2 data at a mean of 344 kb compared to Golden Retriever and Rottweiler dogs at 715 and 834 kb, respectively (P < 0.0001). Notable differences in LD by chromosome were present within each breed and not strictly related to the length of the corresponding chromosome. Extent of LD is breed and chromosome dependent. To our knowledge, this is the first report of SNP-based LD for Newfoundland dogs, the first report based on genome-wide SNPs for Rottweilers, and an almost tenfold improvement in marker density over previous genome-wide studies of LD in Golden Retrievers.  相似文献   

2.

Background

The extent of linkage disequilibrium (LD) between molecular markers impacts genome-wide association studies and implementation of genomic selection. The availability of high-density single nucleotide polymorphism (SNP) genotyping platforms makes it possible to investigate LD at an unprecedented resolution. In this work, we characterised LD decay in breeds of beef cattle of taurine, indicine and composite origins and explored its variation across autosomes and the X chromosome.

Findings

In each breed, LD decayed rapidly and r2 was less than 0.2 for marker pairs separated by 50 kb. The LD decay curves clustered into three groups of similar LD decay that distinguished the three main cattle types. At short distances between markers (< 10 kb), taurine breeds showed higher LD (r2 = 0.45) than their indicine (r2 = 0.25) and composite (r2 = 0.32) counterparts. This higher LD in taurine breeds was attributed to a smaller effective population size and a stronger bottleneck during breed formation. Using all SNPs on only the X chromosome, the three cattle types could still be distinguished. However for taurine breeds, the LD decay on the X chromosome was much faster and the background level much lower than for indicine breeds and composite populations. When using only SNPs that were polymorphic in all breeds, the analysis of the X chromosome mimicked that of the autosomes.

Conclusions

The pattern of LD mirrored some aspects of the history of breed populations and showed a sharp decay with increasing physical distance between markers. We conclude that the availability of the HD chip can be used to detect association signals that remained hidden when using lower density genotyping platforms, since LD dropped below 0.2 at distances of 50 kb.  相似文献   

3.
Assessing the extent of linkage disequilibrium (LD) in natural populations of a nonmodel species has been difficult due to the lack of available genomic markers. However, with advances in genotyping and genome sequencing, genomic characterization of natural populations has become feasible. Using sequence data and SNP genotypes, we measured LD and modeled the demographic history of wild canid populations and domestic dog breeds. In 11 gray wolf populations and one coyote population, we find that the extent of LD as measured by the distance at which r2 = 0.2 extends <10 kb in outbred populations to >1.7 Mb in populations that have experienced significant founder events and bottlenecks. This large range in the extent of LD parallels that observed in 18 dog breeds where the r2 value varies from ~20 kb to >5 Mb. Furthermore, in modeling demographic history under a composite-likelihood framework, we find that two of five wild canid populations exhibit evidence of a historical population contraction. Five domestic dog breeds display evidence for a minor population contraction during domestication and a more severe contraction during breed formation. Only a 5% reduction in nucleotide diversity was observed as a result of domestication, whereas the loss of nucleotide diversity with breed formation averaged 35%.  相似文献   

4.
Genomic structural variations represent an important source of genetic variation in mammal genomes, thus, they are commonly related to phenotypic expressions. In this work, ∼770,000 single nucleotide polymorphism genotypes from 506 animals from 19 cattle breeds were analyzed. A simple LD-based structural variation was defined, and a genome-wide analysis was performed. After applying some quality control filters, for each breed and each chromosome we calculated the linkage disequilibrium (r 2) of short range (≤100 Kb). We sorted SNP pairs by distance and obtained a set of LD means (called the expected means) using bins of 5 Kb. We identified 15,246 segments of at least 1 Kb, among the 19 breeds, consisting of sets of at least 3 adjacent SNPs so that, for each SNP, r 2 within its neighbors in a 100 Kb range, to the right side of that SNP, were all bigger than, or all smaller than, the corresponding expected mean, and their P-value were significant after a Benjamini-Hochberg multiple testing correction. In addition, to account just for homogeneously distributed regions we considered only SNPs having at least 15 SNP neighbors within 100 Kb. We defined such segments as structural variations. By grouping all variations across all animals in the sample we defined 9,146 regions, involving a total of 53,137 SNPs; representing the 6.40% (160.98 Mb) from the bovine genome. The identified structural variations covered 3,109 genes. Clustering analysis showed the relatedness of breeds given the geographic region in which they are evolving. In summary, we present an analysis of structural variations based on the deviation of the expected short range LD between SNPs in the bovine genome. With an intuitive and simple definition based only on SNPs data it was possible to discern closeness of breeds due to grouping by geographic region in which they are evolving.  相似文献   

5.
Sheep are among the major economically important livestock species worldwide because the animals produce milk, wool, skin, and meat. In the present study, the Illumina OvineSNP50 BeadChip was used to investigate genetic diversity and genome selection among Suffolk, Rambouillet, Columbia, Polypay, and Targhee sheep breeds from the United States. After quality-control filtering of SNPs (single nucleotide polymorphisms), we used 48,026 SNPs, including 46,850 SNPs on autosomes that were in Hardy-Weinberg equilibrium and 1,176 SNPs on chromosome × for analysis. Phylogenetic analysis based on all 46,850 SNPs clearly separated Suffolk from Rambouillet, Columbia, Polypay, and Targhee, which was not surprising as Rambouillet contributed to the synthesis of the later three breeds. Based on pair-wise estimates of F ST, significant genetic differentiation appeared between Suffolk and Rambouillet (F ST = 0.1621), while Rambouillet and Targhee had the closest relationship (F ST = 0.0681). A scan of the genome revealed 45 and 41 differentially selected regions (DSRs) between Suffolk and Rambouillet and among Rambouillet-related breed populations, respectively. Our data indicated that regions 13 and 24 between Suffolk and Rambouillet might be good candidates for evaluating breed differences. Furthermore, ovine genome v3.1 assembly was used as reference to link functionally known homologous genes to economically important traits covered by these differentially selected regions. In brief, our present study provides a comprehensive genome-wide view on within- and between-breed genetic differentiation, biodiversity, and evolution among Suffolk, Rambouillet, Columbia, Polypay, and Targhee sheep breeds. These results may provide new guidance for the synthesis of new breeds with different breeding objectives.  相似文献   

6.
Diabetes mellitus is a serious health problem in both dogs and humans. Certain dog breeds show high prevalence of the disease, whereas other breeds are at low risk. Fructosamine and glycated haemoglobin (HbA1c) are two major biomarkers of glycaemia, where serum concentrations reflect glucose turnover over the past few weeks to months. In this study, we searched for genetic factors influencing variation in serum fructosamine concentration in healthy dogs using data from nine dog breeds. Considering all breeds together, we did not find any genome-wide significant associations to fructosamine serum concentration. However, by performing breed-specific analyses we revealed an association on chromosome 3 (pcorrected ≈ 1:68 × 10-6) in Belgian shepherd dogs of the Malinois subtype. The associated region and its close neighbourhood harbours interesting candidate genes such as LETM1 and GAPDH that are important in glucose metabolism and have previously been implicated in the aetiology of diabetes mellitus. To further explore the genetics of this breed specificity, we screened the genome for reduced heterozygosity stretches private to the Belgian shepherd breed. This revealed a region with reduced heterozygosity that shows a statistically significant interaction (p = 0.025) with the association region on chromosome 3. This region also harbours some interesting candidate genes and regulatory regions but the exact mechanisms underlying the interaction are still unknown. Nevertheless, this finding provides a plausible explanation for breed-specific genetic effects for complex traits in dogs. Shepherd breeds are at low risk of developing diabetes mellitus. The findings in Belgian shepherds could be connected to a protective mechanism against the disease. Further insight into the regulation of glucose metabolism could improve diagnostic and therapeutic methods for diabetes mellitus.  相似文献   

7.
The understanding of non-random association between loci, termed linkage disequilibrium (LD), plays a central role in genomic research. Since causal mutations are generally not included in genomic marker data, LD between those and available markers is essential for capturing the effects of causal loci on localizing genes responsible for traits. Thus, the interpretation of association studies requires a detailed knowledge of LD patterns. It is well known that most LD measures depend on minor allele frequencies (MAF) of the considered loci and the magnitude of LD is influenced by the physical distances between loci. In the present study, a procedure to compare the LD structure between genomic regions comprising several markers each is suggested. The approach accounts for different scaling factors, namely the distribution of MAF, the distribution of pair-wise differences in MAF, and the physical extent of compared regions, reflected by the distribution of pair-wise physical distances. In the first step, genomic regions are matched based on similarity in these scaling factors. In the second step, chromosome- and genome-wide significance tests for differences in medians of LD measures in each pair are performed. The proposed framework was applied to test the hypothesis that the average LD is different in genic and non-genic regions. This was tested with a genome-wide approach with data sets for humans (Homo sapiens), a highly selected chicken line (Gallus gallus domesticus) and the model plant Arabidopsis thaliana. In all three data sets we found a significantly higher level of LD in genic regions compared to non-genic regions. About 31% more LD was detected genome-wide in genic compared to non-genic regions in Arabidopsis thaliana, followed by 13.6% in human and 6% chicken. Chromosome-wide comparison discovered significant differences on all 5 chromosomes in Arabidopsis thaliana and on one third of the human and of the chicken chromosomes.  相似文献   

8.
The cat (Felis silvestris catus) shows significant variation in pelage, morphological, and behavioral phenotypes amongst its over 40 domesticated breeds. The majority of the breed specific phenotypic presentations originated through artificial selection, especially on desired novel phenotypic characteristics that arose only a few hundred years ago. Variations in coat texture and color of hair often delineate breeds amongst domestic animals. Although the genetic basis of several feline coat colors and hair lengths are characterized, less is known about the genes influencing variation in coat growth and texture, especially rexoid – curly coated types. Cornish Rex is a cat breed defined by a fixed recessive curly coat trait. Genome-wide analyses for selection (di, Tajima’s D and nucleotide diversity) were performed in the Cornish Rex breed and in 11 phenotypically diverse breeds and two random bred populations. Approximately 63K SNPs were used in the analysis that aimed to localize the locus controlling the rexoid hair texture. A region with a strong signature of recent selective sweep was identified in the Cornish Rex breed on chromosome A1, as well as a consensus block of homozygosity that spans approximately 3 Mb. Inspection of the region for candidate genes led to the identification of the lysophosphatidic acid receptor 6 (LPAR6). A 4 bp deletion in exon 5, c.250_253_delTTTG, which induces a premature stop codon in the receptor, was identified via Sanger sequencing. The mutation is fixed in Cornish Rex, absent in all straight haired cats analyzed, and is also segregating in the German Rex breed. LPAR6 encodes a G protein-coupled receptor essential for maintaining the structural integrity of the hair shaft; and has mutations resulting in a wooly hair phenotype in humans.  相似文献   

9.
Knowledge of linkage disequilibrium (LD) is important for effective genome-wide association studies and accurate genomic prediction. Chinese Merino (Xinjiang type) is well-known fine wool sheep breed. However, the extent of LD across the genome remains unexplored. In this study, we calculated autosomal LD based on genome-wide SNPs of 635 Chinese Merino (Xinjiang type) sheep by Illumina Ovine SNP50 BeadChip. A moderate level of LD (r 2?≥?0.25) across the whole genome was observed at short distances of 0–10 kb. Further, the ancestral effective population size (N e ) was analyzed by extent of LD and found that N e increased with the increase of generations and declined rapidly within the most recent 50 generations, which is consistent with the history of Chinese Merino sheep breeding, initiated in 1971. We also noted that even when the effective population size was estimated across different single chromosomes, N e only ranged from 140.36 to 183.33 at five generations in the past, exhibiting a rapid decrease compared with that at ten generations in the past. These results indicated that the genetic diversity in Chinese Merino sheep recently decreased and proper protective measures should be taken to maintain the diversity. Our datasets provided essential genetic information to track molecular variations which potentially contribute to phenotypic variation in Chinese Merino sheep.  相似文献   

10.

Background

Both genome-wide association (GWA) studies and genomic selection depend on the level of non-random association of alleles at different loci, i.e. linkage disequilibrium (LD), across the genome. Therefore, characterizing LD is of fundamental importance to implement both approaches. In this study, using a 60K single nucleotide polymorphism (SNP) panel, we estimated LD and haplotype structure in crossbred broiler chickens and their component pure lines (one male and two female lines) and calculated the consistency of LD between these populations.

Results

The average level of LD (measured by r2) between adjacent SNPs across the chicken autosomes studied here ranged from 0.34 to 0.40 in the pure lines but was only 0.24 in the crossbred populations, with 28.4% of adjacent SNP pairs having an r2 higher than 0.3. Compared with the pure lines, the crossbred populations consistently showed a lower level of LD, smaller haploblock sizes and lower haplotype homozygosity on macro-, intermediate and micro-chromosomes. Furthermore, correlations of LD between markers at short distances (0 to 10 kb) were high between crossbred and pure lines (0.83 to 0.94).

Conclusions

Our results suggest that using crossbred populations instead of pure lines can be advantageous for high-resolution QTL (quantitative trait loci) mapping in GWA studies and to achieve good persistence of accuracy of genomic breeding values over generations in genomic selection. These results also provide useful information for the design and implementation of GWA studies and genomic selection using crossbred populations.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0098-4) contains supplementary material, which is available to authorized users.  相似文献   

11.
Linkage disequilibrium based association mapping is a powerful tool for dissecting the genetic basis underlying complex traits. In this study, an association mapping panel consisting of 356 representative Upland cotton cultivars was constructed, evaluated in three environments and genotyped using 381 SSRs to detect molecular markers associated with lint yield and its components. The results showed that abundant phenotypic and moderate genetic diversities existed within this germplasm panel. The population could be divided into two subpopulations, and weak relatedness was detected between pair-wise accessions. LD decayed to the background (r 2 = 0.1182, P≤0.01), r 2 = 0.1 and r 2 = 0.2 level within 12–13 cM, 17–18 cM and 3–4 cM, respectively, providing the potential for association mapping of agronomically important traits in Chinese Upland cotton. A total of 55 marker-trait associations were detected between 26 SSRs and seven lint yield traits, based on a mixed linear model (MLM) and Bonferroni correction (P≤0.05/145, −log10 P≥3.46). Of which 41 could be detected in more than one environment and 17 markers were simultaneously associated with two or more traits. Many associations were consistent with QTLs identified by linkage mapping in previous reports. Phenotypic values of alleles of each loci in 41 stably detected associations were compared, and 23 favorable alleles were identified. Population frequency of each favorable allele in historically released cultivar groups was also evaluated. The QTLs detected in this study will be helpful in further understanding the genetic basis of lint yield and its components, and the favorable alleles may facilitate future high-yield breeding by genomic selection in Upland cotton.  相似文献   

12.
The genetic variability of the mitochondrial D-loop DNA sequence in seven horse breeds bred in Italy (Giara, Haflinger, Italian trotter, Lipizzan, Maremmano, Thoroughbred and Sarcidano) was analysed. Five unrelated horses were chosen in each breed and twenty-two haplotypes were identified. The sequences obtained were aligned and compared with a reference sequence and with 27 mtDNA D-loop sequences selected in the GenBank database, representing Spanish, Portuguese, North African, wild horses and an Equus asinus sequence as the outgroup. Kimura two-parameter distances were calculated and a cluster analysis using the Neighbour-joining method was performed to obtain phylogenetic trees among breeds bred in Italy and among Italian and foreign breeds. The cluster analysis indicates that all the breeds but Giara are divided in the two trees, and no clear relationships were revealed between Italian populations and the other breeds. These results could be interpreted as showing the mixed origin of breeds bred in Italy and probably indicate the presence of many ancient maternal lineages with high diversity in mtDNA sequences.  相似文献   

13.
Information on the genetic diversity and population structure of cattle breeds is useful when deciding the most optimal, for example, crossbreeding strategies to improve phenotypic performance by exploiting heterosis. The present study investigated the genetic diversity and population structure of the most prominent dairy and beef breeds used in Ireland. Illumina high-density genotypes (777 962 single nucleotide polymorphisms; SNPs) were available on 4623 purebred bulls from nine breeds; Angus (n=430), Belgian Blue (n=298), Charolais (n=893), Hereford (n=327), Holstein-Friesian (n=1261), Jersey (n=75), Limousin (n=943), Montbéliarde (n=33) and Simmental (n=363). Principal component analysis revealed that Angus, Hereford, and Jersey formed non-overlapping clusters, representing distinct populations. In contrast, overlapping clusters suggested geographical proximity of origin and genetic similarity between Limousin, Simmental and Montbéliarde and to a lesser extent between Holstein, Friesian and Belgian Blue. The observed SNP heterozygosity averaged across all loci was 0.379. The Belgian Blue had the greatest mean observed heterozygosity (HO=0.389) among individuals within breed while the Holstein-Friesian and Jersey populations had the lowest mean heterozygosity (HO=0.370 and 0.376, respectively). The correlation between the genomic-based and pedigree-based inbreeding coefficients was weak (r=0.171; P<0.001). Mean genomic inbreeding estimates were greatest for Jersey (0.173) and least for Hereford (0.051). The pair-wise breed fixation index (Fst) ranged from 0.049 (Limousin and Charolais) to 0.165 (Hereford and Jersey). In conclusion, substantial genetic variation exists among breeds commercially used in Ireland. Thus custom-mating strategies would be successful in maximising the exploitation of heterosis in crossbreeding strategies.  相似文献   

14.
Profitability of beef production can be increased by genetically improving carcass traits. To construct breeding value evaluations for carcass traits, breed-specific genetic parameters were estimated for carcass weight, carcass conformation and carcass fat in five beef cattle breeds in Finland (Hereford, Aberdeen Angus, Simmental, Charolais and Limousin). Conformation and fat were visually scored using the EUROP carcass classification. Each breed was separately analyzed using a multitrait animal model. A total of 6879–19 539 animals per breed had phenotypes. For the five breeds, heritabilities were moderate for carcass weight (h2=0.39 to 0.48, s.e.=0.02 to 0.04) and slightly lower for conformation (h2=0.30 to 0.44, s.e.=0.02 to 0.04) and carcass fat (h2=0.29 to 0.44, s.e.=0.02 to 0.04). The genetic correlation between carcass weight and conformation was favorable in all breeds (rG=0.37 to 0.53, s.e.=0.04 to 0.05), heavy carcasses being genetically more conformed. The phenotypic correlation between carcass weight and carcass fat was moderately positive in all breeds (rP=0.21 to 0.32), implying that increasing carcass weight was related to increasing fat levels. The respective genetic correlation was the strongest in Hereford (rG=0.28, s.e.=0.05) and Angus (rG=0.15, s.e.=0.05), the two small body-sized British breeds with the lowest conformation and the highest fat level. The correlation was weaker in the other breeds (rG=0.08 to 0.14). For Hereford, Angus and Simmental, more conformed carcasses were phenotypically fatter (rP=0.11 to 0.15), but the respective genetic correlations were close to zero (rG=0.05 to 0.04). In contrast, in the two large body-sized and muscular French breeds, the genetic correlation between conformation and fat was negative and the phenotypic correlation was close to zero or negative (Charolais: rG=0.18, s.e.=0.06, rP=0.02; Limousin: rG=0.56, s.e.=0.04, rP=0.13). The results indicate genetic variation for the genetic improvement of the carcass traits, favorable correlations for the simultaneous improvement of carcass weight and conformation in all breeds, and breed differences in the correlations of carcass fat.  相似文献   

15.
The narrow genetic base of cultivated cotton germplasm is hindering the cotton productivity worldwide. Although potential genetic diversity exists in Gossypium genus, it is largely ‘underutilized’ due to photoperiodism and the lack of innovative tools to overcome such challenges. The application of linkage disequilibrium (LD)-based association mapping is an alternative powerful molecular tool to dissect and exploit the natural genetic diversity conserved within cotton germplasm collections, greatly accelerating still ‘lagging’ cotton marker-assisted selection (MAS) programs. However, the extent of genome-wide linkage disequilibrium (LD) has not been determined in cotton. We report the extent of genome-wide LD and association mapping of fiber quality traits by using a 95 core set of microsatellite markers in a total of 285 exotic Gossypium hirsutum accessions, comprising of 208 landrace stocks and 77 photoperiodic variety accessions. We demonstrated the existence of useful genetic diversity within exotic cotton germplasm. In this germplasm set, 11–12% of SSR loci pairs revealed a significant LD. At the significance threshold (r2 ≥ 0.1), a genome-wide average of LD declines within the genetic distance at < 10 cM in the landrace stocks germplasm and > 30 cM in variety germplasm. Genome wide LD at r2 ≥ 0.2 was reduced on average to  1–2 cM in the landrace stock germplasm and 6–8 cM in variety germplasm, providing evidence of the potential for association mapping of agronomically important traits in cotton. We observed significant population structure and relatedness in assayed germplasm. Consequently, the application of the mixed liner model (MLM), considering both kinship (K) and population structure (Q) detected between 6% and 13% of SSR markers associated with the main fiber quality traits in cotton. Our results highlight for the first time the feasibility and potential of association mapping, with consideration of the population structure and stratification existing in cotton germplasm resources. The number of SSR markers associated with fiber quality traits in diverse cotton germplasm, which broadly covered many historical meiotic events, should be useful to effectively exploit potentially new genetic variation by using MAS programs.  相似文献   

16.
17.
Dermatophytosis, also known as ringworm, is a contagious fungal skin disease affecting humans and animals worldwide. Persian cats exhibit severe forms of the disease more commonly than other breeds of cat, including other long-haired breeds. Certain types of severe dermatophytosis in humans are reportedly caused by monogenic inborn errors of immunity. The goal of this study was to identify genetic variants in Persian cats contributing to the phenotype of severe dermatophytosis. Whole-genome sequencing of case and control Persian cats followed by a genome-wide association study identified a highly divergent, disease-associated haplotype on chromosome F1 containing the S100 family of genes. S100 calcium binding protein A9 (S100A9), which encodes a subunit of the antimicrobial heterodimer known as calprotectin, contained 13 nonsynonymous variants between cases and controls. Evolutionary analysis of S100A9 haplotypes comparing cases, controls, and wild felids suggested the divergent disease-associated haplotype was likely introgressed into the domestic cat lineage and maintained via balancing selection. We demonstrated marked upregulation of calprotectin expression in the feline epidermis during dermatophytosis, suggesting involvement in disease pathogenesis. Given this divergent allele has been maintained in domestic cat and wildcat populations, this haplotype may have beneficial effects against other pathogens. The pathogen specificity of this altered protein should be investigated before attempting to reduce the allele frequency in the Persian cat breed. Further work is needed to clarify if severe Persian dermatophytosis is a monogenic disease or if hidden disease-susceptibility loci remain to be discovered. Consideration should be given to engineering antimicrobial peptides such as calprotectin for topical treatment of dermatophytosis in humans and animals.  相似文献   

18.
Linkage disequilibrium (LD) mapping is commonly used as a fine mapping tool in human genome mapping and has been used with some success for initial disease gene isolation in certain isolated inbred human populations. An understanding of the population history of domestic dog breeds suggests that LD mapping could be routinely utilized in this species for initial genome-wide scans. Such an approach offers significant advantages over traditional linkage analysis. Here, we demonstrate, using canine copper toxicosis in the Bedlington terrier as the model, that LD mapping could be reasonably expected to be a useful strategy in low-resolution, genome-wide scans in pure-bred dogs. Significant LD was demonstrated over distances up to 33.3 cM. It is very unlikely, for a number of reasons discussed, that this result could be extrapolated to the rest of the genome. It is, however, consistent with the expectation given the population structure of canine breeds and, in this breed at least, with the hypothesis that it may be possible to utilize LD in a genome-wide scan. In this study, LD mapping confirmed the location of the copper toxicosis in Bedlington terrier gene (CT-BT) and was able to do so in a population that was refractory to traditional linkage analysis.  相似文献   

19.
High-density genetic markers are the prerequisite for understanding linkage disequilibrium (LD) and genome-wide association studies (GWASs) of complex traits in crops. To evaluate the LD pattern in oilseed rape, we sequenced a previous association panel containing 189 B. napus inbred lines using double-digested restriction-site associated DNA (ddRAD) and genotyped 19,327 RAD tags. A total of 15,921 RAD tags were assigned to a published genetic linkage map and the majority (71.1%) of these tags was uniquely mapped to the draft reference genome “Darmor-bzh.” The distance of LD decay was 1,214 kb across the genome at the background level (r2 = 0.26), with the distances of LD decay being 405 kb and 2,111 kb in the A and C subgenomes, respectively. A total of 361 haplotype blocks with length > 100 kb were identified in the entire genome. The association panel could be classified into two groups, P1 and P2, which are essentially consistent with the geographical origins of varieties. A large number of group-specific haplotypes were identified, reflecting that varieties in the P1 and P2 groups experienced distinct selection in breeding programs to adapt their different growth habitats. GWAS repeatedly detected two loci significantly associated with oil content of seeds based on the developed SNPs, suggesting that the high-density SNPs were useful for understanding the genetic determinants of complex traits in GWAS.  相似文献   

20.
Some sheep breeds are naturally prolific, and they are very informative for the studies of reproductive genetics and physiology. Major genes increasing litter size (LS) and ovulation rate (OR) were suspected in the French Grivette and the Polish Olkuska sheep populations, respectively. To identify genetic variants responsible for the highly prolific phenotype in these two breeds, genome-wide association studies (GWAS) followed by complementary genetic and functional analyses were performed. Highly prolific ewes (cases) and normal prolific ewes (controls) from each breed were genotyped using the Illumina OvineSNP50 Genotyping Beadchip. In both populations, an X chromosome region, close to the BMP15 gene, harbored clusters of markers with suggestive evidence of association at significance levels between 1E−05 and 1E−07. The BMP15 candidate gene was then sequenced, and two novel non-conservative mutations called FecXGr and FecXO were identified in the Grivette and Olkuska breeds, respectively. The two mutations were associated with the highly prolific phenotype (pFecXGr = 5.98E−06 and pFecXO = 2.55E−08). Homozygous ewes for the mutated allele showed a significantly increased prolificacy (FecXGr/FecXGr, LS = 2.50±0.65 versus FecX+/FecXGr, LS = 1.93±0.42, p<1E−03 and FecXO/FecXO, OR = 3.28±0.85 versus FecX+/FecXO, OR = 2.02±0.47, p<1E−03). Both mutations are located in very well conserved motifs of the protein and altered the BMP15 signaling activity in vitro using a BMP-responsive luciferase test in COV434 granulosa cells. Thus, we have identified two novel mutations in the BMP15 gene associated with increased LS and OR. Notably, homozygous FecXGr/FecXGr Grivette and homozygous FecXO/FecXO Olkuska ewes are hyperprolific in striking contrast with the sterility exhibited by all other known homozygous BMP15 mutations. Our results bring new insights into the key role played by the BMP15 protein in ovarian function and could contribute to a better understanding of the pathogenesis of women′s fertility disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号