首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thellungiella halophila is a salt tolerant relative of Arabidopsis thaliana with high genetic and morphological similarity. In the present study, effects of salinity on germination and seedling growth of T. halophila and A. thaliana were compared. The present results showed that the salinity inhibited seed germination in both species. Unexpectedly, percentages of seed germination in A. thaliana were higher than T. halophila in a range of 0?C200?mM NaCl. Seeds of both species could not germinate when the concentration of NaCl was over 200?mM. However, when compared with A. thaliana, seeds of T. halophila did not suffer ion toxicity, as evidenced by the higher final germination rate after ungerminated seeds pretreated with NaCl were transferred to distilled water. Seedlings of T. halophila were more salt tolerant than those of A. thaliana, e.g., seedlings of T. halophila had better plant growth (root length, fresh and dry mass), higher chlorophyll content, less MDA content and higher proline content and K+/Na+ ratio under salinity. These results indicate that T. halophila is more salt tolerant than A. thaliana during both seed germination and seedling stages and explain why A. thaliana is excluded from saline locations and T. halophila can survive in saline soils.  相似文献   

2.
3.
Natural-abundance 13C-nuclear magnetic resonance was used to probe the intracellular organic solute content of the moderately halophilic bacterium Tetragenococcus halophila. When grown in complex growth media supplemented or not with NaCl, T. halophila accumulates glycine betaine and carnitine. Unlike other moderate halophiles, T. halophila was not able to produce potent osmoprotectants (such as ectoines and glycine betaine) through de novo synthesis when cultured in defined medium under hyperosmotic constraint. Addition of 2 mM carnitine, glycine betaine, or choline to defined medium improved growth parameters, not only at high salinity (up to 2.5 M NaCl) but also in media lacking NaCl. These compounds were taken up when available in the surrounding medium. The transport activity occurred at low and high salinities and seems to be constitutive. Glycine betaine and carnitine were accumulated by T. halophila in an unmodified form, while exogenously provided choline led to an intracellular accumulation of glycine betaine. This is the first evidence of the existence of a choline-glycine betaine pathway in a lactic acid bacterium. An assay showed that the compatible solutes strikingly repressed the accumulation of glutamate and slightly increased the intracellular potassium level only at high salinity. Interestingly, osmoprotectant-treated cells were able to maintain the intracellular sodium concentration at a relatively constant level (200 to 300 nmol/mg [dry weight]), independent of the NaCl concentration of the medium. In contrast, in the absence of osmoprotectant, the intracellular sodium content increased sharply from 200 to 2,060 nmol/mg (dry weight) when the salinity of the medium was raised from 1 to 2 M. Indeed, the imported compatible solutes play an actual role in regulating the intracellular Na+ content and confer a much higher salt tolerance to T. halophila.  相似文献   

4.
Physiological and biochemical responses of Hordeum maritimum and H. vulgare to salt stress were studied over a 60‐h period. Growth at increasing salinity levels (0, 100, 200 and 300 mM NaCl) was assessed in hydroponic culture. H. maritimum was shown to be a true halophyte via its typical behaviour at high salinity. Shoot growth of cultivated barley was gradually reduced with increasing salinity, whereas that of wild barley was enhanced at 100 and 200 mm NaCl then slightly reduced at 300 mM NaCl. The higher salt tolerance of H. maritimum as compared to H. vulgare was due to its higher capacity to maintain cell turgor under severe salinity. Furthermore, H. maritimum exhibited fine regulation of Na+ transport from roots to shoots and, unlike H. vulgare, it accumulated less Na+ in shoots than in roots. In addition, H. maritimum can accumulate more Na+ than K+ in both roots and shoots without the appearance of toxicity symptoms, indicating that Na+ was well compartmentalized within cells and substituted K+ in osmotic adjustment. The higher degree of salt tolerance of H. maritimum is further demonstrated by its economic strategy: at moderate salt treatment (100 mm NaCl), it used inorganic solutes (such as Na+) for osmotic adjustment and kept organic solutes and a large part of the K+ for metabolic activities. Indeed, K+ use efficiency in H. maritimum was about twofold that in H. vulgare; the former started to use organic solutes as osmotica only at high salinity (200 and 300 mm NaCl). These results suggest that the differences in salt tolerance between H. maritimum and H. vulgare are partly due to (i) differences in control of Na+ transport from roots to shoots, and (ii) H. maritimum uses Na+ as an osmoticum instead of K+ and organic solutes. These factors are differently reflected in growth.  相似文献   

5.
The eco-physiology of salt tolerance, with an emphasis on K+ nutrition and proline accumulation, was investigated in the halophyte Thellungiella halophila and in both wild type and eskimo-1 mutant of the glycophyte Arabidopsis thaliana, which differ in their proline accumulation capacity. Plants cultivated in inert sand were challenged for 3 weeks with up to 500 mM NaCl. Low salinity significantly decreased A. thaliana growth, whereas growth restriction was significant only at salt concentrations equal to or exceeding 300 mM NaCl in T. halophila. Na+ content generally increased with the amount of salt added in the culture medium in both species, but T. halophila showed an ability to control Na+ accumulation in shoots. The analysis of the relationship between water and Na+ contents suggested an apoplastic sodium accumulation in both species; this trait was more pronounced in A. thaliana than in T. halophila. The better NaCl tolerance in the latter was associated with a better K+ supply, resulting in higher K+/Na+ ratios. It was also noteworthy that, despite highly accumulating proline, the A. thaliana eskimo-1 mutant was the most salt-sensitive species. Taken together, our findings indicate that salt tolerance may be partly linked to the plants’ ability to control Na+ influx and to ensure appropriate K+ nutrition, but is not linked to proline accumulation.  相似文献   

6.
Ramos  José  López  María Jesús  Benlloch  Manuel 《Plant and Soil》2004,259(1-2):163-168
Atriplex nummularia plants are able to grow well in the absence of significant amounts of Na+. Medium levels of salinity (100 mM NaCl or KCl) did not cause substantial inhibition of growth but increasing concentrations of salt induced a progressive decline in length and weight of the plants. This inhibition was significantly higher in KCl grown plants than in NaCl grown plants. In addition, although it has been proposed that both K+ and Na+ are involved in the osmotic adjustment of plants in response to high soil salinity, we show that Na+ ions contribute more efficiently than K+ ions to perform this function. Our results also indicate that most of the osmotic adjustment of the plant was due to the accumulation of inorganic ions. The strong inhibition of Rb+ transport caused by internal sodium suggests that this cation could be efficiently used by the plant and, as a consequence, the transport of other monovalent cations is down-regulated.  相似文献   

7.
8.
Jerusalem artichokes (Helianthus tuberosus L.) can tolerate relatively higher salinity, drought and heat stress. In this paper, we report the cloning of a Salt Overly Sensitive 1 (SOS1) gene encoding a plasma membrane Na+/H+ antiporter from a highly salt-tolerant genotype of H. tuberosus, NY1, named HtSOS1 and characterization of its function in yeast and rice. The amino acid sequence of HtSOS1 showed 83.4 % identity with the previously isolated SOS1 gene from the Chrysanthemum crassum. The mRNA level in the leaves of H. tuberosus was significantly up-regulated by presence of high concentrations of NaCl. Localization analysis using rice protoplast expression showed that the protein encoded by HtSOS1 was located in the plasma membrane. HtSOS1 partially suppressed the salt sensitive phenotypes of a salt sensitive yeast strain. In comparison with wild type (Oryza sativa L., ssp. Japonica. cv. Nipponbare), the transgenic rice expressed with HtSOS1 could exclude more Na+ and accumulate more K+. Expression of HtSOS1 decreased Na+ content much larger in the shoot than in the roots, resulting in more water content in the transgenic rice than WT. These data suggested that HtSOS1 may be useful in transgenic approaches to improving the salinity tolerance of glycophyte.  相似文献   

9.
Debaryomyces nepalensis NCYC 3413, a food spoiling yeast isolated from rotten apple, has been previously demonstrated as halotolerant yeast. In the present study, we assessed its growth, change in cell size, and measured the intracellular polyol and cations (Na+ or K+) accumulated during growth in the absence and presence of different concentrations of salts (NaCl and KCl). Cells could tolerate 2 M NaCl and KCl in defined medium. Scanning electron microscopic results showed linear decrease in mean cell diameter with increase in medium salinity. Cells accumulated high amounts of K+ during growth at high concentrations of KCl. However, it accumulated low amounts of Na+ and high amounts of K+ when grown in the presence of NaCl. Cells grown in the absence of salt showed rapid influx of Na+/K+ on incubation with high salt. On incubation with 2 M KCl, cells grown at 2 M NaCl showed an immediate efflux of Na+ and rapid uptake of K+ and vice versa. To withstand the salt stress, osmotic adjustment of intracellular cation was accompanied by intracellular accumulation of polyol (glycerol, arabitol, and sorbitol). Based on our result, we hypothesize that there exists a balanced efflux and synthesis of osmolytes when D. nepalensis was exposed to hypoosmotic and hyperosmotic stress conditions, respectively. Our findings suggest that D. nepalensis is an Na+ excluder yeast and it has an efficient transport system for sodium extrusion.  相似文献   

10.
Photoactive yellow protein (PYP) is involved in the negative phototactic response towards blue light of the bacterium Halorhodospira halophila. Here, we report nearly complete backbone and side chain 1H, 13C and 15N resonance assignments at pH 5.8 and 20 °C of PYP in its electronic ground state.  相似文献   

11.
Actinomycetes were isolated from a number of saline and saline-sodic California soils. From these isolates, two species of Streptomyces (S. griseus and S. californicus) were selected to assess their physiological response to salinity. NaCl was more inhibitory to growth rates and specific growth yields than were equivalent concentrations of KCl. Intracellular concentrations of the free amino acid pool increased in response to salt stress. Whereas the neutral free amino acids proline, glutamine, and alanine accumulated as salinity increased, concentrations of the acidic free amino acids glutamate and aspartate were reduced. Accumulation of free amino acids by streptomycetes under salt stress suggests a response typical of procaryotes, although the specific amino acids involved differ from those associated with other gram-positive bacteria. Above a salinity threshold of about 0.75 M (−3.8 MPa), there was little further intracellular accumulation of free amino acids, whereas accumulation of K+ salts sharply increased.  相似文献   

12.
The marine bacterium, Vibrio alginolyticus, regulates the cytoplasmic pH at about 7.8 over the pH range 6.0–9.0. By the addition of diethanolamine (a membrane-permeable amine) at pH 9.0, the internal pH was alkalized and simultaneously the cellular K+ was released. Following the K+ exit, the internal pH was acidified until 7.8, where the K+ exit leveled off. The K+ exit was mediated by a K+/H+ antiporter that is driven by the outwardly directed K+ gradient and ceases to function at the internal pH of 7.8 and below. The Na+-loaded cells assayed in the absence of KCl generated inside acidic ΔpH at alkaline pH due to the function of an Na+/H+ antiporter, but the internal pH was not maintained at a constant value. At acidic pH range, the addition of KCl to the external medium was necessary for the alkalization of cell interior. These results suggested that in cooperation with the K+ uptake system and H+ pumps, the K+/H+ antiporter functions as a regulator of cytoplasmic pH to maintain a constant value of 7.8 over the pH range 6.0–9.0.  相似文献   

13.
Salinity is one of the major environmental limiting factors that affects growth and productivity of rice (Oryza sativa L.) worldwide. Rice is among the most sensitive crops to salinity, especially at early vegetative stages. In order to get a better understanding of molecular pathways affected in rice mutants showing contrasting responses to salinity, we exploited the power of 2-DE based proteomics to explore the proteome changes associated with salt stress response. Our physiological observations showed that standard evaluation system (SES) scores, Na+ and K+ concentrations in shoots and Na+/K+ ratio were significantly different in contrasting mutants under salt stress condition. Proteomics analysis showed that, out of 854 protein spots which were reproducibly detected, 67 protein spots showed significant responses to salt stress. The tandem mass spectrometry analysis of these significantly differentially accumulated proteins resulted in identification of 34 unique proteins. These proteins are involved in various molecular processes including defense to oxidative stresses, metabolisms, photosynthesis, protein synthesis and processing, signal transduction. Several of the identified proteins were emerged as key participants in salt stress tolerance. The possible implication of salt responsive proteins in plant adaptation to salt stress is discussed.  相似文献   

14.
Microalgal exopolysaccharides represent a potential sustainable alternative for the enhancement and protection of agricultural crops including management of both biotic and abiotic stress. In the present study, we investigated the potential of Dunaliella salina exopolysaccharides (PS) to attenuate the effect of salt stress on growth of Solanum lycopersicum, which was grown under different salinity levels (3 and 6 g L?1 NaCl). The effects of PS treatment on plant growth, osmoprotectant molecules, protein content, and antioxidant enzymes activities of tomato plants under salt stress were analyzed. A metabolomics study showed that the exopolysaccharides released by D. salina contained sulfated moiety along with carbohydrates and uronic acids. The application of sulfated exopolysaccharides on tomato plants alleviated the salt stress and mitigated the decrease in length and dry weight of the plant’s shoot and root systems, as well as that of potassium (K+), and K+/Na+ ratio. Furthermore, the increase in proline, phenolic compounds, Na+, and antioxidant enzymes (CAT, POD, SOD) activities caused by salt stress were attenuated after the exopolysaccharide treatment. GC-MS metabolomics analysis showed that PS treatment allowed the activation and/or inhibition of various metabolic pathways involved in the plant’s tolerance to stress such as jasmonic acid-dependent pathways. This study shows the potential of microalgal exopolysaccharides for enhancing tomato tolerance to salt stress and highlights the possibility of their use as plant growth biostimulants under harsh environmental conditions.  相似文献   

15.
Total ion (Na+, K+, Ca2+, SO4 2? and Cl?) accumulation by plants, ion contents in plant tissues and ion secretion by salt glands on the surface of shoots of Tamarix ramosissima adapted to different soil salinity, namely low (0.06 mmol Na+/g soil), moderate (3.14–4.85 mmol Na+/g soil) and strong (7.56 mmol Na+/g soil) were analyzed. There are two stages of interrelated and complementary regulation of ion homeostasis in whole T. ramosissima plants: (1) regulation of ion influx into the plant from the soil and (2) changing the secretion efficiency of salt glands on shoots. The secretion efficiency of salt glands was appraised by the ratio of ion secretion to tissue ion content. Independent of soil salinity, the accumulation of K+ and Ca2+ was higher than the contents of these ions in the soil. Furthermore, the accumulation of K+, Ca2+ and SO4 2? ions by plants was maintained within a narrow range of values. Under low soil salinity, Na+ was accumulated, whereas under moderate and strong salinity, the influxes of Na+ were limited. However, under strong salinity, the accumulation of Na+ was threefold higher than that under low soil salinity. This led to a change in the Na+/K+ ratio (tenfold), an increase in the activity of salt glands (tenfold) and a reduction in plant growth (fivefold). An apparently high Na+/K+ ratio was the main factor determining over-active functioning of salt glands under strong salinity. Principal component analysis showed that K+ ions played a key role in ion homeostasis at all levels of salinity. Ca2+ played a significant role at low salinity, whereas Cl? and interrelated regulatory components (K+ and proline) played a role under strong salinity. Proline, despite its low concentration under strong salinity, was involved in the regulation of secretion by salt glands. Different stages and mechanisms of ion homeostasis were dominant in T. ramosissima plants adapted to different levels of salinity. These mechanisms facilitated the accumulation of Na+ in plants under low soil salinity, the limitation of Na+ under moderate salinity and the over-activation of Na+ secretion by salt glands under strong salinity, which are all necessary for maintaining ion homeostasis and water potential in the whole plant.  相似文献   

16.
17.
Salinity is one of the major abiotic stressors affecting cotton production. The AtNHX1 gene from Arabidopsis thaliana and the TsVP gene from Thellungiella halophila?were co-expressed in cotton (cv. GK35) to improve its salt tolerance. Cotton with overexpressed AtNHX1-TsVP genes had higher emergence rates and higher dry matter accumulation under salt stress in the greenhouse and better emergence rates and survival rates in a saline field compared to the WT. More importantly, the cotton with overexpressed AtNHX1-TsVP genes had higher seed cotton yield in the saline field. The growth of transgenic cotton with overexpression of the AtNHX1-TsVP genes may be related to the accumulation of Na+, K+ and Ca2+ in leaves under salt stress. The accumulation of these cations could improve the ability to maintain ion homeostasis and osmotic potential in plant cells under salt stress, thereby conferring cells with higher relative water content and maintaining higher carbon assimilation capacity. These results reveal that overexpression of AtNHX1-TsVP significantly enhances the tolerance of transgenic cotton to high salinity compared to WT. This study aids efforts of breeding salt-tolerant cotton to achieve the strategy of “westward, eastward, northward” in Chinese cotton production.  相似文献   

18.
Osmolyte accumulation and release can protect cells from abiotic stresses. In Escherichia coli, known mechanisms mediate osmotic stress-induced accumulation of K+ glutamate, trehalose, or zwitterions like glycine betaine. Previous observations suggested that additional osmolyte accumulation mechanisms (OAMs) exist and their impacts may be abiotic stress specific. Derivatives of the uropathogenic strain CFT073 and the laboratory strain MG1655 lacking known OAMs were created. CFT073 grew without osmoprotectants in minimal medium with up to 0.9 M NaCl. CFT073 and its OAM-deficient derivative grew equally well in high- and low-osmolality urine pools. Urine-grown bacteria did not accumulate large amounts of known or novel osmolytes. Thus, CFT073 showed unusual osmotolerance and did not require osmolyte accumulation to grow in urine. Yeast extract and brain heart infusion stimulated growth of the OAM-deficient MG1655 derivative at high salinity. Neither known nor putative osmoprotectants did so. Glutamate and glutamine accumulated after growth with either organic mixture, and no novel osmolytes were detected. MG1655 derivatives retaining individual OAMs were created. Their abilities to mediate osmoprotection were compared at 15°C, 37°C without or with urea, and 42°C. Stress protection was not OAM specific, and variations in osmoprotectant effectiveness were similar under all conditions. Glycine betaine and dimethylsulfoniopropionate (DMSP) were the most effective. Trimethylamine-N-oxide (TMAO) was a weak osmoprotectant and a particularly effective urea protectant. The effectiveness of glycine betaine, TMAO, and proline as osmoprotectants correlated with their preferential exclusion from protein surfaces, not with their propensity to prevent protein denaturation. Thus, their effectiveness as stress protectants correlated with their ability to rehydrate the cytoplasm.  相似文献   

19.
Seven analogues of the bacterial osmoprotectant glycine betaine (GB, trimethylammonioacetate), in which the methyl groups of the Me3N+ moiety are replaced by various substituents, were obtained by SPOS using Wang resin. Their biological activities (osmoprotection vs toxicity), appeared closely related to their uptake efficiency and their catabolism in the betaine-demethylating model bacterium Sinorhizobium meliloti.  相似文献   

20.

Background and aims

Salinity is an increasing problem for agricultural production worldwide. Understanding how Na+ enters plants is important if reducing Na+ influx, a key component of the regulation of Na+ accumulation in plants and improving salt tolerance of crop plants, is to be achieved. Our previous work indicated that two distinct low-affinity Na+ uptake pathways exist in the halophyte Suaeda maritima. Here, we report the external NaCl concentration at which uptake switches from pathway 1 to pathway 2 and the kinetics of the interaction between external K+ concentration and Na+ uptake and accumulation in S. maritima in order to determine the roles of K+ transporters or channels in low-affinity Na+ uptake.

Methods

Na+ influx, Na+ and K+ accumulations in S. maritima exposed to various concentrations of NaCl (0–200 mM) were analyzed in the absence and presence of the inhibitors TEA and Ba+ (5 mM TEA or 3 mM Ba2+) or KCl (0, 10 or 50 mM).

Results

Our earlier proposal was confirmed and extended that there are two distinct low-affinity Na+ uptake pathways in S. maritima: pathway 1 might be mediated by a HKT-type transporter under low salinity conditions and pathway 2 by an AKT1-type channel or a KUP/HAK/KT type transporter under high salinity conditions. The external NaCl concentration at which two distinct low-affinity Na+ uptake switches from pathway 1 to pathway 2, the ‘turning point’, is between 90 and 95 mM. Over a short period (12 h) of Na+ and K+ treatments, a low concentration of K+ (10 mM) facilitated Na+ uptake by S. maritima under high salinity (100–200 mM NaCl), whether or not the plants had been subjected to a longer (3 d) period of K+ starvation. The kinetics suggests that low concentration of K+ (10 mM) might activate AKT1-type channels or KUP/HAK/KT-type transporters under high salinity (100–200 mM NaCl).

Conclusions

The turning-point of external NaCl concentrations for the two low-affinity Na+ uptake pathways in Suaeda maritima is between 90 and 95 mM. A low concentration of K+ (10 mM) might activate AKT1 or KUP/HAK/KT and facilitate Na+ uptake under high salinity (100–200 mM NaCl). The kinetics of K+ on Na+ uptake and accumulation in S maritima are also consistent with there being two low-affinity Na+ uptake pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号