首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In cognitive science there is a seeming paradox: On the one hand, studies of human judgment and decision making have repeatedly shown that people systematically violate optimal behavior when integrating information from multiple sources. On the other hand, optimal models, often Bayesian, have been successful at accounting for information integration in fields such as categorization, memory, and perception. This apparent conflict could be due, in part, to different materials and designs that lead to differences in the nature of processing. Stimuli that require controlled integration of information, such as the quantitative or linguistic information (commonly found in judgment studies), may lead to suboptimal performance. In contrast, perceptual stimuli may lend themselves to automatic processing, resulting in integration that is closer to optimal. We tested this hypothesis with an experiment in which participants categorized faces based on resemblance to a family patriarch. The amount of evidence contained in the top and bottom halves of each test face was independently manipulated. These data allow us to investigate a canonical example of sub-optimal information integration from the judgment and decision making literature, the dilution effect. Splitting the top and bottom halves of a face, a manipulation meant to encourage controlled integration of information, produced farther from optimal behavior and larger dilution effects. The Multi-component Information Accumulation model, a hybrid optimal/averaging model of information integration, successfully accounts for key accuracy, response time, and dilution effects.  相似文献   

3.
Highlights? The PRP interferes with decision making and routing to the motor response ? Sensory evidence accumulation can occur for multiple decisions at the same time ? A large fraction of the PRP occurs after the commitment to a choice ? Evidence accumulation and sensory-motor mapping are distinct processes  相似文献   

4.
5.
6.
7.
8.
Perceptual decision making in monkeys relies on decision neurons, which accumulate evidence and maintain choices until a response is given. In humans, several brain regions have been proposed to accumulate evidence, but it is unknown if these regions also maintain choices. To test if accumulator regions in humans also maintain decisions we compared delayed and self-paced responses during a face/house discrimination decision making task. Computational modeling and fMRI results revealed dissociated processes of evidence accumulation and decision maintenance, with potential accumulator activations found in the dorsomedial prefrontal cortex, right inferior frontal gyrus and bilateral insula. Potential maintenance activation spanned the frontal pole, temporal gyri, precuneus and the lateral occipital and frontal orbital cortices. Results of a quantitative reverse inference meta-analysis performed to differentiate the functions associated with the identified regions did not narrow down potential accumulation regions, but suggested that response-maintenance might rely on a verbalization of the response.  相似文献   

9.
10.
11.
People often make decisions in a social environment. The present work examines social influence on people’s decisions in a sequential decision-making situation. In the first experimental study, we implemented an information cascade paradigm, illustrating that people infer information from decisions of others and use this information to make their own decisions. We followed a cognitive modeling approach to elicit the weight people give to social as compared to private individual information. The proposed social influence model shows that participants overweight their own private information relative to social information, contrary to the normative Bayesian account. In our second study, we embedded the abstract decision problem of Study 1 in a medical decision-making problem. We examined whether in a medical situation people also take others’ authority into account in addition to the information that their decisions convey. The social influence model illustrates that people weight social information differentially according to the authority of other decision makers. The influence of authority was strongest when an authority''s decision contrasted with private information. Both studies illustrate how the social environment provides sources of information that people integrate differently for their decisions.  相似文献   

12.
This article presents an empirical analysis of the impact of sustainability information on consumer purchase intentions and how this influence varies by issue (health, environment, and social responsibility), product category, type of consumer, and type of information. We assess over 40,000 online purchase interactions on the website GoodGuide.com and find a significant impact of certain types of sustainability information on purchase intentions, varying across different types of consumers, issues, and product categories. Health ratings in particular showed the strongest effects. Direct users—those who intentionally sought out sustainability information—were most strongly influenced by sustainability information, with an average purchase intention rate increase of 1.15 percentage points for each point increase in overall product score, reported on a zero to ten scale. However, sustainability information had, on average, no impact on nondirect users, demonstrating that simply providing more or better information on sustainability issues will likely have limited impact on changing mainstream consumer behavior unless it is designed to connect into existing decision‐making processes.  相似文献   

13.
14.
Decisions involve two fundamental problems, selecting goals and generating actions to pursue those goals. While simple decisions involve choosing a goal and pursuing it, humans evolved to survive in hostile dynamic environments where goal availability and value can change with time and previous actions, entangling goal decisions with action selection. Recent studies suggest the brain generates concurrent action-plans for competing goals, using online information to bias the competition until a single goal is pursued. This creates a challenging problem of integrating information across diverse types, including both the dynamic value of the goal and the costs of action. We model the computations underlying dynamic decision-making with disparate value types, using the probability of getting the highest pay-off with the least effort as a common currency that supports goal competition. This framework predicts many aspects of decision behavior that have eluded a common explanation.  相似文献   

15.
Similar to intelligent multicellular neural networks controlling human brains, even single cells, surprisingly, are able to make intelligent decisions to classify several external stimuli or to associate them. This happens because of the fact that gene regulatory networks can perform as perceptrons, simple intelligent schemes known from studies on Artificial Intelligence. We study the role of genetic noise in intelligent decision making at the genetic level and show that noise can play a constructive role helping cells to make a proper decision. We show this using the example of a simple genetic classifier able to classify two external stimuli.  相似文献   

16.
The silent period induced by cutaneous electrical stimulation of the digits has been shown to be task-dependent, at least in the grasping muscles of the hand. However, it is unknown if the cutaneous silent period is adaptable throughout muscles of the entire upper limb, in particular when the task requirements are substantially altered. The purpose of the present study was to examine the characteristics of the cutaneous silent period in several upper limb muscles when introducing increased whole-body instability. The cutaneous silent period was evoked in 10 healthy individuals with electrical stimulation of digit II of the right hand when the subjects were seated, standing, or standing on a wobble board while maintaining a background elbow extension contraction with the triceps brachii of ~5% of maximal voluntary contraction (MVC) strength. The first excitatory response (E1), first inhibitory response (CSP), and second excitatory response (E2) were quantified as the percent change from baseline and by their individual durations. The results showed that the level of CSP suppression was lessened (47.7 ± 7.7% to 33.8 ± 13.2% of baseline, p = 0.019) and the duration of the CSP inhibition decreased (p = 0.021) in the triceps brachii when comparing the seated and wobble board tasks. For the wobble board task the amount of cutaneous afferent inhibition of EMG activity in the triceps brachii decreased; which is proposed to be due to differential weighting of cutaneous feedback relative to the corticospinal drive, most likely due to presynaptic inhibition, to meet the demands of the unstable task.  相似文献   

17.
Development of high-throughput monitoring technologies enables interrogation of cancer samples at various levels of cellular activity. Capitalizing on these developments, various public efforts such as The Cancer Genome Atlas (TCGA) generate disparate omic data for large patient cohorts. As demonstrated by recent studies, these heterogeneous data sources provide the opportunity to gain insights into the molecular changes that drive cancer pathogenesis and progression. However, these insights are limited by the vast search space and as a result low statistical power to make new discoveries. In this paper, we propose methods for integrating disparate omic data using molecular interaction networks, with a view to gaining mechanistic insights into the relationship between molecular changes at different levels of cellular activity. Namely, we hypothesize that genes that play a role in cancer development and progression may be implicated by neither frequent mutation nor differential expression, and that network-based integration of mutation and differential expression data can reveal these “silent players”. For this purpose, we utilize network-propagation algorithms to simulate the information flow in the cell at a sample-specific resolution. We then use the propagated mutation and expression signals to identify genes that are not necessarily mutated or differentially expressed genes, but have an essential role in tumor development and patient outcome. We test the proposed method on breast cancer and glioblastoma multiforme data obtained from TCGA. Our results show that the proposed method can identify important proteins that are not readily revealed by molecular data, providing insights beyond what can be gleaned by analyzing different types of molecular data in isolation.  相似文献   

18.
19.
Decision making between several alternatives is thought to involve the gradual accumulation of evidence in favor of each available choice. This process is profoundly variable even for nominally identical stimuli, yet the neuro-cognitive substrates that determine the magnitude of this variability are poorly understood. Here, we demonstrate that arousal state is a powerful determinant of variability in perceptual decision making. We measured pupil size, a highly sensitive index of arousal, while human subjects performed a motion-discrimination task, and decomposed task behavior into latent decision making parameters using an established computational model of the decision process. In direct contrast to previous theoretical accounts specifying a role for arousal in several discrete aspects of decision making, we found that pupil diameter was uniquely related to a model parameter representing variability in the rate of decision evidence accumulation: Periods of increased pupil size, reflecting heightened arousal, were characterized by greater variability in accumulation rate. Pupil diameter also correlated trial-by-trial with specific patterns of behavior that collectively are diagnostic of changing accumulation rate variability, and explained substantial individual differences in this computational quantity. These findings provide a uniquely clear account of how arousal state impacts decision making, and may point to a relationship between pupil-linked neuromodulation and behavioral variability. They also pave the way for future studies aimed at augmenting the precision with which people make decisions.  相似文献   

20.
Humans can learn under a wide variety of feedback conditions. Reinforcement learning (RL), where a series of rewarded decisions must be made, is a particularly important type of learning. Computational and behavioral studies of RL have focused mainly on Markovian decision processes, where the next state depends on only the current state and action. Little is known about non-Markovian decision making, where the next state depends on more than the current state and action. Learning is non-Markovian, for example, when there is no unique mapping between actions and feedback. We have produced a model based on spiking neurons that can handle these non-Markovian conditions by performing policy gradient descent [1]. Here, we examine the model’s performance and compare it with human learning and a Bayes optimal reference, which provides an upper-bound on performance. We find that in all cases, our population of spiking neurons model well-describes human performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号