首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT Collisions with windows remain an important human‐related threat to bird survival in urban landscapes. Accurately estimating the magnitude of avian mortality at windows is difficult and may be influenced by many sources of error, such as scavenging of carcasses. Failure to account for removal of carcasses by scavengers can bias estimates of window mortality. We tested the hypothesis that carcass survival depends on local habitat factors known to influence scavenger behavior. Scavenger activity on bird carcasses was documented at 20 buildings in an urban landscape in northwestern Illinois for 1 week during each season of a year. Known‐fate models were used to relate carcass survival to local habitat composition and to evaluate temporal variation in survival. We also documented species of scavengers and the timing of scavenging using motion‐triggered cameras. Daily carcass survival was greater in winter than during spring, summer, and fall. Survival was related negatively to canopy cover (trees and shrubs within a 50‐m buffer) and window area, and positively to pavement cover. Using an exponential model of survival time, estimated mean time of survival of carcasses (t± SE) was 82.9 ± 11.7 d for winter and 11.8 ± 7.2 d for other seasons. Raccoons (Procyon lotor) scavenged more carcasses than other species. Our results suggest that (1) carcass survival times may be short at locations with preferred habitats of known scavengers and predictable sources of food, and (2) knowledge of scavenger distribution and activity can inform predictive models of persistence. In studies of bird‐window collisions, the influence of scavenger bias can be minimized by maintaining short time intervals between carcass searches. Search intervals can be inferred by estimating the number of days that a carcass should persist at a site, which can be calculated using predicted daily survival probabilities of carcasses at study buildings.  相似文献   

2.
Bird-window collisions are a major and poorly-understood generator of bird mortality. In North America, studies of this topic tend to be focused east of the Mississippi River, resulting in a paucity of data from the Western flyways. Additionally, few available data can critically evaluate factors such as time of day, sex and age bias, and effect of window pane size on collisions. We collected and analyzed 5 years of window strike data from a 3-story building in a large urban park in San Francisco, California. To evaluate our window collision data in context, we collected weekly data on local bird abundance in the adjacent parkland. Our study asks two overarching questions: first–what aspects of a bird’s biology might make them more likely to fatally strike windows; and second, what characteristics of a building’s design contribute to bird-window collisions. We used a dataset of 308 fatal bird strikes to examine the relationships of strikes relative to age, sex, time of day, time of year, and a variety of other factors, including mitigation efforts. We found that actively migrating birds may not be major contributors to collisions as has been found elsewhere. We found that males and young birds were both significantly overrepresented relative to their abundance in the habitat surrounding the building. We also analyzed the effect of external window shades as mitigation, finding that an overall reduction in large panes, whether covered or in some way broken up with mullions, effectively reduced window collisions. We conclude that effective mitigation or design will be required in all seasons, but that breeding seasons and migratory seasons are most critical, especially for low-rise buildings and other sites away from urban migrant traps. Finally, strikes occur throughout the day, but mitigation may be most effective in the morning and midday.  相似文献   

3.
Abiotic and biotic factors modulate carcass consumption by scavengers, affecting ecosystem functioning. Habitat structure is arguably a key factor influencing scavenging, but its role remains poorly understood, particularly at small spatial scales. We examine how habitat characteristics at landscape (50–1000 m radius) and local (≤10 m radius) scales around carrion affect the structure of vertebrate scavenging communities. We used remote cameras to monitor the consumption of 151 ungulate carcasses in one temperate (55 carcasses) and two Mediterranean (56 and 40 carcasses) study areas in Spain in 2011–2013. Our results showed complex habitat–scavenger relationships that mainly relied upon the spatial scale, the type of carcass and the study area. While the response of scavenger richness to habitat characteristics was consistent across study areas, the effects of diversity varied regionally at the landscape scale. Large and medium-sized carcasses in open landscapes had lower scavenger richness, likely because open habitats promote vulture dominance. At the local scale, shrub cover lowered scavenger richness and diversity, hindering carrion location by avian scavengers. Our results suggest that the structure of vertebrate scavenging assemblages at carcasses is driven by carcass and habitat characteristics operating as ecological filters at different scales (i.e. local, landscape, and biogeographical), which affect a species’ ability to locate, access and dominate carrion. Understanding the factors underlying the complex habitat–community relationships shown here has implications for managing key ecosystem functions and services. We propose a multi-scale conceptual framework to disentangle scavenger–carcass relationships.  相似文献   

4.
Avian diversity is under increasing pressures. It is thus critical to understand the ecological variables that contribute to large scale spatial distribution of avian species diversity. Traditionally, studies have relied primarily on two-dimensional habitat structure to model broad scale species richness. Vegetation vertical structure is increasingly used at local scales. However, the spatial arrangement of vegetation height has never been taken into consideration. Our goal was to examine the efficacies of three-dimensional forest structure, particularly the spatial heterogeneity of vegetation height in improving avian richness models across forested ecoregions in the U.S. We developed novel habitat metrics to characterize the spatial arrangement of vegetation height using the National Biomass and Carbon Dataset for the year 2000 (NBCD). The height-structured metrics were compared with other habitat metrics for statistical association with richness of three forest breeding bird guilds across Breeding Bird Survey (BBS) routes: a broadly grouped woodland guild, and two forest breeding guilds with preferences for forest edge and for interior forest. Parametric and non-parametric models were built to examine the improvement of predictability. Height-structured metrics had the strongest associations with species richness, yielding improved predictive ability for the woodland guild richness models (r2 = ∼0.53 for the parametric models, 0.63 the non-parametric models) and the forest edge guild models (r2 = ∼0.34 for the parametric models, 0.47 the non-parametric models). All but one of the linear models incorporating height-structured metrics showed significantly higher adjusted-r2 values than their counterparts without additional metrics. The interior forest guild richness showed a consistent low association with height-structured metrics. Our results suggest that height heterogeneity, beyond canopy height alone, supplements habitat characterization and richness models of forest bird species. The metrics and models derived in this study demonstrate practical examples of utilizing three-dimensional vegetation data for improved characterization of spatial patterns in species richness.  相似文献   

5.
The epidemiology of Staphylococcus aureus in the community in Ghana was never investigated prior to this study. The aims of the study were: i) to assess prevalence of nasal S. aureus carriage in Ghanaian people living in an urban and a rural area, and ii) to identify phenotypic and genotypic traits of strains isolated from the two communities. Nasal swabs were collected from healthy individuals living in an urban community situated in the suburb of the capital city, Accra (n = 353) and in a rural community situated in the Dangme-West district (n = 234). The overall prevalence of nasal carriage was 21% with a significantly higher prevalence in the urban (28%) than in the rural community (11%) (p<0.0001). The levels of antimicrobial resistance were generally low (<5%) except for penicillin (91%) and tetracycline (25%). The only two (0.3%) MRSA carriers were individuals living in the urban area and had been exposed to hospitals within the last 12 months prior to sampling. Resistance to tetracycline (p = 0.0009) and presence of Panton-Valentine leukocidin (PVL) gene (p = 0.02) were significantly higher among isolates from the rural community compared to isolates from the urban community. Eleven MLST clonal complexes (CC) were detected based on spa typing of the 124 S. aureus isolates from the two communities: CC8 (n = 36), CC152 (n = 21), CC45 (n = 21), CC15 (n = 18), CC121 (n = 6), CC97 (n = 6), CC30 (n = 5), CC5 (n = 5), CC508 (n = 4), CC9 (n = 1), and CC707 (n = 1). CC8 and CC45 were less frequent in the rural area than in the urban area (p = 0.02). These results reveal remarkable differences regarding carriage prevalence, tetracycline resistance, PVL content and clonal distribution of S. aureus in the two study populations. Future research may be required to establish whether such differences in nasal S. aureus carriage are linked to socio-economic differences between urban and rural communities in this African country.  相似文献   

6.
Small passerines, sometimes referred to as perching birds or songbirds, are the most abundant bird group in the United States (US) and Canada, and the most common among bird fatalities caused by collision with turbines at wind energy facilities. We used data compiled from 116 studies conducted in the US and Canada to estimate the annual rate of small-bird fatalities. It was necessary for us to calculate estimates of small-bird fatality rates from reported all-bird rates for 30% of studies. The remaining 70% of studies provided data on small-bird fatalities. We then adjusted estimates to account for detection bias and loss of carcasses from scavenging. These studies represented about 15% of current operating capacity (megawatts [MW]) for all wind energy facilities in the US and Canada and provided information on 4,975 bird fatalities, of which we estimated 62.5% were small passerines comprising 156 species. For all wind energy facilities currently in operation, we estimated that about 134,000 to 230,000 small-passerine fatalities from collision with wind turbines occur annually, or 2.10 to 3.35 small birds/MW of installed capacity. When adjusted for species composition, this indicates that about 368,000 fatalities for all bird species are caused annually by collisions with wind turbines. Other human-related sources of bird deaths, (e.g., communication towers, buildings [including windows]), and domestic cats) have been estimated to kill millions to billions of birds each year. Compared to continent-wide population estimates, the cumulative mortality rate per year by species was highest for black-throated blue warbler and tree swallow; 0.043% of the entire population of each species was estimated to annually suffer mortality from collisions with turbines. For the eighteen species with the next highest values, this estimate ranged from 0.008% to 0.038%, much lower than rates attributed to collisions with communication towers (1.2% to 9.0% for top twenty species).  相似文献   

7.
Worldwide declines in shorebird populations, driven largely by habitat loss and degradation, motivate environmental managers to preserve and restore the critical coastal habitats on which these birds depend. Effective habitat management requires an understanding of the factors that determine habitat use and value to shorebirds, extending from individuals to the entire community. While investigating the factors that influenced shorebird foraging distributions among neighboring intertidal sand flats, we built upon species-level understandings of individual-based, small-scale foraging decisions to develop more comprehensive guild- and community-level insights. We found that densities and community composition of foraging shorebirds varied substantially among elevations within some tidal flats and among five flats despite their proximity (all located within a 400-m stretch of natural, unmodified inlet shoreline). Non-dimensional multivariate analyses revealed that the changing composition of the shorebird community among flats and tidal elevations correlated significantly (ρs = 0.56) with the spatial structure of the benthic invertebrate prey community. Sediment grain-sizes affected shorebird community spatial patterns indirectly by influencing benthic macroinvertebrate community compositions. Furthermore, combining sediment and macroinvertebrate information produced a 27% increase in correlation (ρs = 0.71) with shorebird assemblage patterns over the correlation of the bird community with the macroinvertebrate community alone. Beyond its indirect effects acting through prey distributions, granulometry of the flats influenced shorebird foraging directly by modifying prey availability. Our study highlights the importance of habitat heterogeneity, showing that no single patch type was ideal for the entire shorebird community. Generally, shorebird density and diversity were greatest at lower elevations on flats when they became exposed; these areas are at risk from human intervention by inlet sand mining, construction of groins and jetties that divert sediments from flats, and installation of seawalls on inlet shorelines that induce erosion of flats.  相似文献   

8.
Understanding the variability of foraging behavior within a population of predators is important for determining their role in the ecosystem and how they may respond to future ecosystem changes. However, such variability has seldom been studied in harbor seals on a fine spatial scale (<30 km). We used a combination of standard and Bayesian generalized linear mixed models to explore how environmental variables influenced the dive behavior of harbor seals. Time-depth recorders were deployed on harbor seals from two haul-out sites in the Salish Sea in 2007 (n = 18) and 2008 (n = 11). Three behavioral bout types were classified from six dive types within each bout; however, one of these bout types was related to haul-out activity and was excluded from analyses. Deep foraging bouts (Type I) were the predominant type used throughout the study; however, variation in the use of bout types was observed relative to haul-out site, season, sex, and light (day/night). The proportional use of Type I and Type II (shallow foraging/traveling) bouts differed dramatically between haul-out sites, seasons, sexes, and whether it was day or night; individual variability between seals also contributed to the observed differences. We hypothesize that this variation in dive behavior was related to habitat or prey specialization by seals from different haul-out sites, or individual variability between seals in the study area. The results highlight the potential influence of habitat and specialization on the foraging behavior of harbor seals, and may help explain the variability in diet that is observed between different haul-out site groups in this population.  相似文献   

9.

Background

Sub-Saharan Africa bears a disproportionate burden of HIV infection. Knowledge of the spatial distribution of HIV outcomes is vital so that appropriate public health interventions can be directed at locations most in need. In this regard, spatial clustering analysis of HIV-related mortality events has not been performed in a rural sub-Saharan African setting.

Methodology and Results

Kulldorff’s spatial scan statistic was used to identify HIV-related and all-cause mortality clusters (p<0.05) in a population-based demographic surveillance survey in rural KwaZulu Natal, South Africa (2000–2006). The analysis was split pre (2000–2003) and post (2004–2006) rollout of antiretroviral therapy, respectively. Between 2000–2006 a total of 86,175 resident individuals ≥15 years of age were under surveillance and 5,875 deaths were recorded (of which 2,938 were HIV-related) over 343,060 person-years of observation (crude all-cause mortality rate 17.1/1000). During both time periods a cluster of high HIV-related (RR = 1.46/1.51, p = 0.001) and high all-cause mortality (RR = 1.35/1.38, p = 0.001) was identified in peri-urban communities near the National Road. A consistent low-risk cluster was detected in the urban township in both time periods (RR = 0.60/0.39, p = 0.003/0.005) and in the first time period (2000–2003) a large cluster of low HIV-related and all-cause mortality in a remote rural area was identified.

Conclusions

HIV-related and all-cause mortality exhibit strong spatial clustering tendencies in this population. Highest HIV-related mortality and all-cause mortality occurred in the peri-urban communities along the National Road and was lowest in the urban township and remote rural communities. The geography of HIV-related mortality corresponded closely to the geography of HIV prevalence, with the notable exception of the urban township where high HIV-related mortality would have been expected on the basis of the high HIV prevalence. Our results suggest that HIV treatment and care programmes should be strengthened in easy-to-reach high density, peri-urban populations near National Roads where both HIV-related and all-cause mortality are highest.  相似文献   

10.
浙江古田山自然保护区鸟类群落生态研究   总被引:39,自引:1,他引:39  
丁平  诸葛阳  姜仕仁 《生态学报》1989,9(2):121-127
对古田山地区鸟类进行的调查表明:该地区鸟类群落的主要鸟类共计48种,其中优势种有14种,占29.17%。根据鸟类生境的分布系数分析。中性分布型有(25—100%)28种,占58.33%。不同生境内鸟类群落的种类数目和群体密度存在差异,结构复杂的生境,其鸟类群落由三个分布群组成,如农田村落、农田河滩、混交林和阔叶林;结构简单的生境,如竹林、针叶林和迹地灌丛,其鸟类群落由二个分布群所组成。各种鸟类分布群在鸟类群落内的比例随栖息地结构的变化而改变。由于栖息地结构的变化同样也导致鸟类群落其他参数的变化,如Shannon-Wiener多样性指数、Simpson优势度、种间相遇机率PIE等。  相似文献   

11.
Despite the environmental benefits associated with wind energy, studies have confirmed the occurrence of significant levels of bat and bird fatalities at windfarms, which raise concerns about the long-term effects of these infra-structures on these populations. Reliable estimates of windfarm fatalities are fundamental for accurate environmental assessment studies and supporting management actions. A spatially explicit agent-based model (ABM) was developed to investigate how searcher “controlled” variables, i.e., different field monitoring protocols, monitoring periods and periodicities influence the success of carcasses detection in field trials and estimator accuracy. Different rates of bat mortality due to collision, scavenger pressures and habitat complexity were simulated in order to reproduce variable conditions that might take place at onshore wind facilities. Based on our findings we propose a reduction in the monitoring periods and a shortening in the periodicity of searches in order to reduce bias in the estimations and increase the confidence limits of impact assessments associated with mortality estimates at onshore windfarms.  相似文献   

12.
中国城市鸟类学研究进展   总被引:6,自引:4,他引:6  
张征恺  黄甘霖 《生态学报》2018,38(10):3357-3367
我国的城市鸟类学起步于20世纪80年代,随着城市化过程的加速,城市鸟类学也有了较快发展。为了全面系统地了解中国城市鸟类学研究的历史、现状与发展趋势,在中国期刊全文数据库中以"城市"和"鸟类"为主题词检索了1950—2015年间发表的文章,筛选获得128篇文章,并对检索结果进行综述。结果显示,城市鸟类学发表文章数量自20世纪80年代起逐渐增加,由1981—1990的年均0.7篇跃升至2011—2015年的年均11.6篇。研究地涉及全国29个省级行政区的57个城市。研究的主要议题包括:城市鸟类的群落结构和分布、影响城市鸟类的主要环境因素和城市鸟类的保护实践。综述发现,不同城市环带位置,城市中不同生境组合会影响城市的鸟类群落结构;不同尺度上的环境因素会对鸟类的分布、繁殖、觅食和生理情况产生多种影响,而城市化是影响这些环境因素的主要驱动力;鸟类栖息地规划以保护城市中自然栖息地,增加其景观连通性促进鸟类保护,鸟类招引技术主要通过补充巢资源和食物资源促进鸟类保护。然而,由于资源限制,有关城市鸟类的长期研究相对较少。并且,已有研究中城市鸟类的生态系统服务也鲜有涉及。为此,对我国城市鸟类学的发展提出了三点展望,城市鸟类学研究应加强城市绿地鸟类招引措施的生态影响研究,进一步发掘城市鸟类的自然体验与环境教育价值,并促进民间爱好者参与长期系统性城市鸟类学调查。  相似文献   

13.
Recent research has demonstrated how scavenging, the act of consuming dead animals, plays a key role in ecosystem structure, functioning, and stability. A growing number of studies suggest that vertebrate scavengers also provide key ecosystem services, the benefits humans gain from the natural world, particularly in the removal of carcasses from the environment. An increasing proportion of the human population is now residing in cities and towns, many of which, despite being highly altered environments, contain significant wildlife populations, and so animal carcasses. Indeed, non‐predation fatalities may be higher within urban than natural environments. Despite this, the fate of carcasses in urban environments and the role vertebrate scavengers play in their removal have not been determined. In this study, we quantify the role of vertebrate scavengers in urban environments in three towns in the UK. Using experimentally deployed rat carcasses and rapid fire motion‐triggered cameras, we determined which species were scavenging and how removal of carcass biomass was partitioned between them. Of the 63 experimental carcasses deployed, vertebrate scavenger activity was detected at 67%. There was a significantly greater depletion in carcass biomass in the presence (mean loss of 194 g) than absence (mean loss of 14 g) of scavengers. Scavenger activity was restricted to three species, Carrion crows Corvus corone, Eurasian magpies Pica pica, and European red foxes Vulpes vulpes. From behavioral analysis, we estimated that a maximum of 73% of the carcass biomass was removed by vertebrate scavengers. Despite having low species richness, the urban scavenger community in our urban study system removed a similar proportion of carcasses to those reported in more pristine environments. Vertebrate scavengers are providing a key urban ecosystem service in terms of carcass removal. This service is, however, often overlooked, and the species that provide it are among some of the most disliked and persecuted.  相似文献   

14.
Several experimental studies have examined species responses to manipulations of habitat area and spatial arrangement, but plant composition and spatial variation in species distributions also affect animal responses to habitat alteration. We used an experimental approach to study the combined effects of habitat area, edge, and plant community composition on the spatial structure of insect species richness and composition. The abundance of three guilds (herbivores, predators and parasitoids) and individual species were also analyzed. Habitat patches were created that differed in area and edge by selectively mowing portions of 15 m×15 m plots in a 1.7-ha old field. Spatial and environmental variables were used to predict insect responses in separate multiple regression and ordination models. The variation in species responses due to spatial and environmental variables was then partitioned by combining these variables into an overall regression or ordination. Spatial and environmental variables contributed similar percentages to the total variance in insect species richness, abundance or composition. No significant effects of habitat area were observed in any response variable. Herbivore abundance showed positive responses to legume or grass cover, as well as spatial variation that was unrelated to environmental variables. Predators and parasitoids had greater effects of plant species richness and habitat edge, and less unexplained spatial variation. Individual species differed in their responses to plant variables, depending on host specialization or intraspecific aggregation. Our study highlights the importance of plant community composition and spatial variation apart from environmental variables. Spatial variation stems both from species responses to environmental features as well as species differences in habitat specialization and intraspecific aggregation.  相似文献   

15.
Organic Carbon Storage in China's Urban Areas   总被引:1,自引:0,他引:1  
China has been experiencing rapid urbanization in parallel with its economic boom over the past three decades. To date, the organic carbon storage in China''s urban areas has not been quantified. Here, using data compiled from literature review and statistical yearbooks, we estimated that total carbon storage in China''s urban areas was 577±60 Tg C (1 Tg  = 1012 g) in 2006. Soil was the largest contributor to total carbon storage (56%), followed by buildings (36%), and vegetation (7%), while carbon storage in humans was relatively small (1%). The carbon density in China''s urban areas was 17.1±1.8 kg C m−2, about two times the national average of all lands. The most sensitive variable in estimating urban carbon storage was urban area. Examining urban carbon storages over a wide range of spatial extents in China and in the United States, we found a strong linear relationship between total urban carbon storage and total urban area, with a specific urban carbon storage of 16 Tg C for every 1,000 km2 urban area. This value might be useful for estimating urban carbon storage at regional to global scales. Our results also showed that the fraction of carbon storage in urban green spaces was still much lower in China relative to western countries, suggesting a great potential to mitigate climate change through urban greening and green spaces management in China.  相似文献   

16.
We describe the relationship between macroinvertebrate community composition, the physicochemical environment and anthropogenic impacts, in running water sites across a range of water qualities in England and Wales. We have also investigated the degree of spatial structure present in both the macroinvertebrate community and the measured environment. Selected explanatory variables could account for 26% of the variation in lotic macroinvertebrate assemblage composition across England and Wales. The explanatory power of the CCA model was based predominantly on a combination of local scale variables (substrate, alkalinity, urban run-off) and regional scale variables (discharge category, northing). The physicochemical gradient associated with changes in stream type from headwaters to estuary dominated assemblage composition. The influence of pollution and habitat modification were of secondary importance. There was a substantial level of spatial structure to both the physicochemical (47% of its explanatory power spatially structured) and anthropogenic stress data (63% of its explanatory power spatially structured), which resulted in a high level of predictable spatial structuring in macroinvertebrate assemblages. Almost 40% of the variation in assemblage composition accounted for by the explanatory model exhibited spatial structure. Positive spatial autocorrelation in macroinvertebrate community composition extended to sites up to 150km apart. As a consequence, community composition could be described from northing and easting with 75% of the explanatory power of the eight physicochemical variables. Our study has confirmed the importance of the longitudinal gradient within catchments, as well as the geographical position of the catchment to macroinvertebrate communities. We have also demonstrated how quantifying the spatial structure in the dataset can improve our understanding of the factors influencing macroinvertebrate community structure.  相似文献   

17.
Landscape pattern metrics are widely used for predicting habitat and species diversity. However, the relationship between landscape pattern and species diversity is typically measured at a single spatial scale, even though both landscape pattern, and species occurrence and community composition are scale‐dependent. While the effects of scale on landscape pattern are well documented, the effects of scale on the relationships between spatial pattern and species richness and composition are not well known. Here, our main goal was to quantify the effects of cartographic scale (spatial resolution and extent) on the relationships between spatial pattern and avian richness and community structure in a mosaic of grassland, woodland, and savanna in central Wisconsin. Our secondary goal was to evaluate the effectiveness of a newly developed tool for spatial pattern analysis, multiscale contextual spatial pattern analysis (MCSPA), compared to existing landscape metrics. Landscape metrics and avian species richness had quadratic, exponential, or logarithmic relationships, and these patterns were generally consistent across two spatial resolutions and six spatial extents. However, the magnitude of the relationships was affected by both resolution and extent. At the finer resolution (10‐m), edge density was consistently the best predictor of species richness, followed by an MCSPA metric that measures the standard deviation of woody cover across extents. At the coarser resolution (30‐m), NDVI was the best predictor of species richness by far, regardless of spatial extent. Another MCSPA metric that denotes the average woody cover across extents, together with percent of woody cover, were always the best predictors of variation in avian community structure. Spatial resolution and extent had varying effects on the relationships between spatial pattern and avian community structure. We therefore conclude that cartographic scale not only affects measures of landscape pattern per se, but also the relationships among spatial pattern, species richness, and community structure, often in complex ways, which reduces the efficacy of landscape metrics for predicting the richness and diversity of organisms.  相似文献   

18.
Abstract The 165-km2 Altamont Pass Wind Resource Area (APWRA) in west-central California includes 5,400 wind turbines, each rated to generate between 40 kW and 400 kW of electric power, or 580 MW total. Many birds residing or passing through the area are killed by collisions with these wind turbines. We searched for bird carcasses within 50 m of 4,074 wind turbines for periods ranging from 6 months to 4.5 years. Using mortality estimates adjusted for searcher detection and scavenger removal rates, we estimated the annual wind turbine–caused bird fatalities to number 67 (80% CI = 25–109) golden eagles (Aquila chrysaetos), 188 (80% CI = 116–259) red-tailed hawks (Buteo jamaicensis), 348 (80% CI = −49 to 749) American kestrels (Falco sparverius), 440 (80% CI = −133 to 1,013) burrowing owls (Athene cunicularia hypugaea), 1,127 (80% CI = −23 to 2,277) raptors, and 2,710 (80% CI = −6,100 to 11,520) birds. Adjusted mortality estimates were most sensitive to scavenger removal rate, which relates to the amount of time between fatality searches. New on-site studies of scavenger removal rates might warrant revising mortality estimates for some small-bodied bird species, although we cannot predict how the mortality estimates would change. Given the magnitude of our mortality estimates, regulatory agencies and the public should decide whether to enforce laws intended to protect species killed by APWRA wind turbines, and given the imprecision of our estimates, directed research is needed of sources of error and bias for use in studies of bird collisions wherever wind farms are developed. Precision of mortality estimates could be improved by deploying technology to remotely detect collisions and by making wind turbine power output data available to researchers so that the number of fatalities can be related directly to the actual power output of the wind turbine since the last fatality search.  相似文献   

19.
上海闵行区园林鸟类群落嵌套结构   总被引:2,自引:2,他引:2  
城市中的园林绿地呈现斑块状分布,其栖息地特征与岛屿栖息地相似。2008年11月至2009年10月,对上海市闵行区内的7块城市绿地进行调查,记录雀形目鸟类的分布情况,并运用Nestedness temperature calculator软件,检验其群落结构是否符合嵌套结构。运用Arc GIS软件分析该地区的卫星图片,收集7块样地的面积、绿地盖度、水源距离和人为干扰程度等数据,结合实地调查所得到的数据,分析这一嵌套结构的形成原因和影响因素。结果显示:上海市闵行区城市绿地中的雀形目鸟类分布是显著的嵌套结构,园林面积、绿地面积和水源情况都对其嵌套结构有显著影响。但是与真正岛屿上存在的群落分布嵌套结构不同,人为干扰程度对这一结构也有非常明显的影响。基于上述结果可以看出,影响上海市园林鸟类的群落嵌套结构的主要原因是栖息地的结构和人为干扰程度。因此,建议在规划和建设城市公园和绿地时,应该偏重于面积较大,植被盖度和丰富度高,结构合理的园林,并且尽量减少人为干扰。  相似文献   

20.
Conservation research has historically been aimed at preserving high value natural habitats, but urbanization and its associated impacts have prompted broader mandates that include the preservation and promotion of biodiversity in cities. Current efforts within urban landscapes aim to support biodiversity and diverse ecosystem services such as storm water management, sustainable food production, and toxin remediation. Arthropod natural enemies provide biocontrol services important for the ecosystem management of urban greenspaces. Establishing habitat for these and other beneficial arthropods is a growing area of urban conservation. Habitat design, resource inputs, management, and abiotic conditions shape the value of greenspace habitats for arthropods. In general, larger patches with diverse plant communities support a greater abundance and diversity of natural enemies and biocontrol services, yet opposing patterns or no effects have also been documented. The surrounding landscape is likely a contributor to this variation in natural enemy response to patch-scale habitat design and management. Looking across rural–urban landscape gradients, natural enemy communities shift toward dominance by habitat generalists and disturbance tolerant species in urban areas compared to rural or natural communities. These changes have been linked to variation in habitat fragmentation, plant productivity and management intensity. In landscape-scale studies focusing solely within cities, variables such as impervious surface area and greenspace connectivity affect the community assembly of natural enemies within a patch. Given these findings, a greater mechanistic understanding of how both the composition and spatial context of urban greenspaces influence natural enemy biodiversity–biocontrol relationships is needed to advance conservation planning and implementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号