共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Heike R. D?ppler Ligia I. Bastea Laura J. Lewis-Tuffin Panos Z. Anastasiadis Peter Storz 《The Journal of biological chemistry》2013,288(34):24382-24393
Enabled/Vasodilator-stimulated phosphoprotein (Ena/VASP) protein family members link actin dynamics and cellular signaling pathways. VASP localizes to regions of dynamic actin reorganization such as the focal adhesion contacts, the leading edge or filopodia, where it contributes to F-actin filament elongation. Here we identify VASP as a novel substrate for protein kinase D1 (PKD1). We show that PKD1 directly phosphorylates VASP at two serine residues, Ser-157 and Ser-322. These phosphorylations occur in response to RhoA activation and mediate VASP re-localization from focal contacts to the leading edge region. The net result of this PKD1-mediated phosphorylation switch in VASP is increased filopodia formation and length at the leading edge. However, such signaling when persistent induced membrane ruffling and decreased cell motility. 相似文献
3.
Huachen Gan Guibo Wang Qin Hao Q. Jane Wang Hua Tang 《The Journal of biological chemistry》2013,288(52):37343-37354
At the interface between host and external environment, the airway epithelium serves as a major protective barrier. In the present study we show that protein kinase D (PKD) plays an important role in the formation and integrity of the airway epithelial barrier. Either inhibition of PKD activity or silencing of PKD increased transepithelial electrical resistance (TEER), resulting in a tighter epithelial barrier. Among the three PKD isoforms, PKD3 knockdown was the most efficient one to increase TEER in polarized airway epithelial monolayers. In contrast, overexpression of PKD3 wild type, but not PKD3 kinase-inactive mutant, disrupted the formation of apical intercellular junctions and their reassembly, impaired the development of TEER, and increased paracellular permeability to sodium fluorescein in airway epithelial monolayers. We further found that overexpression of PKD, in particular PKD3, markedly suppressed the mRNA and protein levels of claudin-1 but had only minor effects on the expression of other tight junctional proteins (claudin-3, claudin-4, claudin-5, occludin, and ZO-1) and adherent junctional proteins (E-cadherin and β-catenin). Immunofluorescence study revealed that claudin-1 level was markedly reduced and almost disappeared from intercellular contacts in PKD3-overexpressed epithelial monolayers and that claudin-4 was also restricted from intercellular contacts and tended to accumulate in the cell cytosolic compartments. Last, we found that claudin-1 knockdown prevented TEER elevation by PKD inhibition or silencing in airway epithelial monolayers. These novel findings indicate that PKD negatively regulates human airway epithelial barrier formation and integrity through down-regulation of claudin-1, which is a key component of tight junctions. 相似文献
4.
Gina M. Sizemore Steven T. Sizemore Darcie D. Seachrist Ruth A. Keri 《The Journal of biological chemistry》2014,289(35):24102-24113
Breast cancer is a heterogeneous disease comprised of distinct subtypes predictive of patient outcome. Tumors of the basal-like subtype have a poor prognosis due to inherent aggressiveness and the lack of targeted therapeutics. Basal-like tumors typically lack estrogen receptor-α, progesterone receptor and HER2/ERBB2, or in other words they are triple negative (TN). Continued evaluation of basal-like breast cancer (BLBC) biology is essential to identify novel therapeutic targets. Expression of the pi subunit of the GABA(A) receptor (GABRP) is associated with the BLBC/TN subtype, and herein, we reveal its expression also correlates with metastases to the brain and poorer patient outcome. GABRP expression in breast cancer cell lines also demonstrates a significant correlation with the basal-like subtype suggesting that GABRP functions in the initiation and/or progression of basal-like tumors. To address this postulate, we stably silenced GABRP in two BLBC cell lines, HCC1187 and HCC70 cells. Decreased GABRP reduces in vitro tumorigenic potential and migration concurrent with alterations in the cytoskeleton, specifically diminished cellular protrusions and expression of the BLBC-associated cytokeratins, KRT5, KRT6B, KRT14, and KRT17. Silencing GABRP also decreases phosphorylation of extracellular regulated kinase 1/2 (ERK1/2) in both cell lines and selective inhibition of ERK1/2 similarly decreases the basal-like cytokeratins as well as migration. Combined, these data reveal a GABRP-ERK1/2-cytokeratin axis that maintains the migratory phenotype of basal-like breast cancer. GABRP is a component of a cell surface receptor, thus, these findings suggest that targeting this new signaling axis may have therapeutic potential in BLBC. 相似文献
5.
Bettina Huck Stephan Duss Angelika Hausser Monilola A. Olayioye 《The Journal of biological chemistry》2014,289(6):3138-3147
Here, we show that the expression of the Golgi-localized serine-threonine kinase protein kinase D3 (PKD3) is elevated in triple-negative breast cancer (TNBC). Using an antibody array, we identified PKD3 to trigger the activation of S6 kinase 1 (S6K1), a main downstream target of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. Accordingly, PKD3 knockdown in TNBC cells led to reduced S6K1 phosphorylation, which was associated with impaired activation of mTORC1 at endolysosomal membranes, the accumulation of the mannose 6-phosphate receptor in and the recruitment of the autophagy marker light chain 3 to enlarged acidic vesicles. We further show that PKD3 depletion strongly inhibited cell spreading and proliferation of TNBC cells, identifying this kinase as a potential novel molecular therapeutic target in TNBC. Together, our data suggest that PKD3 in TNBC cells provides a molecular connection between the Golgi and endolysosomal compartments to enhance proliferative mTORC1-S6K1 signaling. 相似文献
6.
Kim C. Mansky Eric D. Jensen Julia Davidova Masato Yamamoto Rajaram Gopalakrishnan 《The Journal of biological chemistry》2013,288(14):9826-9834
Although PKD is broadly expressed and involved in numerous cellular processes, its function in osteoclasts has not been previously reported. In this study, we found that PKD2 is the main PKD isoform expressed in osteoclastic cells. PKD phosphorylation, indicative of the activated state, increased after 2–3 days of treatment of bone marrow macrophages with M-CSF and RANKL, corresponding to the onset of preosteoclast fusion. RNAi against PKD2 and treatment with the PKD inhibitor CID755673 showed that PKD activity is dispensable for induction of bone marrow macrophages into tartrate-resistant acid phosphatase-positive preosteoclasts in culture but is required for the transition from mononucleated preosteoclasts to multinucleated osteoclasts. Loss of PKD activity reduced expression of DC-STAMP in RANKL-stimulated cultures. Overexpression of DC-STAMP was sufficient to rescue treatment with CID755673 and restore fusion into multinucleated osteoclasts. From these data, we conclude that PKD activity promotes differentiation of osteoclast progenitors through increased expression of DC-STAMP. 相似文献
7.
Maho Takahashi Tara J. Dillon Chang Liu Yumi Kariya Zhiping Wang Philip J. S. Stork 《The Journal of biological chemistry》2013,288(39):27712-27723
The small G protein Rap1 can mediate “inside-out signaling” by recruiting effectors to the plasma membrane that signal to pathways involved in cell adhesion and cell migration. This action relies on the membrane association of Rap1, which is dictated by post-translational prenylation as well as by a stretch of basic residues within its carboxyl terminus. One feature of this stretch of acidic residues is that it lies adjacent to a functional phosphorylation site for the cAMP-dependent protein kinase PKA. This phosphorylation has two effects on Rap1 action. One, it decreases the level of Rap1 activity as measured by GTP loading and the coupling of Rap1 to RapL, a Rap1 effector that couples Rap1 GTP loading to integrin activation. Two, it destabilizes the membrane localization of Rap1, promoting its translocation into the cytoplasm. These two actions, decreased GTP loading and decreased membrane localization, are related, as the translocation of Rap1-GTP into the cytoplasm is associated with its increased GTP hydrolysis and inactivation. The consequences of this phosphorylation in Rap1-dependent cell adhesion and cell migration were also examined. Active Rap1 mutants that lack this phosphorylation site had a minimal effect on cell adhesion but strongly reduced cell migration, when compared with an active Rap1 mutant that retained the phosphorylation site. This suggests that optimal cell migration is associated with cycles of Rap1 activation, membrane egress, and inactivation, and requires the regulated phosphorylation of Rap1 by PKA. 相似文献
8.
Pusapati GV Eiseler T Rykx A Vandoninck S Derua R Waelkens E Van Lint J von Wichert G Seufferlein T 《The Journal of biological chemistry》2012,287(12):9473-9483
The members of the protein kinase D (PKD) family of serine/threonine kinases are major targets for tumor-promoting phorbol esters, G protein-coupled receptors, and activated protein kinase C isoforms (PKCs). The expanding list of cellular processes in which PKDs exert their function via phosphorylation of various substrates include proliferation, apoptosis, migration, angiogenesis, and vesicle trafficking. Therefore, identification of novel PKD substrates is necessary to understand the profound role of this kinase family in signal transduction. Here, we show that rhotekin, an effector of RhoA GTPase, is a novel substrate of PKD. We identified Ser-435 in rhotekin as the potential site targeted by PKD in vivo. Expression of a phosphomimetic S435E rhotekin mutant resulted in an increase of endogenous active RhoA GTPase levels. Phosphorylation of rhotekin by PKD2 modulates the anchoring of the RhoA in the plasma membrane. Consequently, the S435E rhotekin mutant displayed enhanced stress fiber formation when expressed in serum-starved fibroblasts. Our data thus identify a novel role of PKD as a regulator of RhoA activity and actin stress fiber formation through phosphorylation of rhotekin. 相似文献
9.
Hee Jun Cho Yoo-Seok Hwang Kathleen Mood Yon Ju Ji Junghwa Lim Deborah K. Morrison Ira O. Daar 《The Journal of biological chemistry》2014,289(26):18556-18568
The Eph receptors and their membrane-bound ligands, ephrins, play important roles in various biological processes such as cell adhesion and movement. The transmembrane ephrinBs transduce reverse signaling in a tyrosine phosphorylation-dependent or -independent, as well as PDZ-dependent manner. Here, we show that ephrinB1 interacts with Connector Enhancer of KSR1 (CNK1) in an EphB receptor-independent manner. In cultured cells, cotransfection of ephrinB1 with CNK1 increases JNK phosphorylation. EphrinB1/CNK1-mediated JNK activation is reduced by overexpression of dominant-negative RhoA. Overexpression of CNK1 alone is sufficient for activation of RhoA; however, both ephrinB1 and CNK1 are required for JNK phosphorylation. Co-immunoprecipitation data showed that ephrinB1 and CNK1 act as scaffold proteins that connect RhoA and JNK signaling components, such as p115RhoGEF and MKK4. Furthermore, adhesion to fibronectin or active Src overexpression increases ephrinB1/CNK1 binding, whereas blocking Src activity by a pharmacological inhibitor decreases not only ephrinB1/CNK1 binding, but also JNK activation. EphrinB1 overexpression increases cell motility, however, CNK1 depletion by siRNA abrogates ephrinB1-mediated cell migration and JNK activation. Moreover, Rho kinase inhibitor or JNK inhibitor treatment suppresses ephrinB1-mediated cell migration. Taken together, our findings suggest that CNK1 is required for ephrinB1-induced JNK activation and cell migration. 相似文献
10.
Emhonta Johnson Darcie D. Seachrist Carlos M. DeLeon-Rodriguez Kristen L. Lozada John Miedler Fadi W. Abdul-Karim Ruth A. Keri 《The Journal of biological chemistry》2010,285(38):29491-29501
Breast cancers that overexpress the receptor tyrosine kinase ErbB2/HER2/Neu result in poor patient outcome because of extensive metastatic progression. Herein, we delineate a molecular mechanism that may govern this malignant phenotype. ErbB2 induction of migration requires activation of the small GTPases Rac1 and Cdc42. The ability of ErbB2 to activate these small GTPases necessitated expression of p120 catenin, which is itself up-regulated by signaling through ErbB2 and the tyrosine kinase Src. Silencing p120 in ErbB2-dependent breast cancer cell lines dramatically inhibited migration and invasion as well as activation of Rac1 and Cdc42. In contrast, overexpression of constitutively active mutants of these GTPases reversed the effects of p120 silencing. Lastly, ectopic expression of p120 promoted migration and invasion and potentiated metastatic progression of a weakly metastatic, ErbB2-dependent breast cancer cell line. These results suggest that p120 acts as an obligate intermediate between ErbB2 and Rac1/Cdc42 to modulate the metastatic potential of breast cancer cells. 相似文献
11.
Oxana M. Tsygankova Hongbin Wang Judy L. Meinkoth 《The Journal of biological chemistry》2013,288(34):24636-24646
The functional significance of the widespread down-regulation of Rap1 GTPase-activating protein (Rap1GAP), a negative regulator of Rap activity, in human tumors is unknown. Here we show that human colon cancer cells depleted of Rap1GAP are endowed with more aggressive migratory and invasive properties. Silencing Rap1GAP enhanced the migration of confluent and single cells. In the latter, migration distance, velocity, and directionality were increased. Enhanced migration was a consequence of increased endogenous Rap activity as silencing Rap expression selectively abolished the migration of Rap1GAP-depleted cells. ROCK-mediated cell contractility was suppressed in Rap1GAP-depleted cells, which exhibited a spindle-shaped morphology and abundant membrane protrusions. Tumor cells can switch between Rho/ROCK-mediated contractility-based migration and Rac1-mediated mesenchymal motility. Strikingly, the migration of Rap1GAP-depleted, but not control cells required Rac1 activity, suggesting that loss of Rap1GAP alters migratory mechanisms. Inhibition of Rac1 activity restored membrane blebbing and increased ROCK activity in Rap1GAP-depleted cells, suggesting that Rac1 contributes to the suppression of contractility. Collectively, these findings identify Rap1GAP as a critical regulator of aggressive tumor cell behavior and suggest that the level of Rap1GAP expression influences the migratory mechanisms that are operative in tumor cells. 相似文献
12.
Tim Eiseler Angelika Hausser Line De Kimpe Johan Van Lint Klaus Pfizenmaier 《The Journal of biological chemistry》2010,285(24):18672-18683
We here identify protein kinase D (PKD) as an upstream regulator of the F-actin-binding protein cortactin and the Arp actin polymerization machinery. PKD phosphorylates cortactin in vitro and in vivo at serine 298 thereby generating a 14-3-3 binding motif. In vitro, a phosphorylation-deficient cortactin-S298A protein accelerated VCA-Arp-cortactin-mediated synergistic actin polymerization and showed reduced F-actin binding, indicative of enhanced turnover of nucleation complexes. In vivo, cortactin co-localized with the nucleation promoting factor WAVE2, essential for lamellipodia extension, in the actin polymerization zone in Heregulin-treated MCF-7 cells. Using a 3-dye FRET-based approach we further demonstrate that WAVE2-Arp and cortactin prominently interact at these structures. Accordingly, cortactin-S298A significantly enhanced lamellipodia extension and directed cell migration. Our data thus unravel a previously unrecognized mechanism by which PKD controls cancer cell motility. 相似文献
13.
Prachi Jain Somesh Baranwal Shengli Dong Amanda P. Struckhoff Rebecca A. Worthylake Suresh K. Alahari 《The Journal of biological chemistry》2013,288(22):15495-15509
Biallelic inactivation of LKB1, a serine/threonine kinase, has been detected in 30% of lung adenocarcinomas, and inhibition of breast tumor growth has been demonstrated. We have identified the tumor suppressor, Nischarin, as a novel binding partner of LKB1. Our mapping analysis shows that the N terminus of Nischarin interacts with amino acids 44–436 of LKB1. Time lapse microscopy and Transwell migration data show that the absence of both Nischarin and LKB1 from an invasive breast cancer cell line (MDA-MB-231) enhances migration as measured by increased distance and speed of migrating cells. Our data suggest that this is a result of elevated PAK1 and LIMK1 phosphorylation. Moreover, the absence of Nischarin and LKB1 increased tumor growth in vivo. Consistent with this, the percentage of S phase cells was increased, as demonstrated by flow cytometry and enhanced cyclin D1. The absence of Nischarin and LKB1 also led to a dramatic increase in the formation of lung metastases. Our studies, for the first time, demonstrate functional interaction between LKB1 and Nischarin to inhibit cell migration and breast tumor progression. Mechanistically, we show that these two proteins together regulate PAK-LIMK-Cofilin and cyclin D1/CDK4 pathways. 相似文献
14.
Sona Lakshme Balasubramaniam Anilkumar Gopalakrishnapillai Vimal Gangadharan Randall L. Duncan Sonali P. Barwe 《The Journal of biological chemistry》2015,290(20):12463-12473
Na+/Ca2+ exchanger-1 (NCX1) is a major calcium extrusion mechanism in renal epithelial cells enabling the efflux of one Ca2+ ion and the influx of three Na+ ions. The gradient for this exchange activity is provided by Na,K-ATPase, a hetero-oligomer consisting of a catalytic α-subunit and a regulatory β-subunit (Na,K-β) that also functions as a motility and tumor suppressor. We showed earlier that mice with heart-specific ablation (KO) of Na,K-β had a specific reduction in NCX1 protein and were ouabain-insensitive. Here, we demonstrate that Na,K-β associates with NCX1 and regulates its localization to the cell surface. Madin-Darby canine kidney cells with Na,K-β knockdown have reduced NCX1 protein and function accompanied by 2.1-fold increase in free intracellular calcium and a corresponding increase in the rate of cell migration. Increased intracellular calcium up-regulated ERK1/2 via calmodulin-dependent activation of PI3K. Both myosin light chain kinase and Rho-associated kinase acted as mediators of ERK1/2-dependent migration. Restoring NCX1 expression in β-KD cells reduced migration rate and ERK1/2 activation, suggesting that NCX1 functions downstream of Na,K-β in regulating cell migration. In parallel, inhibition of NCX1 by KB-R7943 in Madin-Darby canine kidney cells, LLC-PK1, and human primary renal epithelial cells (HREpiC) increased ERK1/2 activation and cell migration. This increased migration was associated with high myosin light chain phosphorylation by PI3K/ERK-dependent mechanism in HREpiC cells. These data confirm the role of NCX1 activity in regulating renal epithelial cell migration. 相似文献
15.
Although commitment to epidermal differentiation is generally considered to be irreversible, differentiated keratinocytes (KCs) have been shown to maintain a regenerative potential and to reform skin epithelia when placed in a suitable environment. To obtain insights into the mechanism of reinitiation of this proliferative response in differentiated KCs, we examined the reversibility of commitment to Ca2+-induced differentiation. Lowering Ca2+ concentration to micromolar levels triggered culture-wide morphological and biochemical changes, as indicated by derepression of cyclin D1, reinitiation of DNA synthesis, and acquisition of basal cell-like characteristics. These responses were inhibited by Goedecke 6976, an inhibitor of protein kinase D (PKD) and PKCα, but not with GF109203X, a general inhibitor of PKCs, suggesting PKD activation by a PKC-independent mechanism. PKD activation followed complex kinetics with a biphasic early transient phosphorylation within the first 6 h, followed by a sustained and progressive phosphorylation beginning at 24 h. The second phase of PKD activation was followed by prolonged ERK1/2 signaling and progression to DNA synthesis in response to the low Ca2+ switch. Specific knockdown of PKD-1 by RNA interference or expression of a dominant negative form of PKD-1 did not have a significant effect on normal KC proliferation and differentiation but did inhibit Ca2+-mediated reinitiation of proliferation and reversion in differentiated cultures. The present study identifies PKD as a major regulator of a proliferative response in differentiated KCs, probably through sustained activation of the ERK-MAPK pathway, and provides new insights into the process of epidermal regeneration and wound healing. 相似文献
16.
Guo Zhang Xia Chen Fanghua Qiu Fengxin Zhu Wenjing Lei Jing Nie 《The Journal of biological chemistry》2014,289(33):23112-23122
Nck family proteins function as adaptors to couple tyrosine phosphorylation signals to actin cytoskeleton reorganization. Several lines of evidence indicate that Nck family proteins involve in regulating the activity of Rho family GTPases. In the present study, we characterized a novel interaction between Nck-1 with engulfment and cell motility 1 (ELMO1). GST pull-down and co-immunoprecipitation assay demonstrated that the Nck-1-ELMO1 interaction is mediated by the SH2 domain of Nck-1 and the phosphotyrosine residues at position 18, 216, 395, and 511 of ELMO1. A R308K mutant of Nck-1 (in which the SH2 domain was inactive), or a 4YF mutant of ELMO1 lacking these four phosphotyrosine residues, diminished Nck-1-ELMO1 interaction. Conversely, tyrosine phosphatase inhibitor treatment and overexpression of Src family kinase Hck significantly enhanced Nck-1-ELMO1 interaction. Moreover, wild type Nck-1, but not R308K mutant, significantly augmented the interaction between ELMO1 and constitutively active RhoG (RhoGV12A), thus promoted Rac1 activation and cell motility. Taken together, the present study characterized a novel Nck-1-ELMO1 interaction and defined a new role for Nck-1 in regulating Rac1 activity. 相似文献
17.
Cyclin/cyclin-dependent kinases (Cdks) are critical protein kinases in regulating cell cycle progression. Among them, cyclin D1/Cdk4 exerts its function mainly in the G1 phase. By using the tandem affinity purification tag approach, we identified a set of proteins interacting with Cdk4, including NDR1/2. Interestingly, confirming the interactions between NDR1/2 and cyclin D1/Cdk4, we observed that NDR1/2 interacted with cyclin D1 independent of Cdk4, but NDR1/2 and cyclin D1/Cdk4 did not phosphorylate each other. In addition, we found that NDR1/2 did not affect the kinase activity of cyclin D1/Cdk4 upon phosphorylation of GST-Rb. However, cyclin D1 but not Cdk4 promoted the kinase activity of NDR1/2. We also demonstrated that cyclin D1 K112E, which could not bind Cdk4, enhanced the kinase activity of NDR1/2. To test whether cyclin D1 promotes G1/S transition though enhancing NDR1/2 kinase activity, we performed flow cytometry analysis using cyclin D1 and cyclin D1 K112E Tet-On inducible cell lines. The data show that both cyclin D1 and cyclin D1 K112E promoted G1/S transition. Importantly, knockdown of NDR1/2 almost completely abolished the function of cyclin D1 K112E in promoting G1/S transition. Consistently, we found that the protein level of p21 was reduced in cells overexpressing cyclin D1 K112E but not when NDR1/2 was knocked down. Taken together, these results reveal a novel function of cyclin D1 in promoting cell cycle progression by enhancing NDR kinase activity independent of Cdk4. 相似文献
18.
Bettina Huck Ralf Kemkemer Mirita Franz-Wachtel Boris Macek Angelika Hausser Monilola A. Olayioye 《The Journal of biological chemistry》2012,287(41):34604-34613
The continuous assembly and disassembly of focal adhesions is required for efficient cell spreading and migration. The G-protein-coupled receptor kinase-interacting protein 1 (GIT1) is a multidomain protein whose dynamic localization to sites of cytoskeletal remodeling is critically involved in the regulation of these processes. Here we provide evidence that the subcellular localization of GIT1 is regulated by protein kinase D3 (PKD3) through direct phosphorylation on serine 46. GIT1 phosphorylation on serine 46 was abrograted by PKD3 depletion, thereby identifying GIT1 as the first specific substrate for this kinase. A GIT1 S46D phosphomimetic mutant localized to motile, paxillin-positive cytoplasmic complexes, whereas the phosphorylation-deficient GIT1 S46A was enriched in focal adhesions. We propose that phosphorylation of GIT1 on serine 46 by PKD3 represents a molecular switch by which GIT1 localization, paxillin trafficking, and cellular protrusive activity are regulated. 相似文献
19.
Soumitra Rajagopal Yuxin Ji Kun Xu Yuhuan Li Kathleen Wicks Jiewei Liu Ka-Wing Wong Ira M. Herman Ralph R. Isberg Rachel J. Buchsbaum 《The Journal of biological chemistry》2010,285(23):18060-18071
The Rac exchange factor Tiam1 is involved in diverse cell functions and signaling pathways through multiple protein interactions, raising the question of how signaling and functional specificity are achieved. We have shown that Tiam1 interactions with different scaffold proteins activate different Rac-dependent pathways by recruiting specific Rac effector proteins, and reasoned that there must be regulatory mechanisms governing each interaction. Fibroblasts express at least two Tiam1-interacting proteins, insulin receptor substrate protein 53 kDa (IRSp53) and spinophilin. We used fluorescent resonance energy transfer (FRET) to measure localized Rac activation associated with IRSp53 and spinophilin complexes in individual fibroblasts to test this hypothesis. Pervanadate or platelet-derived growth factor induced localized Rac activation dependent on Tiam1 and IRSp53. Forskolin or epinephrine induced localized Rac activation dependent on Tiam1 and spinophilin. In spinophilin-deficient cells, Tiam1 co-localized with IRSp53 in response to pervanadate or platelet-derived growth factor. In IRSp53-deficient cells, Tiam1 co-localized with spinophilin in response to forskolin or epinephrine. Total cellular levels of activated Rac were affected only in cells with exogenous Tiam1, and were primarily increased in the membrane fraction. Downstream effects of Rac activation were also stimulus and scaffold-specific. Cell ruffling, spreading, and cell adhesion were dependent on IRSp53, but not spinophilin. Epinephrine decreased IRSp53-dependent adhesion and increased cell migration in a Rac and spinophilin-dependent fashion. These results support the idea that Tiam1 interactions with different scaffold proteins couple distinct upstream signals to localized Rac activation and specific downstream pathways, and suggest that manipulating Tiam1-scaffold interactions can modulate Rac-dependent cellular behaviors. 相似文献
20.
Marie Morgan-Fisher John R. Couchman Atsuko Yoneda 《The Journal of biological chemistry》2013,288(43):31229-31240
The Rho-associated protein kinases (ROCK I and II) are central regulators of important cellular processes such as migration and invasion downstream of the GTP-Rho. Recently, we reported collapsin response mediator protein (CRMP)-2 as an endogenous ROCK II inhibitor. To reveal how the CRMP-2-ROCK II interaction is controlled, we further mapped the ROCK II interaction site of CRMP-2 and examined whether phosphorylation states of CRMP-2 affected the interaction. Here, we show that an N-terminal fragment of the long CRMP-2 splice variant (CRMP-2L) alone binds ROCK II and inhibits colon carcinoma cell migration and invasion. Furthermore, the interaction of CRMP-2 and ROCK II is partially regulated by glycogen synthase kinase (GSK)-3 phosphorylation of CRMP-2, downstream of PI3K. Inhibition of PI3K reduced interaction of CRMP-2 with ROCK II, an effect rescued by simultaneous inhibition of GSK3. Inhibition of PI3K also reduced colocalization of ROCK II and CRMP-2 at the cell periphery in human breast carcinoma cells. Mimicking GSK3 phosphorylation of CRMP-2 significantly reduced CRMP-2 binding of recombinant full-length and catalytic domain of ROCK II. These data implicate GSK3 in the regulation of ROCK II-CRMP-2 interactions. Using phosphorylation-mimetic and -resistant CRMP-2L constructs, it was revealed that phosphorylation of CRMP-2L negatively regulates its inhibitory function in ROCK-dependent haptotactic cell migration, as well as invasion of human colon carcinoma cells. Collectively, the presented data show that CRMP-2-dependent regulation of ROCK II activity is mediated through interaction of the CRMP-2L N terminus with the ROCK II catalytic domain as well as by GSK3-dependent phosphorylation of CRMP-2. 相似文献