首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
B cells require signals transduced by the B cell antigen receptor (BCR) to provide humoral adaptive immunity. These signals are modulated by co-receptors like the Fcγ receptor IIb (FcγRIIb) that prevents activation of B cells after co-ligation with the BCR. Positive and negative effectors need to be precisely organized into signaling complexes, which requires adapter proteins like the growth factor receptor-bound protein 2 (Grb2). Here, we address the question how Grb2-mediated signal integration is affected by FcγRIIb. Our data reveal that concomitant engagement of BCR and FcγRIIb leads to markedly increased Grb2-mediated formation of ternary protein complexes comprising downstream of kinase-3 (Dok-3), Grb2, and the SH2 domain-containing inositol phosphatase (SHIP). Consistently, we found Grb2 to be required for full FcγRIIb-mediated negative regulation. To investigate how FcγRIIb influences the entire Grb2 interactions, we utilized quantitative mass spectrometry to make a differential interactome analysis. This approach revealed a shift of Grb2 interactions towards negative regulators like Dok-3, SHIP and SHP-2 and reduced binding to other proteins like CD19. Hence, we provide evidence that Grb2-mediated signal integration is a dynamic process that is important for the crosstalk between the BCR and its co-receptor FcγRIIb.  相似文献   

2.
Spatial and temporal modulation of intracellular Ca2+ fluxes controls the cellular response of B lymphocytes to antigen stimulation. Herein, we identify the hematopoietic adaptor protein Dok-3 (downstream of kinase-3) as a key component of negative feedback regulation in Ca2+ signaling from the B-cell antigen receptor. Dok-3 localizes at the inner leaflet of the plasma membrane and is a major substrate for activated Src family kinase Lyn. Phosphorylated Dok-3 inhibits antigen receptor-induced Ca2+ elevation by recruiting cytosolic Grb2, which acts at this location as a negative regulator of Bruton's tyrosine kinase. This leads to diminished activation of phospholipase C-gamma2 and reduced production of soluble inositol trisphosphate. Hence, the Dok-3/Grb2 module is a membrane-associated signaling organizer, which orchestrates the interaction efficiency of Ca2+-mobilizing enzymes.  相似文献   

3.
Growth factor receptor-binding protein-2 (Grb2) plays a key role in signal transduction initiated by Bcr/Abl oncoproteins and growth factors, functioning as an adaptor protein through its Src homology 2 and 3 (SH2 and SH3) domains. We found that Grb2 was tyrosine-phosphorylated in cells expressing BCR/ABL and in A431 cells stimulated with epidermal growth factor (EGF). Phosphorylation of Grb2 by Bcr/Abl or EGF receptor reduced its SH3-dependent binding to Sos in vivo, but not its SH2-dependent binding to Bcr/Abl. Tyr209 within the C-terminal SH3 domain of Grb2 was identified as one of the tyrosine phosphorylation sites, and phosphorylation of Tyr209 abolished the binding of the SH3 domain to a proline-rich Sos peptide in vitro. In vivo expression of a Grb2 mutant where Tyr209 was changed to phenylalanine enhanced BCR/ABL-induced ERK activation and fibroblast transformation, and potentiated and prolonged Grb2-mediated activation of Ras, mitogen-activated protein kinase and c-Jun N-terminal kinase in response to EGF stimulation. These results suggest that tyrosine phosphorylation of Grb2 is a novel mechanism of down-regulation of tyrosine kinase signaling.  相似文献   

4.
The cell surface glycoprotein CD19 and the Src-related protein tyrosine kinase Lyn are key mediators of, respectively, positive and negative signaling in B cells. Despite the apparent opposition of their regulatory functions, a recent model of the biochemical events after B cell receptor (BCR) ligation intimately links the activation of Lyn and CD19. We examined the biochemical consequences of BCR ligation in mouse B cells lacking either Lyn or CD19 for evidence of interaction or codependence. In contrast to published results, we found CD19 phosphorylation after BCR ligation to be unaffected by the absence of Lyn, yet dependent on Src family protein tyrosine kinases as it was inhibited fully by PP2, an Src family-specific inhibitor. Consistent with normal CD19 phosphorylation in lyn(-/-) B cells, the recruitment of phosphoinositide-3 kinase to CD19 and the ability of CD19 to enhance both intracellular calcium flux and extracellular signal-regulated kinase 1/2 activation after coligation with the BCRs were intact in the absence of Lyn. Similarly, unique functions of Lyn were found to be independent of CD19. CD19(-/-) B cells were normal for increased Lyn kinase activity after BCR ligation, inhibition of BCR-mediated calcium flux after CD22 coligation, and inhibition of extracellular signal-regulated kinase phosporylation after FcgammaRIIB coligation. Collectively, these data show that the unique functions of Lyn do not require CD19 and that the signal amplification mediated by CD19 is independent of Lyn. We conclude that the roles of Lyn and CD19 after BCR ligation are independent and opposing, one being primarily inhibitory and the other stimulatory.  相似文献   

5.
Emergence of resistance to imatinib mesylate complicates the treatment of chronic myeloid leukemia (CML). Second-generation tyrosine kinase inhibitors are capable to overcome resistance mediated by most mutations except T315I. As this mutation is causative for 20% of clinically observed resistances, the need for novel treatment strategies becomes obvious and urgent. The autophosphorylated BCR/ABL Tyr177 recruits Grb2 via its SH2 domain, which is required for efficient induction of the myeloproliferative disease by BCR/ABL. The death effector domain (DED) is the critical factor for activation of caspase-8 induced apoptosis signal. We thus speculated that transduction of an exogenous SH2-DED (SD) fragment into the CML cells may inhibit the binding of BCR/ABL Tyr177 and Grb2, activate caspase-8 induced apoptosis and serve as a novel CML treatment strategy. The infection of the recombinant adenovirus Ad5/F35-SD was verified to show both cell proliferation-inhibitory and apoptosis-inducing effect. Further exploration into the underlying mechanisms revealed that Ad5/F35-SD exerted its function by binding to the phospho-BCR/ABL Tyr177 site, reducing Ras, MAPK and AKT kinase activities, and activating caspase-8 induced apoptosis signal by DED protein binding to DED domain of precursor caspase-8. Moreover, high anti-proliferative activity of Ad5/F35-SD was observed in nude mice and its leukemia-protective effect was evident in chronic myeloid leukemia model mice injected with BCR/ABL(+) BaF3 cells. In conclusion, Ad5/F35-SD exhibits anti-proliferative and pro-apoptotic activity on BCR/ABL positive leukemia cells in vitro and in vivo through disruption of Grb2 SH2-phospho-BCR/ABL Tyr177 complex formation and induction of caspase-8 activation.  相似文献   

6.
The Src-homology 3 (SH3) domain is one of the most frequent protein recognition modules (PRMs), being represented in signal transduction pathways and in several pathologies such as cancer and AIDS. Grb2 (growth factor receptor-bound protein 2) is an adaptor protein that contains two SH3 domains and is involved in receptor tyrosine kinase (RTK) signal transduction pathways. The HIV-1 transactivator factor Tat is required for viral replication and it has been shown to bind directly or indirectly to several host proteins, deregulating their functions. In this study, we show interaction between the cellular factor Grb2 and the HIV-1 trans-activating protein Tat. The binding is mediated by the proline-rich sequence of Tat and the SH3 domain of Grb2. As the adaptor protein Grb2 participates in a wide variety of signaling pathways, we characterized at least one of the possible downstream effects of the Tat/Grb2 interaction on the well-known IGF-1R/Raf/MAPK cascade. We show that the binding of Tat to Grb2 impairs activation of the Raf/MAPK pathway, while potentiating the PKA/Raf inhibitory pathway. The Tat/Grb2 interaction affects also viral function by inhibiting the Tat-mediated transactivation of HIV-1 LTR and viral replication in infected primary microglia.  相似文献   

7.
A variety of growth factor receptors induce the tyrosine phosphorylation of a nonreceptor protein-tyrosine kinase Tec as well as that of a Tec-binding protein of 62 kDa. Given the similarity in properties between this 62-kDa protein and p62(Dok-1), the possibility that these two proteins are identical was investigated. Overexpression of a constitutively active form of Tec in a pro-B cell line induced the hyperphosphorylation of endogenous Dok-1. Tec also associated with Dok-1 in a phosphorylation-dependent manner in 293 cells. Tec mediated marked phosphorylation of Dok-1 both in vivo and in vitro, and this effect required both the Tec homology and Src homology 2 domains of Tec in addition to its kinase activity. Expression of Dok-1 in 293 cells induced inhibition of Ras activity, suggesting that Dok-1 is a negative regulator of Ras. In the immature B cell line Ramos, cross-linking of the B cell antigen receptor (BCR) resulted in tyrosine phosphorylation of Dok-1, and this effect was markedly inhibited by expression of dominant negative mutants of Tec. Furthermore, overexpression of Dok-1 inhibited activation of the c-fos promoter induced by stimulation of the BCR. These results suggest that Tec is an important mediator of signaling from the BCR to Dok-1.  相似文献   

8.
Signaling through the high affinity IgE receptor FcepsilonRI on human basophils and rodent mast cells is decreased by co-aggregating these receptors to the low affinity IgG receptor FcgammaRII. We used a recently described fusion protein, GE2, which is composed of key portions of the human gamma1 and the human epsilon heavy chains, to dissect the mechanisms that lead to human mast cell and basophil inhibition through co-aggregation of FcgammaRII and FcepsilonRI. Unstimulated human mast cells derived from umbilical cord blood express the immunoreceptor tyrosine-based inhibitory motif-containing receptor FcgammaRII but not FcgammaRI or FcgammaRIII. Interaction of the mast cells with GE2 alone did not cause degranulation. Co-aggregating FcepsilonRI and FcgammaRII with GE2 1) significantly inhibited IgE-mediated histamine release, cytokine production, and Ca(2+) mobilization, 2) reduced the antigen-induced morphological changes associated with mast cell degranulation, 3) reduced the tyrosine phosphorylation of several cellular substrates, and 4) increased the tyrosine phosphorylation of the adapter protein downstream of kinase 1 (p62(dok); Dok), growth factor receptor-bound protein 2 (Grb2), and SH2 domain containing inositol 5-phosphatase (SHIP). Tyrosine phosphorylation of Dok was associated with increased binding to Grb2. Surprisingly, in non-stimulated cells, there were complexes of phosphorylated SHIP-Grb2-Dok that were lost upon IgE receptor activation but retained under conditions of Fcepsilon-Fcgamma co-aggregation. Finally, studies using mast cells from Dok-1 knock-out mice showed that IgE alone triggers degranulation supporting an inhibitory role for Dok degranulation. Our results demonstrate how human FcepsilonRI-mediated responses can be inhibited by co-aggregation with FcgammaRIIB and implicate Dok, SHIP, and Grb2 as key intermediates in regulating antigen-induced mediator release.  相似文献   

9.
The tyrosine kinase Lyn is involved in oncogenic signalling in several leukaemias and solid tumours, and we have previously identified a pathway centred on Cbp [Csk (C-terminal Src kinase)-binding protein] that mediates both enzymatic inactivation, as well as proteasomal degradation of Lyn via phosphorylation-dependent recruitment of Csk (responsible for phosphorylating the inhibitory C-terminal tyrosine of Lyn) and SOCS1 (suppressor of cytokine signalling 1; an E3 ubiquitin ligase). In the present study we show that fusing specific functional motifs of Cbp and domains of SOCS1 together generates a novel molecule capable of directing the proteasomal degradation of Lyn. We have characterized the binding of pY (phospho-tyrosine) motifs of Cbp to SFK (Src-family kinase) SH2 (Src homology 2) domains, identifying those with high affinity and specificity for the SH2 domain of Lyn and that are preferred substrates of active Lyn. We then fused them to the SB (SOCS box) of SOCS1 to facilitate interaction with the ubiquitination-promoting elongin B/C complex. As an eGFP (enhanced green fluorescent protein) fusion, these proteins can direct the polyubiquitination and proteasomal degradation of active Lyn. Expressing this fusion protein in DU145 cancer cells (but not LNCaP or MCF-7 cells), that require Lyn signalling for survival, promotes loss of Lyn, loss of caspase 3, appearance of an apoptotic morphology and failure to survive/expand. These findings show how functional domains of Cbp and SOCS1 can be fused together to generate molecules capable of inhibiting the growth of cancer cells that express high levels of active Lyn.  相似文献   

10.
Recognition of antigen by the B cell antigen receptor (BCR) determines the subsequent fate of a B cell and is regulated in part by the involvement of other surface molecules, termed coreceptors. CD22 is a B cell-restricted coreceptor that gets rapidly tyrosyl-phosphorylated and recruits various signaling molecules to the membrane following BCR ligation. Although CD22 contains three immunoreceptor tyrosine-based inhibitory motifs (ITIMs), only the two carboxyl-terminal ITIM tyrosines are required for efficient recruitment of the SHP-1 phosphatase after BCR ligation. Furthermore, Grb2 is inducibly recruited to CD22 in human and murine B cells. Unlike SHP-1, Grb2 recruitment to CD22 is not inhibited by specific doses of the Src family kinase-specific inhibitor PP1. The tyrosine residue in CD22 required for Grb2 recruitment (Tyr-828) is distinct and independent from the two ITIM tyrosines required for efficient SHP-1 recruitment (Tyr-843 and Tyr-863). Individually both Lyn and Syk are required for maximal phosphorylation of CD22 following ligation of the BCR, and together Lyn and Syk are required for all of the constitutive and induced tyrosine phosphorylation of CD22. We propose that the cytoplasmic tail of CD22 contains two domains that regulate signal transduction pathways initiated by the BCR and B cell fate.  相似文献   

11.
Dok-1 is an adaptor protein that is a substrate for Bcr-Abl and other tyrosine protein kinases. The presence of pleckstrin homology and phosphotyrosine binding domains as well as multiple tyrosine phosphorylation sites suggests that Dok-1 is involved in protein-protein and/or protein-lipid interactions. Here we show that stimulation of Mo7 hematopoietic cells with c-Kit ligand (KL) induces phosphatidylinositol (PI) 3-kinase-dependent tyrosine phosphorylation and membrane recruitment of Dok-1. Addition of the K-Ras membrane-targeting motif to Dok-1 generated a constitutively membrane-bound Dok-1 protein whose tyrosine phosphorylation was independent of PI 3-kinase. Membrane localization of Dok-1 was required for its ability to function as a negative regulator of cell proliferation. Additional experiments revealed that Dok-1 associated with the juxtamembrane region and C-terminal tail of c-Kit. Lyn promoted phosphorylation of c-Kit and association of c-Kit and Dok-1. Both Lyn and Tec were capable of phosphorylating Dok-1. However, the use of primary bone marrow mast cells from normal and Lyn-deficient mice demonstrated that Lyn is required for KL-dependent Dok-1 tyrosine phosphorylation. Taken together, these data indicate that activation of PI 3-kinase by KL promotes binding of the Dok pleckstrin homology domain and Dok-1 recruitment to the plasma membrane where Dok-1 is phosphorylated by Src and/or Tec family kinases.  相似文献   

12.
13.
Growth factor receptor-bound protein 2 (Grb2) is an extensively studied adaptor protein involved in cell signaling. Grb2 is a highly flexible protein composed of a single SH2 domain flanked by two SH3 domains. The evolutionarily conserved serine/threonine kinase, AMP-activated protein kinase (AMPK), functions as a cellular fuel gauge that regulates metabolic pathways in glucose and fatty acid metabolism and protein synthesis. AMPK regulates the activation of TSC2 by phosphorylating TSC2. Here we report for the first time on the interaction of Grb2 with AMPK. SH2 domain of Grb2 and KIS domain of AMPK are both required for the combination of Grb2 and AMPK. Furthermore, Grb2 function as a factor which mediates phosphorylation of AMPK at Thr172, and potentially involves in metabolism pathways and AMPK-TSC2-mTOR cell growth pathway through regulating the activation of AMPK.  相似文献   

14.
Scaffolding adapter Grb2-associated binder 2 (Gab2) is a key component of FcepsilonRI signaling in mast cells, required for the activation of PI3K. To understand how Gab2 is activated in FcepsilonRI signaling, we asked which protein tyrosine kinase is required for Gab2 phosphorylation. We found that Gab2 tyrosyl phosphorylation requires Lyn and Syk. In agreement with published results, we found that Fyn also contributes to Gab2 tyrosyl phosphorylation. However, Syk activation is defective in Fyn(-/-) mast cells, suggesting that Syk is the proximal kinase responsible for Gab2 tyrosyl phosphorylation. Then, we asked which domains in Gab2 are required for Gab2 tyrosyl phosphorylation. We found that the Grb2-Src homology 3 (SH3) binding sites are required for, whereas the pleckstrin homology (PH) domain contributes to, Gab2 tyrosyl phosphorylation. Using a protein/lipid overlay assay, we determined that the Gab2 PH domain preferentially binds the PI3K lipid products, PI3, 4,5P3 and PI3, 4P2. Furthermore, the Grb2-SH3 binding sites and PH domain binding to PI3K lipid products are required for Gab2 function in FcepsilonRI-evoked degranulation and Akt activation. Our data strongly suggest a model for Gab2 action in FcepsilonRI signaling. The Grb2 SH3 binding sites play a critical role in bringing Gab2 to FcepsilonRI, whereupon Gab2 becomes tyrosyl-phosphorylated in a Syk-dependent fashion. Phosphorylated Gab2 results in recruitment and activation of PI3K, whose lipid products bind the PH domain of Gab2 and acts in positive feedback loop for sustained PI3K recruitment and phosphatidylinositol-3,4,5-trisphosphate production, required for FcepsilonRI-evoked degranulation of mast cells.  相似文献   

15.

Background

Human growth factor receptor bound protein 7 (Grb7) is an adapter protein that mediates the coupling of tyrosine kinases with their downstream signaling pathways. Grb7 is frequently overexpressed in invasive and metastatic human cancers and is implicated in cancer progression via its interaction with the ErbB2 receptor and focal adhesion kinase (FAK) that play critical roles in cell proliferation and migration. It is thus a prime target for the development of novel anti-cancer therapies. Recently, an inhibitory peptide (G7-18NATE) has been developed which binds specifically to the Grb7 SH2 domain and is able to attenuate cancer cell proliferation and migration in various cancer cell lines.

Results

As a first step towards understanding how Grb7 may be inhibited by G7-18NATE, we solved the crystal structure of the Grb7 SH2 domain to 2.1 Å resolution. We describe the details of the peptide binding site underlying target specificity, as well as the dimer interface of Grb 7 SH2. Dimer formation of Grb7 was determined to be in the μM range using analytical ultracentrifugation for both full-length Grb7 and the SH2 domain alone, suggesting the SH2 domain forms the basis of a physiological dimer. ITC measurements of the interaction of the G7-18NATE peptide with the Grb7 SH2 domain revealed that it binds with a binding affinity of Kd = ~35.7 μM and NMR spectroscopy titration experiments revealed that peptide binding causes perturbations to both the ligand binding surface of the Grb7 SH2 domain as well as to the dimer interface, suggesting that dimerisation of Grb7 is impacted on by peptide binding.

Conclusion

Together the data allow us to propose a model of the Grb7 SH2 domain/G7-18NATE interaction and to rationalize the basis for the observed binding specificity and affinity. We propose that the current study will assist with the development of second generation Grb7 SH2 domain inhibitors, potentially leading to novel inhibitors of cancer cell migration and invasion.  相似文献   

16.
In mast cells, antigen-mediated cross-linking of IgE bound to its high-affinity surface receptor, FcεRI, initiates a signaling cascade that culminates in degranulation and release of allergic mediators. Antigen-patterned surfaces, in which the antigen is deposited in micron-sized features on a silicon substrate, were used to examine the spatial relationship between clustered IgE–FcεRI complexes and Lyn, the signal-initiating tyrosine kinase. RBL mast cells expressing wild-type Lyn-EGFP showed co-redistribution of this protein with clustered IgE receptors on antigen-patterned surfaces, whereas Lyn-EGFP containing an inhibitory point mutation in its SH2 domain did not significantly accumulate with the patterned antigen, and Lyn-EGFP with an inhibitory point mutation in its SH3 domain exhibited reduced interactions. Our results using antigen-patterned surfaces and quantitative cross-correlation image analysis reveal that both the SH2 and SH3 domains contribute to interactions between Lyn kinase and cross-linked IgE receptors in stimulated mast cells.  相似文献   

17.
Ligation of the B cell Ag receptor (BCR) induces cellular activation by stimulating Src-family protein tyrosine kinases (PTKs) to phosphorylate members of the BCR complex. Subsequently, Src-family PTKs, particularly Lyn, are proposed to phosphorylate and bind CD19, a cell-surface costimulatory molecule that regulates mature B cell activation. Herein, we show that B cells from CD19-deficient mice have diminished Lyn kinase activity and BCR phosphorylation following BCR ligation. Tyrosine phosphorylation of other Src-family PTKs was also decreased in CD19-deficient B cells. In wild-type B cells, CD19 was constitutively complexed with Vav, Lyn, and other Src-family PTKs, with CD19 phosphorylation and its associations with Lyn and Vav increased after BCR ligation. Constitutive CD19/Lyn/Vav complex signaling may therefore be responsible for the establishment of baseline signaling thresholds in B cells before Ag receptor ligation, in addition to accelerating signaling following BCR engagement or other transmembrane signals. In vitro kinase assays using purified CD19 and purified Lyn revealed that the kinase activity of Lyn was significantly increased when coincubated with CD19. Thus, constitutive and induced CD19/Lyn complexes are likely to regulate basal signaling thresholds and BCR signaling by amplifying the kinase activity of Lyn and other Src-family PTKs. These in vivo and in vitro findings demonstrate a novel mechanism by which CD19 regulates signal transduction in B lymphocytes. The absence of this CD19/Src-family kinase amplification loop may account for the hyporesponsive phenotype of CD19-deficient B cells.  相似文献   

18.
Proteins of the Wiskott-Aldrich Syndrome protein (WASp) family connect signaling pathways to the actin polymerization-driven cell motility. The ubiquitous homolog of WASp, N-WASp, is a multidomain protein that interacts with the Arp2/3 complex and G-actin via its C-terminal WA domain to stimulate actin polymerization. The activity of N-WASp is enhanced by the binding of effectors like Cdc42-guanosine 5'-3-O-(thio)triphosphate, phosphatidylinositol bisphosphate, or the Shigella IcsA protein. Here we show that the SH3-SH2-SH3 adaptor Grb2 is another activator of N-WASp that stimulates actin polymerization by increasing the amount of N-WASp. Arp2/3 complex. The concentration dependence of N-WASp activity, sedimentation velocity and cross-linking experiments together suggest that N-WASp is subject to self-association, and Grb2 enhances N-WASp activity by binding preferentially to its active monomeric form. Use of peptide inhibitors, mutated Grb2, and isolated SH3 domains demonstrate that the effect of Grb2 is mediated by the interaction of its C-terminal SH3 domain with the proline-rich region of N-WASp. Cdc42 and Grb2 bind simultaneously to N-WASp and enhance actin polymerization synergistically. Grb2 shortens the delay preceding the onset of Escherichia coli (IcsA) actin-based reconstituted movement. These results suggest that Grb2 may activate Arp2/3 complex-mediated actin polymerization downstream from the receptor tyrosine kinase signaling pathway.  相似文献   

19.
Li C  Chung B  Tao J  Iosef C  Aoukaty A  Wang Y  Tan R  Li SS 《Cellular signalling》2008,20(11):1960-1967
X-linked lympho-proliferative (XLP) is an immunodeficiency condition caused by mutation or deletion of the gene encoding the adaptor protein SAP/SH2D1A. Besides defects in T cell and NK cell function and an absence of NKT cells, XLP can also manifest as lymphomas resulting primarily from uncontrolled B cell proliferation upon acute infection by Epstein-Barr virus. While it has been demonstrated that SAP regulates the functions of T cells and NK cells through the SLAM family of immunoreceptors, its role in B cells has not been defined. Here we show that SAP forms a ternary complex with the kinase Lyn and the inhibitory IgG Fc receptor FcgammaRIIB to regulate B cell proliferation and survival. SAP binds directly and simultaneously to the Lyn SH3 domain and an Immuno-receptor Tyrosine-based Inhibitory Motif (ITIM) in FcgammaRIIB, resulting in the activation of the latter. Moreover, SAP associates with FcgammaRIIB in mouse splenic B cells and promotes its tyrosine phosphorylation. Expression of SAP in the A20 B cell line led to a marked reduction in Blnk phosphorylation, a decrease in Akt activation, and a near-complete ablation of phosphorylation of the MAP kinases Erk1/2, p38 and JNK upon colligation of FcgammaRIIB with the B cell receptor (BCR). In contrast, an XLP-causing SAP mutant was much less efficient in eliciting these effects in B cells. Furthermore, compared to A20 cells, SAP transfectants displayed a significantly reduced rate of proliferation and an increased sensitivity to activation-induced cell death. Collectively these data identify an intrinsic function for SAP in inhibitory signaling in B cells and suggests that SAP may play an important role in balancing positive versus negative immune responses.  相似文献   

20.
The Met/Hepatocyte Growth Factor (HGF) receptor tyrosine kinase is oncogenically activated through a rearrangement that creates a hybrid gene Tpr-Met. The resultant chimeric p65(Tpr-Met) protein is constitutively phosphorylated on tyrosine residues in vivo and associates with a number of SH2-containing signaling molecules including the p85 subunit of PI-3 kinase and the Grb2 adaptor protein, which couples receptor tyrosine kinases to the Ras signaling pathway. Mutation of the binding site for Grb2 impairs the ability of Tpr-Met oncoprotein to transform fibroblasts, suggesting that the activation of the Ras/MAP kinase signaling pathway through Grb2 may be essential for cellular transformation. To test this hypothesis dominant-negative mutants of Grb2 with deletions of the SH3 domains were introduced into Tpr-Met transformed fibroblasts. Cells overexpressing the mutants were found to be morphologically reverted and exhibited reduced growth in soft agar. Surprisingly, the Grb2 mutants blocked activation of the JNK/SAPK but not MAP kinase activity induced by the Tpr-Met oncoprotein. Additionally, cells expressing dominant-negative Grb2 mutants had reduced PI-3-kinase activity and dominant-negative mutants of Rac1 blocked both Tpr-Met-induced transformation and activation of JNK. These experiments reveal a novel link between Met and the JNK pathway, which is essential for transformation by this oncogene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号