首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herpes simplex virus type 1 (HSV-1) induces microtubule reorganization beginning at approximately 9 h postinfection (hpi), and this correlates with the nuclear localization of the tegument protein VP22. Thus, the active retention of this major virion component by cytoskeletal structures may function to regulate its subcellular localization (A. Kotsakis, L. E. Pomeranz, A. Blouin, and J. A. Blaho, J. Virol. 75:8697-8711, 2001). The goal of this study was to determine whether the subcellular localization patterns of other HSV-1 tegument proteins are similar to that observed with VP22. To address this, we performed a series of indirect immunofluorescence analyses using synchronously infected cells. We observed that tegument proteins VP13/14, vhs, and VP16 localized to the nucleus as early as 5 hpi and were concentrated in nuclei by 9 hpi, which differed from that seen with VP22. Microtubule reorganization was delayed during infection with HSV-1(RF177), a recombinant virus that does not produce full-length VP22. These infected cells did not begin to lose microtubule-organizing centers until 13 hpi. Repair of the unique long 49 (UL49) locus in HSV-1(RF177) yielded HSV-1(RF177R). Microtubule reorganization in HSV-1(RF177R)-infected cells occurred with the same kinetics as HSV-1(F). Acetylated tubulin remained unchanged during infection with either HSV-1(F) or HSV-1(RF177). Thus, while alpha-tubulin reorganized during infection, acetylated tubulin was stable, and the absence of full-length VP22 did not affect this stability. Our findings indicate that the nuclear localizations of tegument proteins VP13/14, VP16, and vhs do not appear to require HSV-1-induced microtubule reorganization. We conclude that full-length VP22 is needed for optimal microtubule reorganization during infection. This implies that VP22 mainly functions to reorganize microtubules later, rather than earlier, in infection. That acetylated tubulin does not undergo restructuring during VP22-dependent, virus-induced microtubule reorganization suggests that it plays a role in stabilizing the infected cells. Our results emphasize that VP22 likely plays a key role in cellular cytopathology during HSV-1 infection.  相似文献   

2.
For many enveloped viruses, cellular multivesicular body (MVB) sorting machinery has been reported to be utilized for efficient viral budding. Matrix and Gag proteins have been shown to contain one or two L-domain motifs (PPxY, PT/SAP, YPDL, and FPIV), some of which interact specifically with host cellular proteins involved in MVB sorting, which are recruited to the viral budding site. However, for many enveloped viruses, L-domain motifs have not yet been identified and the involvement of MVB sorting machinery in viral budding is still unknown. Here we show that both Sendai virus (SeV) matrix protein M and accessory protein C contribute to virus budding by physically interacting with Alix/AIP1. A YLDL sequence within the M protein showed L-domain activity, and its specific interaction with the N terminus of Alix/AIP1(1-211) was important for the budding of virus-like particles (VLPs) of M protein. In addition, M-VLP budding was inhibited by the overexpression of some deletion mutant forms of Alix/AIP1 and depletion of endogenous Alix/AIP1 with specific small interfering RNAs. The YLDL sequence was not replaceable by other L-domain motifs, such as PPxY and PT/SAP, and even YPxL. C protein was also able to physically interact with the N terminus of Alix/AIP1(212-357) and enhanced M-VLP budding independently of M-Alix/AIP1 interaction, although it was not released from the transfected cells itself. Our results suggest that the interaction of multiple viral proteins with Alix/AIP1 may enhance the efficiency of the utilization of cellular MVB sorting machinery for efficient SeV budding.  相似文献   

3.
Tegument proteins of herpes simplex virus type 1 (HSV-1) are hypothesized to contain the functional information required for the budding or envelopment process proposed to occur at cytoplasmic compartments of the host cell. One of the most abundant tegument proteins of HSV-1 is the U(L)49 gene product, VP22, a 38-kDa protein of unknown function. To study its subcellular localization, a VP22-green fluorescent protein chimera was expressed in transfected human melanoma (A7) cells. In the absence of other HSV-1 proteins, VP22 localizes to acidic compartments of the cell that may include the trans-Golgi network (TGN), suggesting that this protein is membrane associated. Membrane pelleting and membrane flotation assays confirmed that VP22 partitions with the cellular membrane fraction. Through truncation mutagenesis, we determined that the membrane association of VP22 is a property attributed to amino acids 120 to 225 of this 301-amino-acid protein. The above results demonstrate that VP22 contains specific information required for targeting to membranes of acidic compartments of the cell which may be derived from the TGN, suggesting a potential role for VP22 during tegumentation and/or final envelopment.  相似文献   

4.
We describe the characterization of the herpes simplex virus type 2 (HSV-2) gene encoding infected cell protein 32 (ICP32) and virion protein 19c (VP19c). We also demonstrate that the HSV-1 UL38/ORF.553 open reading frame (ORF), which has been shown to specify a viral protein essential for capsid formation (B. Pertuiset, M. Boccara, J. Cebrian, N. Berthelot, S. Chousterman, F. Puvian-Dutilleul, J. Sisman, and P. Sheldrick, J. Virol. 63: 2169-2179, 1989), must encode the cognate HSV type 1 (HSV-1) ICP32/VP19c protein. The region of the HSV-2 genome deduced to contain the gene specifying ICP32/VP19c was isolated and subcloned, and the nucleotide sequence of 2,158 base pairs of HSV-2 DNA mapping immediately upstream of the gene encoding the large subunit of the viral ribonucleotide reductase was determined. This region of the HSV-2 genome contains a large ORF capable of encoding two related 50,538- and 49,472-molecular-weight polypeptides. Direct evidence that this ORF encodes HSV-2 ICP32/VP19c was provided by immunoblotting experiments that utilized antisera directed against synthetic oligopeptides corresponding to internal portions of the predicted polypeptides encoded by the HSV-2 ORF or antisera directed against a TrpE/HSV-2 ORF fusion protein. The type-common immunoreactivity of the two antisera and comparison of the primary amino acid sequences of the predicted products of the HSV-2 ORF and the equivalent genomic region of HSV-1 provided evidence that the HSV-1 UL38 ORF encodes the HSV-1 ICP32/VP19c. Analysis of the expression of the HSV-1 and HSV-2 ICP32/VP19c cognate proteins indicated that there may be differences in their modes of synthesis. Comparison of the predicted structure of the HSV-2 ICP32/VP19c protein with the structures of related proteins encoded by other herpes viruses suggested that the internal capsid architecture of the herpes family of viruses varies substantially.  相似文献   

5.
The incorporation of tegument proteins into the herpes simplex virus 1 (HSV-1) virion during virion assembly is thought to be a complex, multistage process occurring via numerous interactions between the tegument and the capsid, within the tegument, and between the tegument and the envelope. Here, we set out to examine if the direct interaction between two essential tegument proteins VP1/2 and VP16 is required for connecting the inner tegument with the outer tegument. By using glutathione S-transferase (GST) pulldowns, we identified an essential role of lysine 343 in VP16, mutation of which to a neutral amino acid abrogated the interaction between VP1/2 and VP16. When the K343A substitution was inserted into the gene encoding VP16 (UL48) of the viral genome, HSV-1 replicated successfully although its growth was delayed, and final titers were reduced compared to titers of wild-type virus. Surprisingly, the mutated VP16 was incorporated into virions at levels similar to those of wild-type VP16. However, the analysis of VP16 on cytoplasmic capsids by fluorescence microscopy showed that VP16 associated with cytoplasmic capsids less efficiently when the VP16-VP1/2 interaction was inhibited. This implies that the direct interaction between VP1/2 and VP16 is important for the efficiency/timing of viral assembly but is not essential for HSV-1 replication in cell culture. These data also support the notion that the incorporation of tegument proteins into the herpesviruses is a very complex process with significant redundancy.  相似文献   

6.
Tom1 (target of Myb 1) and its related proteins (Tom1L1/Srcasm and Tom1L2) constitute a protein family, which share an N-terminal VHS (Vps27, Hrs and STAM) domain and a following GAT (GGA and Tom1) domain. Tom1L1 has potential binding sequences for Tsg101, which is one of key regulators of the multivesicular body (MVB) formation. To obtain a clue to the role of Tom1L1 in the MVB formation, we have characterized the Tom1L1-Tsg101 interaction. We have found that not only the PTAP sequence in the GAT domain but also the PSAP sequence in the C-terminal region of Tom1L1 is responsible for its interaction with the UEV domain of Tsg101 and competes with the HIV-1 Gag protein for the Tsg101 interaction. Furthermore, we show that, by means of Tsg101, Tom1L1 associates with the midbody during cytokinesis as well as endosomes. Taken into account the topological equivalency among the events of the MVB formation, viral egress from the cell, and cytokinesis, the data obtained here suggest that Tom1L1 is implicated in these three distinct cellular processes.  相似文献   

7.
Coller KE  Lee JI  Ueda A  Smith GA 《Journal of virology》2007,81(21):11790-11797
How alphaherpesvirus capsids acquire tegument proteins remains a key question in viral assembly. Using pseudorabies virus (PRV), we have previously shown that the 62 carboxy-terminal amino acids of the VP1/2 large tegument protein are essential for viral propagation and when transiently expressed as a fusion to green fluorescent protein relocalize to nuclear capsid assemblons following viral infection. Here, we show that localization of the VP1/2 capsid-binding domain (VP1/2cbd) into assemblons is conserved in herpes simplex virus type 1 (HSV-1) and that this recruitment is specifically on capsids. Using a mutant virus screen, we find that the protein product of the UL25 gene is essential for VP1/2cbd association with capsids. An interaction between UL25 and VP1/2 was corroborated by coimmunoprecipitation from cells transiently expressing either HSV-1 or PRV proteins. Taken together, these findings suggest that the essential function of the VP1/2 carboxy terminus is to anchor the VP1/2 tegument protein to capsids. Furthermore, UL25 encodes a multifunctional capsid protein involved in not only encapsidation, as previously described, but also tegumentation.  相似文献   

8.
9.
The multivesicular body (MVB) is an endosomal intermediate containing intralumenal vesicles destined for membrane protein degradation in the lysosome. In Saccharomyces cerevisiae, the MVB pathway is composed of 17 evolutionarily conserved ESCRT (endosomal sorting complex required for transport) genes grouped by their vacuole protein sorting Class E mutant phenotypes. Only one integral membrane protein, the endosomal Na+ (K+)/H+ exchanger Nhx1/Vps44, has been assigned to this class, but its role in the MVB pathway has not been directly tested. Herein, we first evaluated the link between Nhx1 and the ESCRT proteins and then used an unbiased phenomics approach to probe the cellular role of Nhx1. Select ESCRT mutants (vps36Δ, vps20Δ, snf7Δ, and bro1Δ) with defects in cargo packaging and intralumenal vesicle formation shared multiple growth phenotypes with nhx1Δ. However, analysis of cellular trafficking and ultrastructural examination by electron microscopy revealed that nhx1Δ cells retain the ability to sort cargo into intralumenal vesicles. In addition, we excluded a role for Nhx1 in Snf7/Bro1-mediated cargo deubiquitylation and Rim101 response to pH stress. Genetic epistasis experiments provided evidence that NHX1 and ESCRT genes function in parallel. A genome-wide screen for single gene deletion mutants that phenocopy nhx1Δ yielded a limited gene set enriched for endosome fusion function, including Rab signaling and actin cytoskeleton reorganization. In light of these findings and the absence of the so-called Class E compartment in nhx1Δ, we eliminated a requirement for Nhx1 in MVB formation and suggest an alternative post-ESCRT role in endosomal membrane fusion.  相似文献   

10.
Endosomal sorting complexes required for transport (ESCRTs) regulate several events involving membrane invagination, including multivesicular body (MVB) biogenesis, viral budding, and cytokinesis. In each case, upstream ESCRTs combine with additional factors, such as Bro1 proteins, to recruit ESCRT-III and the ATPase VPS4 in order to drive membrane scission. A clue to understanding how such diverse cellular processes might be controlled independently of each other has been the identification of ESCRT isoforms. Mammalian ESCRT-I comprises TSG101, VPS28, VPS37A-D, and MVB12A/B. These could generate several ESCRT-I complexes, each targeted to a different compartment and able to recruit distinct ESCRT-III proteins. Here we identify a novel ESCRT-I component, ubiquitin-associated protein 1 (UBAP1), which contains a region conserved in MVB12. UBAP1 binds the endosomal Bro1 protein His domain protein tyrosine phosphatase (HDPTP), but not Alix, a Bro1 protein involved in cytokinesis. UBAP1 is required for sorting EGFR to the MVB and for endosomal ubiquitin homeostasis, but not for cytokinesis. UBAP1 is part of a complex that contains a fraction of total cellular TSG101 and that also contains VPS37A but not VPS37C. Hence, the presence of UBAP1, in combination with VPS37A, defines an endosome-specific ESCRT-I complex.  相似文献   

11.
In eukaryotes, the multivesicular body (MVB) sorting pathway plays an essential role in regulating cell surface protein composition, thereby impacting numerous cellular functions. Vps4, an ATPase associated with a variety of cellular activities, is required late in the MVB sorting reaction to dissociate the endosomal sorting complex required for transport (ESCRT), a requisite for proper function of this pathway. However, regulation of Vps4 function is not understood. We characterize Vta1 as a positive regulator of Vps4 both in vivo and in vitro. Vta1 promotes proper assembly of Vps4 and stimulates its ATPase activity through the conserved Vta1/SBP1/LIP5 region present in Vta1 homologues across evolution, including human SBP1 and Arabidopsis thaliana LIP5. These results suggest an evolutionarily conserved mechanism through which the disassembly of the ESCRT proteins, and thereby MVB sorting, is regulated by the Vta1/SBP1/LIP5 proteins.  相似文献   

12.
13.
14.
Herpes simplex virus 1 (HSV-1) protein VP22, encoded by the UL49 gene, is a major virion tegument protein. In the present study, we showed that VP22 was required for efficient redistribution of viral proteins VP16, VP26, ICP0, ICP4, and ICP27 and of cellular protein Hsc-70 to the cytoplasm of infected cells. We found that two dileucine motifs in VP22, at amino acids 235 and 236 and amino acids 251 and 252, were necessary for VP22 regulation of the proper cytoplasmic localization of these viral and cellular proteins. The dileucine motifs were also required for proper cytoplasmic localization of VP22 itself and for optimal expression of viral proteins VP16, VP22, ICP0, UL41, and glycoprotein B. Interestingly, a recombinant mutant virus with alanines substituted for the dileucines at amino acids 251 and 252 had a 50% lethal dose (LD(50)) for neurovirulence in mice following intracerebral inoculation about 10(3)-fold lower than the LD(50) of the repaired virus. Furthermore, the replication and spread of this mutant virus in the brains of mice following intracerebral inoculation were significantly impaired relative to those of the repaired virus. The ability of VP22 to regulate the localization and expression of various viral and cellular proteins, as shown in this study, was correlated with an increase in viral replication and neurovirulence in the experimental murine model. Thus, HSV-1 VP22 is a significant neurovirulence factor in vivo.  相似文献   

15.
The VP22 protein of herpes simplex virus type 2 (HSV-2) is a major component of the virion tegument. Previous work with HSV-1 indicated that VP22 is phosphorylated during infection, and phosphorylation may play a role in modulating VP22 localization in infected cells. It is not clear, however, when phosphorylation occurs in infected cells or how it is regulated. Less is known about the synthesis and phosphorylation of HSV-2 VP22. To study the complete biosynthetic history of HSV-2 VP22, we generated a monoclonal antibody to the carboxy terminus of VP22. Using immunoprecipitation and Western blot analyses, we show that HSV-2 VP22 can be found in three distinct isoforms in infected cells, two of which are phosphorylated. Like HSV-1 VP22, HSV-2 VP22 is synthesized ca. 4 h after infection, and the isoform later incorporated into virions is hypophosphorylated. In addition, we demonstrate for the first time (i) that newly synthesized VP22 is phosphorylated rapidly after synthesis, (ii) that this phosphorylation occurs in a virus-dependent manner, (iii) that the HSV-2 kinase UL13 is capable of inducing phosphorylation of VP22 in the absence of other viral proteins, (iv) that phosphorylated VP22 is very stable in infected cells, (v) that phosphorylated isoforms of VP22 are gradually dephosphorylated late in infection to produce the virion tegument form, and (vi) that this dephosphorylation occurs independently of viral DNA replication or virion assembly. These results indicate that HSV-2 VP22 is a stable protein that undergoes highly regulated, virus-dependent phosphorylation events in infected cells.  相似文献   

16.
Conn KL  Hendzel MJ  Schang LM 《Journal of virology》2011,85(24):13234-13252
The infecting genomes of herpes simplex virus 1 (HSV-1) are assembled into unstable nucleosomes soon after nuclear entry. The source of the histones that bind to these genomes has yet to be addressed. However, infection inhibits histone synthesis. The histones that bind to HSV-1 genomes are therefore most likely those previously bound in cellular chromatin. In order for preexisting cellular histones to associate with HSV-1 genomes, however, they must first disassociate from cellular chromatin. Consistently, we have shown that linker histones are mobilized during HSV-1 infection. Chromatinization of HSV-1 genomes would also require the association of core histones. We therefore evaluated the mobility of the core histones H2B and H4 as measures of the mobilization of H2A-H2B dimers and the more stable H3-H4 core tetramer. H2B and H4 were mobilized during infection. Their mobilization increased the levels of H2B and H4 in the free pools and decreased the rate of H2B fast chromatin exchange. The histones in the free pools would then be available to bind to HSV-1 genomes. The mobilization of H2B occurred independently from HSV-1 protein expression or DNA replication although expression of HSV-1 immediate-early (IE) or early (E) proteins enhanced it. The mobilization of core histones H2B and H4 supports a model in which the histones that associate with HSV-1 genomes are those that were previously bound in cellular chromatin. Moreover, this mobilization is consistent with the assembly of H2A-H2B and H3-H4 dimers into unstable nucleosomes with HSV-1 genomes.  相似文献   

17.
The budding of many enveloped RNA viruses, including human immunodeficiency virus type 1 (HIV-1), requires some of the same cellular machinery as vesicle formation at the multivesicular body (MVB). In Saccharomyces cerevisiae, the ESCRT-II complex performs a central role in MVB protein sorting and vesicle formation, as it is recruited by the upstream ESCRT-I complex and nucleates assembly of the downstream ESCRT-III complex. Here, we report that the three subunits of human ESCRT-II, EAP20, EAP30, and EAP45, have a number of properties in common with their yeast orthologs. Specifically, EAP45 bound ubiquitin via its N-terminal GRAM-like ubiquitin-binding in EAP45 (GLUE) domain, both EAP45 and EAP30 bound the C-terminal domain of TSG101/ESCRT-I, and EAP20 bound the N-terminal half of CHMP6/ESCRT-III. Consistent with its expected role in MVB vesicle formation, (i) human ESCRT-II localized to endosomal membranes in a VPS4-dependent fashion and (ii) depletion of EAP20/ESCRT-II and CHMP6/ESCRT-III inhibited lysosomal targeting and downregulation of the epidermal growth factor receptor, albeit to a lesser extent than depletion of TSG101/ESCRT-I. Nevertheless, HIV-1 release and infectivity were not reduced by efficient small interfering RNA depletion of EAP20/ESCRT-II or CHMP6/ESCRT-III. These observations indicate that there are probably multiple pathways for protein sorting/MVB vesicle formation in human cells and that HIV-1 does not utilize an ESCRT-II-dependent pathway to leave the cell.  相似文献   

18.
SKD1/VPS4B is an AAA+ (ATPase associated with a variety of cellular activities) protein involved in multivesicular body (MVB) biogenesis. In this study, we show that the impairment in MVB biogenesis caused by the ATP hydrolysis-deficient mutant SKD1(E235Q) is accompanied by assembly of a large detergent-insoluble protein complex that includes normally soluble endogenous components of mammalian endosomal sorting complex required for transport (ESCRT) I and ESCRT-III complexes. Membrane-bound ESCRT-III complex has been proposed to be the substrate that recruits SKD1 to nascent MVBs. To explore this relationship, we studied interactions among the human ESCRT-III components hSnf7-1 and hVps24, membranes, and SKD1. We found that a significant portion of overexpressed hSnf7-1 associated with membranes where it formed a large protein complex that recruited SKD1 and perturbed normal MVB biogenesis. Overexpressed hVps24 also associated with membranes and perturbed endosome structure but only when fused to green fluorescent protein. Domain analysis revealed that the basic N-terminal half of hSnf7-1 localized to membranes and formed detergent-resistant polymers, some of which looked like filopodia extending into the lumen of swollen endosomes or out from the plasma membrane. The C-terminal acidic half of hSnf7-1 did not associate with membranes and was required for interaction of hSnf7-1 with SKD1. Together with earlier studies, our work suggests that a variety of ESCRT-III-containing polymers can assemble on membranes and recruit SKD1 during formation of the MVB.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号