首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphofructokinase-2 is a dimeric enzyme that undergoes cold denaturation following a highly cooperative N2 2I mechanism with dimer dissociation and formation of an expanded monomeric intermediate. Here, we use intrinsic fluorescence of a tryptophan located at the dimer interface to show that dimer dissociation occurs slowly, over several hours. We then use hydrogen-deuterium exchange mass spectrometry experiments, performed by taking time points over the cold denaturation process, to measure amide exchange throughout the protein during approach to the cold denatured state. As expected, a peptide corresponding to the dimer interface became more solvent exposed over time at 3°C; unexpectedly, amide exchange increased throughout the protein over time at 3°C. The rate of increase in amide exchange over time at 3°C was the same for each region and equaled the rate of dimer dissociation measured by tryptophan fluorescence, suggesting that dimer dissociation and formation of the cold denatured intermediate occur without appreciable buildup of folded monomer. The observation that throughout the protein amide exchange increases as phosphofructokinase-2 cold denatures provides experimental evidence for theoretical predictions that cold denaturation primarily occurs by solvent penetration into the hydrophobic core of proteins in a sequence-independent manner.  相似文献   

2.
Magic-angle spinning nuclear magnetic resonance is well suited for the study of membrane proteins in the nativelike lipid environment. However, the natural cellular membrane is invariably more complex than the proteoliposomes most often used for solid-state NMR (SSNMR) studies, and differences may affect the structure and dynamics of the proteins under examination. In this work we use SSNMR and other biochemical and biophysical methods to probe the structure of a seven-transmembrane helical photoreceptor, Anabaena sensory rhodopsin (ASR), prepared in the Escherichia coli inner membrane, and compare it to that in a bilayer formed by DMPC/DMPA lipids. We find that ASR is organized into trimers in both environments but forms two-dimensional crystal lattices of different symmetries. It favors hexagonal packing in liposomes, but may form a square lattice in the E. coli membrane. To examine possible changes in structure site-specifically, we perform two- and three-dimensional SSNMR experiments and analyze the differences in chemical shifts and peak intensities. Overall, this analysis reveals that the structure of ASR is largely conserved in the inner membrane of E. coli, with many of the important structural features of rhodopsins previously observed in ASR in proteoliposomes being preserved. Small, site-specific perturbations in protein structure that occur as a result of the membrane changes indicate that the protein can subtly adapt to its environment without large structural rearrangement.  相似文献   

3.
Heat-shock protein 90 (Hsp90) is an ubiquitous chaperone that is essential for cell function in that it promotes client-protein folding and stabilization. Its function is tightly controlled by an ATP-dependent large conformational transition between the open and closed states of the Hsp90 dimer. The underlying allosteric pathway has remained largely unknown, but it is revealed here in atomistic detail for the Escherichia coli homolog HtpG. Using force-distribution analysis based on molecular-dynamics simulations (>1 μs in total), we identify an internal signaling pathway that spans from the nucleotide-binding site to an ∼2.3-nm-distant region in the HtpG middle domain, that serves as a dynamic hinge region, and to a putative client-protein-binding site in the middle domain. The force transmission is triggered by ATP capturing a magnesium ion and thereby rotating and bending a proximal long α-helix, which represents the major force channel into the middle domain. This allosteric mechanism is, with statistical significance, distinct from the dynamics in the ADP and apo states. Tracking the distribution of forces is likely to be a promising tool for understanding and guiding experiments of complex allosteric proteins in general.  相似文献   

4.
Two subfamilies of Lon proteases that differ in the structure of fragments containing the catalytically active Ser residue were revealed by the comparison of more than sixty sequences of Lon proteases from various sources. The absence of the classic catalytic triad in the active site of Lon proteases was confirmed. The catalytic site of Lon proteases was shown to be represented by the Ser–Lys dyad.  相似文献   

5.
6.
A general paradigm to understand protein function is to look at properties of isolated well conserved domains, such as SH3 or PDZ domains. While common features of domain families are well understood, the role of subtle differences among members of these families is less clear. Here, molecular dynamics simulations indicate that the binding mechanism in PSD95-PDZ3 is critically regulated via interactions outside the canonical binding site, involving both the poorly conserved loop and an extra-domain helix. Using the CRIPT peptide as a prototypical ligand, our simulations suggest that a network of salt-bridges between the ligand and this loop is necessary for binding. These contacts interconvert between each other on a time scale of a few tens of nanoseconds, making them elusive to X-ray crystallography. The loop is stabilized by an extra-domain helix. The latter influences the global dynamics of the domain, considerably increasing binding affinity. We found that two key contacts between the helix and the domain, one involving the loop, provide an atomistic interpretation of the increased affinity. Our analysis indicates that both extra-domain segments and loosely conserved regions play critical roles in PDZ binding affinity and specificity.  相似文献   

7.
The cellular prion protein (PrPC) is a zinc-binding protein that contributes to the regulation of Zn2+ and other divalent species of the central nervous system. Zn2+ coordinates to the flexible, N-terminal repeat region of PrPC and drives a tertiary contact between this repeat region and a well-defined cleft of the C-terminal domain. The tertiary structure promoted by Zn2+ is thought to regulate inherent PrPC toxicity. Despite the emerging consensus regarding the interaction between Zn2+ and PrPC, there is little direct spectroscopic confirmation of the metal ion’s coordination details. Here, we address this conceptual gap by using Cd2+ as a surrogate for Zn2+. NMR finds that Cd2+ binds exclusively to the His imidazole side chains of the repeat segment, with a dissociation constant of ~1.2 mM, and promotes an N-terminal-C-terminal cis interaction very similar to that observed with Zn2+. Analysis of 113Cd NMR spectra of PrPC, along with relevant control proteins and peptides, suggests that coordination of Cd2+ in the full-length protein is consistent with a three- or four-His geometry. Examination of the mutation E199K in mouse PrPC (E200K in humans), responsible for inherited Creutzfeldt-Jakob disease, finds that the mutation lowers metal ion affinity and weakens the cis interaction. These findings not only provide deeper insight into PrPC metal ion coordination but they also suggest new perspectives on the role of familial mutations in prion disease.  相似文献   

8.
《Biophysical journal》2020,118(4):846-860
Formate/nitrite transporters (FNTs) selectively transport monovalent anions and are found in prokaryotes and lower eukaryotes. They play a significant role in bacterial growth and act against the defense mechanism of infected hosts. Because FNTs do not occur in higher animals, they are attractive drug targets for many bacterial diseases. Phylogenetic analysis revealed that they can be classified into eight subgroups, two of which belong to the uncharacterized YfdC-α and YfdC-β groups. Experimentally determined structures of FNTs belonging to different phylogenetic groups adopt the unique aquaporin-like hourglass helical fold. We considered the formate channel from Vibrio cholerae, the hydrosulphide channel from Clostridium difficile, and the uncharacterized channel from Escherichia coli (EcYfdC) to investigate the mechanism of transport and selectivity. Using equilibrium molecular dynamics and umbrella sampling studies, we determined temporal channel radius profiles, permeation events, and potential of mean force profiles of different substrates with the conserved central histidine residue in protonated or neutral form. Unlike the formate channel from V. cholerae and the hydrosulphide channel from C. difficile, molecular dynamics studies showed that the formate substrate was unable to enter the vestibule region of EcYfdC. Absence of a conserved basic residue and presence of acidic residues in the vestibule regions, conserved only in YfdC-α, were found to be responsible for high energy barriers for the anions to enter EcYfdC. Potential of mean force profiles generated for ammonia and ammonium ion revealed that EcYfdC can transport neutral solutes and could possibly be involved in the transport of cations analogous to the mechanism proposed for ammonium transporters. Although YfdC members belong to the FNT family, our studies strongly suggest that EcYfdC is not an anion channel. Absence or presence of specific charged residues at particular positions makes EcYfdC selective for neutral or possibly cationic substrates. Further experimental studies are needed to get a definitive answer to the question of the substrate selectivity of EcYfdC. This provides an example of membrane proteins from the same family transporting substrates of different chemical nature.  相似文献   

9.
Classical benzodiazepines, such as diazepam, interact with αxβ2γ2 GABAA receptors, x = 1, 2, 3, 5 and modulate their function. Modulation of different receptor isoforms probably results in selective behavioural effects as sedation and anxiolysis. Knowledge of differences in the structure of the binding pocket in different receptor isoforms is of interest for the generation of isoform-specific ligands. We studied here the interaction of the covalently reacting diazepam analogue 3-NCS with α1S204Cβ2γ2, α1S205Cβ2γ2 and α1T206Cβ2γ2 and with receptors containing the homologous mutations in α2β2γ2, α3β2γ2, α5β1/2γ2 and α6β2γ2. The interaction was studied using radioactive ligand binding and at the functional level using electrophysiological techniques. Both strategies gave overlapping results. Our data allow conclusions about the relative apposition of α1S204Cβ2γ2, α1S205Cβ2γ2 and α1T206Cβ2γ2 and homologous positions in α2, α3, α5 and α6 with C-atom adjacent to the keto-group in diazepam. Together with similar data on the C-atom carrying Cl in diazepam, they indicate that the architecture of the binding site for benzodiazepines differs in each GABAA receptor isoform α1β2γ2, α2β2γ2, α3β2γ2, α5β1/2γ2 and α6β2γ2.  相似文献   

10.
11.
Intramembrane metalloproteases (IMMPs) control critical biological processes by cleaving membrane-associated proteins within a transmembrane segment or at a site near the membrane surface. Phylogenetic analysis divides IMMPs into four groups. SpoIVFB is a group III IMMP that regulates Bacillus subtilis endospore formation by cleaving Pro-σK and releasing the active sigma factor from a membrane. To elucidate the enzyme-substrate interaction, single-cysteine versions of catalytically inactive SpoIVFB and C-terminally truncated Pro-σK(1-126) (which can be cleaved by active SpoIVFB) were coexpressed in Escherichia coli, and proximity was tested by disulfide cross-linking in vivo. As expected, the results provided evidence that catalytic residue Glu-44 of SpoIVFB is near the cleavage site in the substrate. Also near the cleavage site were two residues of SpoIVFB in predicted conserved loops; Pro-135 in a short loop and Val-70 in a longer loop. Pro-135 corresponds to Pro-399 of RseP, a group I IMMP, and Pro-399 was reported previously to interact with substrate near the cleavage site, suggesting a conserved interaction across IMMP subfamilies. Val-70 follows a newly recognized conserved motif, PXGG (X is a large hydrophobic residue), which is in a hydrophobic region predicted to be a membrane reentrant loop. Following the hydrophobic region is a negatively charged region that is conserved in IMMPs of groups I and III. At least two residues with a negatively charged side chain are required in this region for activity of SpoIVFB. The region exhibits other features in IMMPs of groups II and IV. Its possible roles, as well as that of the short loop, are discussed. New insights into IMMP-substrate interaction build toward understanding how IMMPs function and may facilitate manipulation of their activity.  相似文献   

12.
13.

Background

Research into the etiology of breast cancer has recently focused on the role of the immunity and inflammation. Interleukin-23 and its receptor (IL23R) guide T cells towards the Th17 phenotype. IL23R single nucleotide polymorphisms (SNPs) have been shown to be associated with digestive system cancers. To evaluate the influences of IL23R gene polymorphisms on the risk of sporadic breast cancer, a case-control study was conducted in Chinese Han women.

Methodology and Principal Findings

We genotyped two tag SNPs (rs10889677 in the 3′-UTR region and nonsynonymous variants rs1884444 in exon 2) in IL23R gene of 491 breast cancer patients and 502 matched healthy controls. The genotypes were determined using the SNaPshot technique. The differences in the genotypic distribution between breast cancer patients and healthy controls were analyzed with the Chi-square test for trends. For rs10889677 in IL23R, the frequencies of the AA genotype and the A allele were statistical significant higher in breast cancer patients than in controls (P = 0.0084 and P = 0.0171, respectively), whereas the C allele was associated with an earlier age of breast cancer onset (50.6 years for AA, 48.7 years for AC and 46.0 years for CC (P = 0.0114)) in case-only study. The clinical features analysis demonstrated significant associations between rs1884444 in IL23R and human epidermal growth factor receptor 2 (Her-2) and tumor size status.

Conclusions and Significance

Our results suggest that a miRNA binding site SNP in the 3′-UTR region of the IL23R gene may be associated with the risk of breast cancer and contribute to the early development of breast cancer in Chinese women.  相似文献   

14.
Excitotoxicity has been associated with the loss of medium spiny neurons (MSN) in Huntington’s disease (HD). We have previously observed that the content of the glial glutamate transporters, glutamate transporter 1 (GLT-1) and glutamate-aspartate transporter (GLAST), diminishes in R6/2 mice at 14 weeks of age but not at 10 weeks, and that this change correlates with an increased vulnerability of striatal neurons to glutamate toxicity. We have also reported that inhibition of the glycolytic pathway decreases glutamate uptake and enhances glutamate neurotoxicity in the rat brain. We now show that at 10-weeks of age, glutamate excitotoxicity is precipitated in R6/2 mice, after the treatment with iodoacetate (IOA), an inhibitor of the glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). IOA induces a larger inhibition of GAPDH in R6/2 mice, while it similarly reduces the levels of GLT-1 and GLAST in wild-type and transgenic animals. Results suggest that metabolic failure and altered glutamate uptake are involved in the vulnerability of striatal neurons to glutamate excitotoxicity in HD.  相似文献   

15.
Phenethyl β-d-galactopyranoside (PEG) was hydrolyzed by the β-galactosidase of Escherichia coli to form the toxic product phenethyl alcohol. Salmonella typhimurium did not hydrolyze PEG. In mixed culture, the ratio of S. typhimurium to E. coli was increased by growing the organisms in lactose broth containing 2.5% PEG. The high concentration of PEG required for inhibition of E. coli can be attributed to inadequate cell permeability rather than to prevention of β-galactosidase induction.  相似文献   

16.
We have investigated the cultivation of an Escherichia coli strain producing the hybrid protein SpA-βgal. The hybrid protein consists of protein A from Staphylococcus aureus and β-galactosidase from E. coli with retained biological activity of both protein A and β-galactosidase. The expression was controlled by the temperature regulated PR promoter from phage lambda. By late induction of the product synthesis it was possible to circumvent the problem with plasmid instability. The amount of produced SpA-βgal corresponded to approximately 1256 of the cell dry weight. In shake flask cultures most of the hybrid protein was found in an insoluble form and typical inclusion bodies were observed. However, the major part of the protein could be produced in a soluble and biological active form under controlled conditions in a reactor.  相似文献   

17.
In Escherichia coli, the γ complex clamp loader loads the β-sliding clamp onto DNA. The β clamp tethers DNA polymerase III to DNA and enhances the efficiency of replication by increasing the processivity of DNA synthesis. In the presence of ATP, γ complex binds β and DNA to form a ternary complex. Binding to primed template DNA triggers γ complex to hydrolyze ATP and release the clamp onto DNA. Here, we investigated the kinetics of forming a ternary complex by measuring rates of γ complex binding β and DNA. A fluorescence intensity-based β binding assay was developed in which the fluorescence of pyrene covalently attached to β increases when bound by γ complex. Using this assay, an association rate constant of 2.3 × 107 m−1 s−1 for γ complex binding β was determined. The rate of β binding was the same in experiments in which γ complex was preincubated with ATP before adding β or added directly to β and ATP. In contrast, when γ complex is preincubated with ATP, DNA binding is faster than when γ complex is added to DNA and ATP at the same time. Slow DNA binding in the absence of ATP preincubation is the result of a rate-limiting ATP-induced conformational change. Our results strongly suggest that the ATP-induced conformational changes that promote β binding and DNA binding differ. The slow ATP-induced conformational change that precedes DNA binding may provide a kinetic preference for γ complex to bind β before DNA during the clamp loading reaction cycle.  相似文献   

18.
During DNA replication, repetitive synthesis of discrete Okazaki fragments requires mechanisms that guarantee DNA polymerase, clamp, and primase proteins are present for every cycle. In Escherichia coli, this process proceeds through transfer of the lagging-strand polymerase from the β sliding clamp left at a completed Okazaki fragment to a clamp assembled on a new RNA primer. These lagging-strand clamps are thought to be bound by the replisome from solution and loaded a new for every fragment. Here, we discuss a surprising, alternative lagging-strand synthesis mechanism: efficient replication in the absence of any clamps other than those assembled with the replisome. Using single-molecule experiments, we show that replication complexes pre-assembled on DNA support synthesis of multiple Okazaki fragments in the absence of excess β clamps. The processivity of these replisomes, but not the number of synthesized Okazaki fragments, is dependent on the frequency of RNA-primer synthesis. These results broaden our understanding of lagging-strand synthesis and emphasize the stability of the replisome to continue synthesis without new clamps.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号