首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
The Order Zoantharia has long been taxonomically neglected primarily due to difficulty in examining the internal morphology of sand-encrusted zoanthids. However, recent work using molecular markers has shown an unexpectedly high diversity of previously “hidden” taxa (families and genera) within Zoantharia (=Zoanthidea, Zoanthiniaria). In this study, unidentified sediment-encrusting zoanthid specimens (n = 8) were collected from living Japanese Red Coral Paracorallium japonicum (Family Coralliidae) during precious coral harvesting by Remotely Operated Vehicle (ROV) and manned submersible (February 2004–January 2006) at depths of 194–250 m at six locations between Ishigaki-jima Island and Kikai-jima Island, southern Japan. DNA sequences (mitochondrial 16S ribosomal DNA [mt 16S rDNA], cytochrome oxidase subunit I [COI], nuclear internal transcribed spacer of ribosomal DNA [ITS-rDNA]) unambiguously place these specimens in a previously undescribed, new monophyletic lineage within the family Parazoanthidae. Corallizoanthus tsukaharai, gen. n. et sp. n. is the first reported zoanthid species associated with the family Coralliidae and unlike other described gorgonian-associated zoanthids (Savalia spp.) does not secrete its own hard axis. Morphologically, C. tsukaharai sp. n. is characterized by generally unitary polyps and bright yellow external coloration. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Communicated by Biology Editor Dr Ruth Gates  相似文献   

3.
The taxonomy of the order Zoantharia (=Zoanthidea=Zoanthiniaria) is greatly hampered by the paucity of diagnostic morphological features. To facilitate discrimination between similar zoanthids, a combination of morphological and molecular analyses is applied here. The three most abundant zoanthid species in shallow waters of the southern Chilean fjord region are described. Comparison with other zoanthids using molecular markers reveals that two of them are new to science; these are described as Mesozoanthus fossii gen. n., sp. n. and Epizoanthus fiordicus sp. n. Their representatives grow on rocky substratum and do not live in symbiosis with demosponges. In the less abundant M. fossii, animals are greyish in colour and resemble members of Parazoanthus in growth form. Individual polyps can be up to 35 mm long. The more abundant E. fiordicus are also greyish; the polyps arise from thin stolons and reach only 12 mm in length. The third species studied is Parazoanthus elongatus McMurrich, 1904. For these three Chilean zoanthid species, in-situ photographs are presented as well as information on distribution, habitat and associated species. Establishment of the Mesozoanthus gen. n. is of particular importance to taxonomy in the chaotic suborder Macrocnemina.  相似文献   

4.
The diversity and specificity of symbiotic associations may be useful in revealing the underlying ecology of symbioses and evolutionary relationships of symbiotic species. Symbioses between coral reef sponges and zoanthids are widespread and common in the greater Caribbean region, although the diversity and specificity of the species involved have only been explored at a few sites and the adaptive significance has only been examined for three combinations. We identified extensive diversity among sponges that associate with zoanthids by compiling sponge–zoanthid species associations from field surveys, the literature, and museum collections, and examined the patterns of specificity at multiple levels of sponge and zoanthid taxonomy. The results obtained indicate that facultative sponges are highly specific to the species of their partners whereas obligate zoanthids are not. The patterns of specificity among sponges and zoanthids suggest that many of these associations are not likely to be parasitic. Sponges harbouring photosynthetic endosymbionts associate at a disproportionately high frequency with zoanthids that harbour photosynthetic endosymbionts. Zoanthids embed in the surfaces of sponges to various degrees, resulting in a range of intimacy that negatively correlates with the number of hosts and polyp volume of zoanthids. Dendrograms based on the similarity among associations are largely consistent with current hypotheses of sponge higher-order systematics, but inconsistent with the current hypotheses of zoanthid systematics, and they highlight the potential utility of ecological characters in systematic analyses.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 695–711.  相似文献   

5.
Zoanthids comprise an order of benthic, generally colonial cnidarians, which can usually be distinguished from other hexacorallians by embedded sand and detritus in their mesoglea to help strengthen their structure. These animals are becoming increasingly important research subjects in biochemistry and other research fields. Their inclusion of both calcium and silica results in the need for both decalcification and desilification for internal morphological examinations. Since the methodology of hydrofluoric acid (HF) desilification has rarely been documented in zoanthids, histological surveys for zoanthid taxonomy have often been abandoned and their taxonomy is often problematic. Recent investigations utilizing molecular methods have brought a clearer understanding of zoanthid diversity, but standardization of HF treatments are still needed to provide a link between molecular and more traditional techniques, and to properly examine specimens for which molecular methods may not be an option (e.g., formalin-preserved specimens, etc.). Here, we use both “straight” HF and, for the first time with zoanthids, buffered HF (BHF) treatments at different treatment lengths (1–48 h) on polyps from three different species of zoanthids for histological examination. Section conditions were judged based on the presence/absence of embedded detritus, drag marks, and tissue condition. Results show that the BHF treatment resulted in slightly better tissue conditions for all specimens, and suggest that desilification works well regardless of treatment time for species with smaller (polyp diameter <0.5 cm), less heavily encrusted polyps. Desilification of heavily encrusted Palythoa mutuki polyps were still problematic, with at least 24 h treatment needed. To aid future research, we provide guidelines for HF treatments of zoanthid specimens.  相似文献   

6.
7.
Zoanthids are marine cnidarians with simple morphologies that challenge our ability to delineate species. Phylogenetic analyses of internal transcribed spacer (ITS) sequences are consistent with six morphologically described species from the wider Caribbean region, and reveal four additional species that were not previously recognized. Histological examinations of unidentified species reveal cryptic Isozoanthus and Edwardsiidae (Actiniaria) species. Observations of zoanthids in situ reveal geographic distributions that range from regional to trans‐Atlantic. ITS and 16S data are consistent with hypotheses of paraphyly in some higher taxa of zoanthids; however, the clades of zoanthids recovered in both analyses can largely be defined by their host associations, thereby supporting phylogenetic conservatism in zoanthid–host association evolution. The single clear example of a zoanthid switching hosts was accompanied by a compensatory loss of endosymbiosis, which maintained the match in photosynthetic symbioses between zoanthids and sponge hosts. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 156 , 223–238.  相似文献   

8.
Gorgonian octocorals are among the dominant deep‐sea benthic taxa of many seamounts. Seamount fauna are threatened by destructive fisheries practices, yet little is known about the physical and biological processes that maintain species on seamounts. Few informative molecular markers have been found in deep‐water corals or in gorgonian octocorals. Here we report the characterization of six highly polymorphic microsatellite loci for the deep‐sea precious coral Corallium lauuense from Hawaii using enriched genomic DNA libraries. These loci are being used to examine gene flow and stock structure among seamount and island populations to better understand dispersal and connectivity of seamount species.  相似文献   

9.
The Hawaiian Drosophilidae radiation is an ecologically and morphologically diverse clade of almost 700 described species. A phylogenetic approach is key to understanding the evolutionary forces that have given rise to this diverse lineage. Here we infer the phylogeny for the antopocerus, modified tarsus and ciliated tarsus (AMC) clade, a lineage comprising 16% (91 of 687 species) of the described Hawaiian Drosophilidae. To improve on previous analyses we constructed the largest dataset to date for the AMC, including a matrix of 15 genes for 68 species. Results strongly support most of the morphologically defined species groups as monophyletic. We explore the correlation of increased diversity in biogeography, sexual selection and ecology on the present day diversity seen in this lineage using a combination of dating methods, rearing records, and distributional data. Molecular dating analyses indicate that AMC lineage started diversifying about 4.4 million years ago, culminating in the present day AMC diversity. We do not find evidence that ecological speciation or sexual selection played a part in generating this diversity, but given the limited number of described larval substrates and secondary sexual characters analyzed we can not rule these factors out entirely. An increased rate of diversification in the AMC is found to overlap with the emergence of multiple islands in the current chain of high islands, specifically Oahu and Kauai.  相似文献   

10.
The coral reef fish community of Hawaii is composed of hundreds of species, supports a multimillion dollar fishing and tourism industry, and is of great cultural importance to the local population. However, a major stock assessment of Hawaiian coral reef fish populations has not yet been conducted. Here we used the robust indicator variable “average length in the exploited phase of the population (L¯)”, estimated from size composition data from commercial fisheries trip reports and fishery-independent diver surveys, to evaluate exploitation rates for 19 Hawaiian reef fishes. By and large, the average lengths obtained from diver surveys agreed well with those from commercial data. We used the estimated exploitation rates coupled with life history parameters synthesized from the literature to parameterize a numerical population model and generate stock sustainability metrics such as spawning potential ratios (SPR). We found good agreement between predicted average lengths in an unfished population (from our population model) and those observed from diver surveys in the largely unexploited Northwestern Hawaiian Islands. Of 19 exploited reef fish species assessed in the main Hawaiian Islands, 9 had SPRs close to or below the 30% overfishing threshold. In general, longer-lived species such as surgeonfishes, the redlip parrotfish (Scarus rubroviolaceus), and the gray snapper (Aprion virescens) had the lowest SPRs, while short-lived species such as goatfishes and jacks, as well as two invasive species (Lutjanus kasmira and Cephalopholis argus), had SPRs above the 30% threshold.  相似文献   

11.
The Northwestern Hawaiian Islands (NWHI) are considered to be among the most pristine coral reef ecosystems remaining on the planet. These reefs naturally contain a high percent cover of algal functional groups with relatively low coral abundance and exhibit thriving fish communities dominated by top predators. Despite their highly protected status, these reefs are at risk from both direct and indirect anthropogenic sources. This study provides the first comprehensive data on percent coverage of algae, coral, and non-coral invertebrates at the species level, and investigates spatial diversity patterns across the archipelago to document benthic communities before further environmental changes occur in response to global warming and ocean acidification. Monitoring studies show that non-calcified macroalgae cover a greater percentage of substrate than corals on many high latitude reef sites. Forereef habitats in atoll systems often contain high abundances of the green macroalga Microdictyon setchellianum and the brown macroalga Lobophora variegata, yet these organisms were uncommon in forereefs of non-atoll systems. Species of the brown macroalgal genera Padina, Sargassum, and Stypopodium and the red macroalgal genus Laurencia became increasingly common in the two northernmost atolls of the island chain but were uncommon components of more southerly islands. Conversely, the scleractinian coral Porites lobata was common on forereefs at southern islands but less common at northern islands. Currently accepted paradigms of what constitutes a “healthy” reef may not apply to the subtropical NWHI, and metrics used to gauge reef health (e.g., high coral cover) need to be reevaluated.  相似文献   

12.
Marine macroalgae are known to harbor large populations of microbial symbionts, and yet, microbe symbiosis in invasive macroalgae remains largely unknown. In this study, we applied molecular methods to study microbial communities associated with two invasive algae Acanthophora spicifera and Gracilaria salicornia and the two native algae Gracilaria coronopifolia and Laurencia nidifica at spatial and temporal scales in Hawaiian coral reef ecosystems. Bacterial communities of both the invasive and native macroalgae displayed little spatial and temporal variations, suggesting consistent and stable bacterial associations with these macroalgae. Results of this study identified three types of bacterial populations: nonspecific (present in both algal and water samples); algae-specific (found in all algal species); and species-specific (only found in individual species). The bacterial diversity of invasive algae was lower than that of their native counterparts at phylum and species levels. Notably, the vast majority (71 %) of bacterial communities associated with the invasive algae G. salicornia were representatives of Cyanobacteria, suggesting a potential ecological significance of symbiotic Cyanobacteria.  相似文献   

13.
Wolbachia is a genus of parasitic alphaproteobacteria found in arthropods and nematodes, and represents on of the most common, widespread endosymbionts known. Wolbachia affects a variety of reproductive functions in its host (e.g., male killing, cytoplasmic incompatibility, parthenogenesis), which have the potential to dramatically impact host evolution and species formation. Here, we present the first broad-scale study to screen natural populations of native Hawaiian insects for Wolbachia, focusing on the endemic Diptera. Results indicate that Wolbachia infects native Hawaiian taxa, with alleles spanning phylogenetic supergroups, A and B. The overall frequency of Wolbachia incidene in Hawaiian insects was 14%. The incidence of infection in native Hawaiian Diptera was 11% for individuals and 12% for all species screened. Wolbachia was not detected in two large, widespread Hawaiian dipteran families—Dolichopodidae (44 spp screened) and Limoniidae (12 spp screened). Incidence of infection within endemic Hawaiian lineages that carry Wolbachia was 18% in Drosophilidae species, 25% in Caliphoridae species, > 90% in Nesophrosyne species, 20% in Drosophila dasycnemia and 100% in Nesophrosyne craterigena. Twenty unique alleles were recovered in this study, of which 18 are newly recorded. Screening of endemic populations of D. dasycnemia across Hawaii Island revealed 4 unique alleles. Phylogenetic relationships and allele diversity provide evidence for horizontal transfer of Wolbachia among Hawaiian arthropod lineages.  相似文献   

14.
An illustrated identification system is presented to 99 species and 49 genera in three families recorded from the Hawaiian Islands in the Thysanoptera suborder Terebrantia. Only seven (possibly eight) of these species are considered endemic, the remainder being adventive to these islands. The only previous study of Hawaiian Thysanoptera, by Zimmerman in 1948, included 47 Terebrantia species in 21 genera.  相似文献   

15.
As part of the Hawaiian Biological Survey, this study reports on the distribution of nine species of sessile foraminifera collected by dredge, grab, and around the Hawaiian Archipelago. The distributional survey includes data from the frontslopes of coral reefs to depths of 600 m and extends from the island of Hawaii and north to Pearl and Hermes Atoll in the North West Hawaiian Island chain. Species reported for the first time from Hawaii include Calcituba polymorpha, Discanomalina semipunctata, Halyphysema tumanowiczii, agenina divaricans, and Sageninafrondescens. Other sessile forams collected were-Ammolagena clavata, Biarritzina proteiformis, Carpenteria monticularis, and Miniacina miniacea.  相似文献   

16.
Scaptomyza is a highly diversified genus in the family Drosophilidae, having undergone an explosive radiation, along with the Hawaiian‐endemic genus Idiomyia in the Hawaiian Islands: about 60% of 269 Scaptomyza species so far described are endemic to the Hawaiian Islands. Two hypotheses have been proposed for the origin and diversification of Hawaiian drosophilids. One is the “single Hawaiian origin” hypothesis: Scaptomyza and Idiomyia diverged from a single common ancestor that had once colonized the Hawaiian Islands, and then non‐Hawaiian Scaptomyza migrated back to continents. The other is the “multiple origins” hypothesis: Hawaiian Scaptomyza and Idiomyia derived from different ancestors that independently colonized the Hawaiian Islands. A key issue for testing these two hypotheses is to clarify the phylogenetic relationships between Hawaiian and non‐Hawaiian species in Scaptomyza. Toward this goal, we sampled additional non‐Hawaiian Scaptomyza species, particularly in the Old World, and determined the nucleotide sequences of four mitochondrial and seven nuclear genes for these species. Combining these sequence data with published data for 79 species, we reconstructed the phylogeny and estimated ancestral distributions and divergence times. In the resulting phylogenetic trees, non‐Hawaiian Scaptomyza species were interspersed in two Hawaiian clades. From a reconstruction of ancestral biogeography, we inferred that Idiomyia and Scaptomyza diverged outside the Hawaiian Islands and then independently colonized the Hawaiian Islands, twice in Scaptomyza, thus supporting the “multiple origins” hypothesis.  相似文献   

17.
Wave stress and coral community structure in Hawaii   总被引:3,自引:0,他引:3  
Summary The most significant factor determining the structure of Hawaiian reef coral communities is physical disturbance from waves. Sequential analysis of community structure off the west coast of the island of Hawaii shows that variation of wave energy and storm frequency clearly affects organization in time and space. Normal conditions of low wave stress maintain four well-defined reef zones; diversity is highest at intermediate depths and decreases in physically rigorous shallow areas and stable deep reef slopes. Intermediate level storm wave events cause variable effects within the reef zones, but the zonation pattern, as a whole, is maintained. Diversity increases in zones that are dominated by a single species largely through nonlethal fragmentation and transport, but decreases in the zone of most equitable species distribution. Conversely, severe infrequent storm disturbances that cause massive mortality to all coral species wipe out the pattern of community structure and return the entire community to a low diversity early successional stage.Hawaii Institute of Marine Biology Contribution No.616  相似文献   

18.
Aim To estimate the rate of adaptive radiation of endemic Hawaiian Bidens and to compare their diversification rates with those of other plants in Hawaii and elsewhere with rapid rates of radiation. Location Hawaii. Methods Fifty‐nine samples representing all 19 Hawaiian species, six Hawaiian subspecies, two Hawaiian hybrids and an additional two Central American and two African Bidens species had their DNA extracted, amplified by polymerase chain reaction and sequenced for four chloroplast and two nuclear loci, resulting in a total of approximately 5400 base pairs per individual. Internal transcribed spacer sequences for additional outgroup taxa, including 13 non‐Hawaiian Bidens, were obtained from GenBank. Phylogenetic relationships were assessed by maximum likelihood and Bayesian inference. The age of the most recent common ancestor and diversification rates of Hawaiian Bidens were estimated using the methods of previously published studies to allow for direct comparison with other studies. Calculations were made on a per‐unit‐area basis. Results We estimate the age of the Hawaiian clade to be 1.3–3.1 million years old, with an estimated diversification rate of 0.3–2.3 species/million years and 4.8 × 10?5 to 1.3 × 10?4 species Myr?1 km?2. Bidens species are found in Europe, Africa, Asia and North and South America, but the Hawaiian species have greater diversity of growth form, floral morphology, dispersal mode and habitat type than observed in the rest of the genus world‐wide. Despite this diversity, we found little genetic differentiation among the Hawaiian species. This is similar to the results from other molecular studies on Hawaiian plant taxa, including others with great morphological variability (e.g. silverswords, lobeliads and mints). Main conclusions On a per‐unit‐area basis, Hawaiian Bidens have among the highest rates of speciation for plant radiations documented to date. The rapid diversification within such a small area was probably facilitated by the habitat diversity of the Hawaiian Islands and the adaptive loss of dispersal potential. Our findings point to the need to consider the spatial context of diversification – specifically, the relative scale of habitable area, environmental heterogeneity and dispersal ability – to understand the rate and extent of adaptive radiation.  相似文献   

19.
Corals harbor diverse bacterial associations that contribute to the health of the host. Using 16S rRNA pyrosequencing, we compared the bacterial communities of red and orange morphs of the Hawaiian coral Montipora capitata. Although both color morphs shared dominant bacterial genera, weighted and unweighted UniFrac analyses showed distinct bacterial communities. A single operational taxonomic unit (OTU), classified as Vibrio, represented the largest driver of differences between the color morphs. This OTU comprised 35.4% (±5.5%) of the orange morph bacterial community yet comprised 1.1% (±0.6%) of the red morph bacterial community. Cultivable bacteria from the two color morphs were also compared and tested for antibacterial activity. Cultured isolates represented 14 genera (7% of the total genera identified from sequencing data), and all but two cultured isolates had a matching OTU from the sequencing data. Half of the isolates tested (8 out of 16) displayed antibacterial activity against other cultured isolates but not against two known bacterial pathogens of M. capitata. The results from this study demonstrate that the specificity of coral-bacterial associations extends beyond the level of coral species. In addition, culture-dependent methods captured bacterial diversity that was representative of both rare and abundant members of the associated bacterial community, as characterized by culture-independent methods.  相似文献   

20.
Little is known about growth rates of deep-water reef-forming corals or the rates at which these reefs accumulate. Such information is critical for determining the resilience of the reefs to anthropogenic impacts such as trawling and climate change. We radiocarbon date live-caught and sub-fossil samples of the bioherm-forming coral Solenosmilia variabilis collected from precisely known depths and locations by means of a remotely operated vehicle on seamounts south of Tasmania, Australia. The growth rate of colonies live-caught between 958 and 1,454 m, which spans most of the depth range of the species locally, ranged from 0.84 to 1.25 mm linear extension yr?1 and tended to be higher in the deeper-caught material. Analysis of skeletal microstructure suggests annual deposition of growth increments near the growing tips, but not closer to the base, as the skeleton is extended and thickened. Dating of sub-fossil material indicates S. variabilis has been present on Tasmanian seamounts for at least the last 47,000 yrs and a reef accumulation rate of 0.27 mm yr?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号