首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
A cellulase gene cluster of Clostridium josui was sequenced, and was found to encode 11 proteins responsible for cellulosome (cellulolytic complex) formation, viz., cipA, cel48A, cel8A, cel9A, cel9B, orfX, cel9C, cel9D, man5A, cel9E, and cel5B, in order from the upstream side. All the predicted enzymes had a dockerin module, suggesting that these proteins are members of the C. josui cellulosome. Among these genes, the man5A gene encoding β-mannanase was expressed in Escherichia coli and the recombinant enzyme (rMan5A) was characterized. rMan5A showed strong activity toward carob galactomannan and low activity toward guar gum, suggesting that it prefers non-galactosylated mannan to galactomannan. This enzyme hydrolyzed ivory nut mannan to produce mainly mannotriose and larger mannooligosaccharides, and was not active toward mannotriose. An antiserum raised against the recombinant enzyme detected Man5A in the culture supernatants of C. josui, which was grown on either ball-milled cellulose or glucose as a carbon source.  相似文献   

2.
Functional attributes of recombinant CtCBM35 (family 35 carbohydrate binding module) of β-mannanase of family 26 Glycoside Hydrolase from Clostridium thermocellum were deduced by biochemical and in silico approaches. Ligand-binding analysis of expressed CtCBM35 analyzed by affinity-gel electrophoresis and fluorescence spectroscopy exhibited association constants K a ~ 1.2·105 and 3.0·105 M?1 with locust bean galactomannan and mannotriose, respectively. However, CtCBM35 showed low ligand-binding affinity with insoluble ivory nut mannan with K a of 5.0·10?5 M?1. Unfolding transition analysis by fluorescence spectroscopy explained the conformational changes of CtCBM35 in the presence of guanidine hydrochloride (5 M) and urea (6.25 M). This explained that CtCBM35 has good conformational stability and requires higher free energy of denaturation to invoke unfolding. The three-dimensional (3-D) model of CtCBM35 from C. thermocellum generated by Modeller9v8 displayed predominance of β-sheets arranged as β-jelly-roll fold. The secondary structure of CtCBM35 by PredictProtein showed the presence of two α-helices (3%), 12 β-sheets (45%), and 15 random coils (52%). Secondary structural element analysis of cloned, expressed, and purified recombinant CtCBM35 by circular dichroism also corroborated the in silico predicted secondary structure. Multiple sequence alignment of CtCBM35 showed conserved residues (Tyr123, Gly124, and Phe125), which are commonly observed in mannan specific CBMs. Docking analysis of CtCBM35 with manno-oligosaccharide displayed the involvement of Tyr26, Gln29, Asn43, Trp66, Tyr68, Leu69, Arg76, and Leu127 residues, making polar contact with the ligand molecules. Ligand docking analysis of CtCBM35 exhibiting higher binding affinity with mannotriose and galactomannan (Man-Gal-Man moiety) substantiated the affinity binding and fluorescence results, displaying similar values of K a.  相似文献   

3.
Each plant genome contains a repertoire of β-mannanase genes belonging to glycoside hydrolase family 5 subfamily 7 (GH5_7), putatively involved in the degradation and modification of various plant mannan polysaccharides, but very few have been characterized at the gene product level. The current study presents recombinant production and in vitro characterization of AtMan5-1 as a first step towards the exploration of the catalytic capacity of Arabidopsis thaliana β-mannanase. The target enzyme was expressed in both E. coli (AtMan5-1e) and P. pastoris (AtMan5-1p). The main difference between the two forms was a higher observed thermal stability for AtMan5-1p, presumably due to glycosylation of that particular variant. AtMan5-1 displayed optimal activity at pH 5 and 35 °C and hydrolyzed polymeric carob galactomannan, konjac glucomannan, and spruce galactoglucomannan as well as oligomeric mannopentaose and mannohexaose. However, the galactose-rich and highly branched guar gum was not as efficiently degraded. AtMan5-1 activity was enhanced by Co2+ and inhibited by Mn2+. The catalytic efficiency values for carob galactomannan were 426.8 and 368.1 min?1 mg?1 mL for AtMan5-1e and AtMan5-1p, respectively. Product analysis of AtMan5-1p suggested that at least five substrate-binding sites were required for manno-oligosaccharide hydrolysis, and that the enzyme also can act as a transglycosylase.  相似文献   

4.
Germinating seeds of lucerne, guar, carob and soybean initially depleted raffinose series oligosaccharides and then galactomannan. This depletion was accompanied by a rapid increase and then a decrease in α-galactosidase levels. Lucerne and guar contained two α-galactosidase activities, carob three and soybean four. One of these in each plant, from its location in the endosperm, time of appearance and kinetic behaviour, appeared to be primarily involved in galactomannan hydrolysis. This enzyme in lucerne had MW of 23 000 and could not be separated from β-mannanase by (NH4)2SO4 fractionation, DEAE, CM or SE-cellulose chromatography or gel filtration, but only by polyacrylamide gel electrophoresis. In guar, carob and soybean, it could be separated by ion-exchange chromatography and gel filtration. In lucerne, carob and guar most of the total increase in activity was due to this enzyme. The other α-galactosidases had MWs of about 35 000 and could be separated from β-mannanase by dissection, ion exchange cellulose chromatography and gel filtration. They were located in the cotyledon-embryo and appeared to be primarily involved in galactosylsucrose oligosaccharide hydrolysis.  相似文献   

5.
The genome sequence of the hyperthermophilic bacterium Thermotoga maritima encodes a number of glycosyl hydrolases. Many of these enzymes have been shown in vitro to degrade specific glycosides that presumably serve as carbon and energy sources for the organism. However, because of the broad substrate specificity of many glycosyl hydrolases, it is difficult to determine the physiological substrate preferences for specific enzymes from biochemical information. In this study, T. maritima was grown on a range of polysaccharides, including barley β-glucan, carboxymethyl cellulose, carob galactomannan, konjac glucomannan, and potato starch. In all cases, significant growth was observed, and cell densities reached 109 cells/ml. Northern blot analyses revealed different substrate-dependent expression patterns for genes encoding the various endo-acting β-glycosidases; these patterns ranged from strong expression to no expression under the conditions tested. For example, cel74 (TM0305), a gene encoding a putative β-specific endoglucananse, was strongly expressed on all substrates tested, including starch, while no evidence of expression was observed on any substrate for lam16 (TM0024), xyl10A (TM0061), xyl10B (TM0070), and cel12A (TM1524), which are genes that encode a laminarinase, two xylanases, and an endoglucanase, respectively. The cel12B (TM1525) gene, which encodes an endoglucanase, was expressed only on carboxymethyl cellulose. An extracellular mannanase encoded by man5 (TM1227) was expressed on carob galactomannan and konjac glucomannan and to a lesser extent on carboxymethyl cellulose. An unexpected result was the finding that the cel5A (TM1751) and cel5B (TM1752) genes, which encode putative intracellular, β-specific endoglucanases, were induced only when T. maritima was grown on konjac glucomannan. To investigate the biochemical basis of this finding, the recombinant forms of Man5 (Mr, 76,900) and Cel5A (Mr, 37,400) were expressed in Escherichia coli and characterized. Man5, a T. maritima extracellular enzyme, had a melting temperature of 99°C and an optimun temperature of 90°C, compared to 90 and 80°C, respectively, for the intracellular enzyme Cel5A. While Man5 hydrolyzed both galactomannan and glucomannan, no activity was detected on glucans or xylans. Cel5A, however, not only hydrolyzed barley β-glucan, carboxymethyl cellulose, xyloglucan, and lichenin but also had activity comparable to that of Man5 on galactomannan and higher activity than Man5 on glucomannan. The biochemical characteristics of Cel5A, the fact that Cel5A was induced only when T. maritima was grown on glucomannan, and the intracellular localization of Cel5A suggest that the physiological role of this enzyme includes hydrolysis of glucomannan oligosaccharides that are transported following initial hydrolysis by extracellular glycosidases, such as Man5.  相似文献   

6.
The three-dimensional model of the CtCBM35 (Cthe 2811), i.e. the family 35 carbohydrate binding module (CBM) from the Clostridium thermocellum family 26 glycoside hydrolase (GH) β-mannanase, generated by Modeller9v8 displayed predominance of β-sheets arranged as β-sandwich fold. Multiple sequence alignment of CtCBM35 with other CBM35s showed a conserved signature sequence motif Trp-Gly-Tyr, which is probably a specific determinant for mannan binding. Cloned CtCBM35 from Clostridium thermocellum ATCC 27405 was a homogenous, soluble 16 kDa protein. Ligand binding analysis of CtCBM35 by affinity electrophoresis displayed higher binding affinity against konjac glucomannan (K a = 2.5 × 105 M?1) than carob galactomannan (K a = 1.4 × 105 M?1). The presence of Ca2+ ions imparted slightly higher binding affinity of CtCBM35 against carob galactomannan and konjac glucomannan than without Ca2+ ion additive. However, CtCBM35 exhibited a low ligand-binding affinity K a = 2.5 × 10?5 M?1 with insoluble ivory nut mannan. Ligand binding study by fluorescence spectroscopy showed K a against konjac glucomannan and carob galactomannan, 2.4 × 105 M?1 and 1.44 × 105 M?1, and ΔG of binding ?27.0 and ?25.0 kJ/mol, respectively, substantiating the findings of affinity electrophoresis. Ca2+ ions escalated the thermostability of CtCBM35 and its melting temperature was shifted to 70°C from initial 55°C. Therefore thermostable CtCBM35 targets more β-(1,4)-manno-configured ligands from plant cell wall hemicellulosic reservoir. Thus a non-catalytic CtCBM35 of multienzyme cellulosomal enzymes may gain interest in the biofuel and food industry in the form of released sugars by targeting plant cell wall polysaccharides.  相似文献   

7.
The N-terminal catalytic module of β-mannanase TrMan5A from the filamentous fungus Trichoderma reesei is classified into family 5 of glycoside hydrolases. It is further classified in clan A with a (β/α)8 barrel configuration and has two catalytic glutamates (E169 and E276). It has at least five other residues conserved in family 5. Sequence alignment revealed that an arginine (R171 in TrMan5A) is semi-conserved among β-mannanases in family 5. In a previously published mannobiose complex structure, this residue is positioned in hydrogen bonding distance from the C2 hydroxyl group of the mannose residue bound at the +2 subsite. To study the function of R171, mutants of this residue were constructed. The results show that arginine 171 is important for substrate binding and transglycosylation. A mutant of TrMan5A with the substitution R171K displayed retained activity on polymeric galactomannan but reduced activity on oligosaccharides due to an increase of Km. While the wild-type enzyme produces mannobiose as dominant product from mannotetraose the R171K mutant shows an altered product profile, producing mannotriose and mannose. The cleavage pattern of mannotetraose was analysed with a method using isotope labelled water (H218O) and mass spectrometry which showed that the preferred productive binding mode of mannotetraose was shifted from subsite ?2 to +2 in the wild-type to subsite ?3 to +1 in the R171K mutant. Significant differences in product formation after manno-oligosaccharide incubation showed that the wild-type enzyme can perform transglycosylation on to saccharide acceptors while the R171K mutant cannot, likely due to loss of acceptor affinity. Interestingly, both enzymes show the ability to perform alcoholysis reactions with methanol and butanol, forming new β-linked glyco-conjugates. Furthermore, it appears that the wild-type enzyme produces mainly mannobiose conjugates using M4 as substrate, while in contrast the R171K mutant produces mainly mannotriose conjugates, due to the altered subsite binding.  相似文献   

8.
The endo-beta-1,4-mannanase from the soil bacterium Cellulomonas fimi is a modular plant cell wall degrading enzyme involved in the hydrolysis of the backbone of mannan, one of the most abundant polysaccharides of the hemicellulosic network in the plant cell wall. The crystal structure of a recombinant truncated endo-beta-1,4-mannanase from C. fimi (CfMan26A-50K) was determined by X-ray crystallography to 2.25 A resolution using the molecular replacement technique. The overall structure of the enzyme consists of a core (beta/alpha)8-barrel catalytic module characteristic of clan GH-A, connected via a linker to an immunoglobulin-like module of unknown function. A complex with the oligosaccharide mannotriose to 2.9 A resolution has also been obtained. Both the native structure and the complex show a cacodylate ion bound at the -1 subsite, while subsites -2, -3, and -4 are occupied by mannotriose in the complex. Enzyme kinetic analysis and the analysis of hydrolysis products from manno-oligosaccharides and mannopentitol suggest five important active-site cleft subsites. CfMan26A-50K has a high affinity -3 subsite with Phe325 as an aromatic platform, which explains the mannose releasing property of the enzyme. Structural differences with the homologous Cellvibrio japonicus beta-1,4-mannanase (CjMan26A) at the -2 and -3 subsites may explain the poor performance of CfMan26A mutants as "glycosynthases".  相似文献   

9.
CsMan26 from Caldicellulosiruptor strain Rt8.B4 is a modular β-mannanase consisting of two N-terminal family 27 carbohydrate-binding modules (CBMs), followed by a family 35 CBM and a family 26 glycoside hydrolase catalytic module (mannanase). A functional dissection of the full-length CsMan26 and a comprehensive characterisation of the truncated derivatives were undertaken to evaluate the role of the CBMs. Limited proteolysis was used to define biochemically the boundaries of the different structural modules in CsMan26. The full-length CsMan26 and three truncated derivatives were produced in Escherichia coli, purified and characterised. The systematic removal of the CBMs resulted in a decrease in the optimal temperature for activity and in the overall thermostability of the derivatives. Kinetic experiments indicated that the presence of the mannan-specific family 27 CBMs increased the affinity of the enzyme towards the soluble galactomannan substrate but this was accompanied by lower catalytic efficiency. The full-length CsMan26 and its truncated derivatives were unable to hydrolyse mannooligosaccharides with degree of polymerisation (DP) of three or less. The major difference in the hydrolysis pattern of larger mannooligosaccharides (DP >3) by the derivatives was determined by their abilities to further hydrolyse the intermediate sugar mannotetraose.  相似文献   

10.
The structure of O-linked acidic oligosaccharide from Saccharomyces cerevisiae was analyzed. The chitinase, exclusively O-glycosylated extracelluar protein, was purified from strains mnn1, mnn1 mnn4, mnn1 mnn6 and Δkre2 and the oligosaccharides were hydrolyzed by O-linked sugar chain specific hydrazinolysis. The mannosylphosphorylated mannotriose (M3-P-M) was detected in strain mnn1, but not in the other three strains (mnn1 mnn4, mnn1 mnn6 and Δkre2). α-Mannosidase treatment and matrix-assisted laser desorption ionization time-of-flight mass spectrometry of mannosylphosphorylated mannotriose revealed that mannosylphosphate was attached to a middle mannose of α-1,2-linked mannotriose. This result indicates that the mnn4 and mnn6 mutations affect the mannosylphosphorylation of O-linked oligosaccharide, together with that of N-linked oligosaccharide. The amount of mannosylphosphorylated mannotriose was 7% of total O-linked oligosaccharides (20% of neutral mannotriose) of chitinase in strain mnn1.  相似文献   

11.
Microbial degradation of plant cell walls is a central component of the carbon cycle and is of increasing importance in environmentally significant industries. Plant cell wall-degrading enzymes have a complex molecular architecture consisting of catalytic modules and, frequently, multiple non-catalytic carbohydrate binding modules (CBMs). It is currently unclear whether the specificities of the CBMs or the topology of the catalytic modules are the primary drivers for the specificity of these enzymes against plant cell walls. Here, we have evaluated the relationship between CBM specificity and their capacity to enhance the activity of GH5 and GH26 mannanases and CE2 esterases against intact plant cell walls. The data show that cellulose and mannan binding CBMs have the greatest impact on the removal of mannan from tobacco and Physcomitrella cell walls, respectively. Although the action of the GH5 mannanase was independent of the context of mannan in tobacco cell walls, a significant proportion of the polysaccharide was inaccessible to the GH26 enzyme. The recalcitrant mannan, however, was fully accessible to the GH26 mannanase appended to a cellulose binding CBM. Although CE2 esterases display similar specificities against acetylated substrates in vitro, only CjCE2C was active against acetylated mannan in Physcomitrella. Appending a mannan binding CBM27 to CjCE2C potentiated its activity against Physcomitrella walls, whereas a xylan binding CBM reduced the capacity of esterases to deacetylate xylan in tobacco walls. This work provides insight into the biological significance for the complex array of hydrolytic enzymes expressed by plant cell wall-degrading microorganisms.  相似文献   

12.
An alkaline-thermostable mannanase from Streptomyces sp. CS428 was produced, purified, and biochemically characterized. The extracellular mannanase (Mn428) was purified to homogeneity with 12.4 fold, specific activity of 2406.7 U/mg, and final recovery of 37.6 %. The purified β-mannanase was found to be a monomeric protein with a molecular mass of approximately 35 kDa as analyzed by SDS-PAGE and zymography. The first N-terminal amino acid sequences of mannanase enzyme were HIRNGNHQLPTG. The optimal temperature and pH for enzyme were 60 °C and 12.5, respectively. The mannanase activities were significantly affected by the presence of metal ions, modulators, and detergents. Km and Vmax values of Mn428 were 1.01 ± 3.4 mg/mL and 5029 ± 85 µmol/min mg, respectively when different concentrations (0.6–10 mg/mL) of locust bean gum galactomannan were used as substrate. The substrate specificity of enzyme showed its highest specificity towards galactomannan which was further hydrolyzed to produce mannose, mannobiose, mannotriose, and a series of mannooligosaccharides. Mannooligosaccharides can be further converted to ethanol production, thus the purified β-mannanase isolated from Streptomyces sp. CS428 was found to be attractive for biotechnological applications.  相似文献   

13.
14.
We have obtained evidence for two structurally and antigenically different Saccharomyces cerevisiae cell wall mannans. One, which occurs widely and is found in S. cerevisiae strain 238C, is already known to be a neutral mannan which yields mannose, mannobiose, mannotriose, and mannotetraose on acetolysis of the (1 --> 6)-linked backbone. The other, which was found in S. cerevisiae brewer's strains, is a phosphomannan with a structure very similar to that of Kloeckera brevis mannan. S. cerevisiae (brewer's yeast strain) was agglutinated by antiserum prepared against Kloeckera brevis cells. The mannan, isolated from a proteolytic digest of the cell wall of the former, did not react with S. cerevisiae 238C antiserum, whereas it cross-reacted strongly with K. brevis antiserum. Controlled acetolysis cleaved the (1 --> 6)-linkages in the polysaccharide backbone and released mannose, mannobiose, mannotriose, and mannotriose phosphate. Mild acid treatment of the phosphomannan hydrolyzed the phosphodiester linkage, yielding phosphomonoester mannan and mannose. The resulting phosphomonoester mannan reacted with antiserum prepared against K. brevis possessing monoester phosphate groups on the cell surface. alpha-d-Mannose-1-phosphate completely inhibited the precipitin reaction between brewer's yeast mannan and the homologous antiserum. Flocculent and nonflocculent strains of this yeast were shown to have similar structural and immunological properties.  相似文献   

15.
N.m.r., enzymic, and chemical techniques have been used to characterise the d-galactose-containing tri- and tetra-saccharides produced on hydrolysis of carob and L. leucocephalad-galacto-d-mannans by Driselase β-d-mannanase. These oligosaccharides were shown to be exclusively 61-α-d-galactosyl-β-d-mannobiose and 61-α-d-galactosyl-β-d-mannotriose. Furthermore, these were the only d-galactose-containing tri- and tetra-saccharides produced on hydrolysis of carob d-galacto-d-mannan by β-d-mannanases from other sources, including Bacillus subtilis, Aspergillus niger, Helix pomatia gut solution, and germinated legumes. Acid hydrolysis of lucerne galactomannan yielded 61-α-d-galactosyl-β-d-mannobiose and 62-α-d-galactosyl-β-d-mannobiose.  相似文献   

16.
In general, cellulases and hemicellulases are modular enzymes in which the catalytic domain is appended to one or more noncatalytic carbohydrate binding modules (CBMs). CBMs, by concentrating the parental enzyme at their target polysaccharide, increase the capacity of the catalytic module to bind the substrate, leading to a potentiation in catalysis. Clostridium thermocellum hypothetical protein Cthe_0821, defined here as C. thermocellum Man5A, is a modular protein comprising an N-terminal signal peptide, a family 5 glycoside hydrolase (GH5) catalytic module, a family 32 CBM (CBM32), and a C-terminal type I dockerin module. Recent proteomic studies revealed that Cthe_0821 is one of the major cellulosomal enzymes when C. thermocellum is cultured on cellulose. Here we show that the GH5 catalytic module of Cthe_0821 displays endomannanase activity. C. thermocellum Man5A hydrolyzes soluble konjac glucomannan, soluble carob galactomannan, and insoluble ivory nut mannan but does not attack the highly galactosylated mannan from guar gum, suggesting that the enzyme prefers unsubstituted β-1,4-mannoside linkages. The CBM32 of C. thermocellum Man5A displays a preference for the nonreducing ends of mannooligosaccharides, although the protein module exhibits measurable affinity for the termini of β-1,4-linked glucooligosaccharides such as cellobiose. CBM32 potentiates the activity of C. thermocellum Man5A against insoluble mannans but has no significant effect on the capacity of the enzyme to hydrolyze soluble galactomannans and glucomannans. The product profile of C. thermocellum Man5A is affected by the presence of CBM32.  相似文献   

17.
Genomic walking PCR was used to obtained a 4,567-bp nucleotide sequence from Caldibacillus cellulovorans. Analysis of this sequence revealed that there were three open reading frames, designated ORF1, ORF2, and ORF3. Incomplete ORF1 encoded a putative C-terminal cellulose-binding domain (CBD) homologous to members of CBD family IIIb, while putative ORF3 encoded a protein of unknown function. The putative ManA protein encoded by complete manA ORF2 was an enzyme with a novel multidomain structure and was composed of four domains in the following order: a putative N-terminal domain (D1) of unknown function, an internal CBD (D2), a β-mannanase catalytic domain (D3), and a C-terminal CBD (D4). All four domains were linked via proline-threonine-rich peptides. Both of the CBDs exhibited sequence similarity to family IIIb CBDs, while the mannanase catalytic domain exhibited homology to the family 5 glycosyl hydrolases. The purified recombinant enzyme ManAd3 expressed from the cloned catalytic domain (D3) exhibited optimum activity at 85°C and pH 6.0 and was extremely thermostable at 70°C. This enzyme exhibited high specificity with the substituted galactomannan locust bean gum, while more substituted galacto- and glucomannans were poorly hydrolyzed. Preliminary studies to determine the effect of the recombinant ManAd3 and a recombinant thermostable β-xylanase on oxygen-delignified Pinus radiata kraft pulp revealed that there was an increase in the brightness of the bleached pulp.  相似文献   

18.
The genome sequence of the hyperthermophilic bacterium Thermotoga maritima encodes a number of glycosyl hydrolases. Many of these enzymes have been shown in vitro to degrade specific glycosides that presumably serve as carbon and energy sources for the organism. However, because of the broad substrate specificity of many glycosyl hydrolases, it is difficult to determine the physiological substrate preferences for specific enzymes from biochemical information. In this study, T. maritima was grown on a range of polysaccharides, including barley beta-glucan, carboxymethyl cellulose, carob galactomannan, konjac glucomannan, and potato starch. In all cases, significant growth was observed, and cell densities reached 10(9) cells/ml. Northern blot analyses revealed different substrate-dependent expression patterns for genes encoding the various endo-acting beta-glycosidases; these patterns ranged from strong expression to no expression under the conditions tested. For example, cel74 (TM0305), a gene encoding a putative beta-specific endoglucananse, was strongly expressed on all substrates tested, including starch, while no evidence of expression was observed on any substrate for lam16 (TM0024), xyl10A (TM0061), xyl10B (TM0070), and cel12A (TM1524), which are genes that encode a laminarinase, two xylanases, and an endoglucanase, respectively. The cel12B (TM1525) gene, which encodes an endoglucanase, was expressed only on carboxymethyl cellulose. An extracellular mannanase encoded by man5 (TM1227) was expressed on carob galactomannan and konjac glucomannan and to a lesser extent on carboxymethyl cellulose. An unexpected result was the finding that the cel5A (TM1751) and cel5B (TM1752) genes, which encode putative intracellular beta-specific endoglucanases, were induced only when T. maritima was grown on konjac glucomannan. To investigate the biochemical basis of this finding, the recombinant forms of Man5 (M(r), 76,900) and Cel5A (M(r), 37,400) were expressed in Escherichia coli and characterized. Man5, a T. maritima extracellular enzyme, had a melting temperature of 99 degrees C and an optimun temperature of 90 degrees C, compared to 90 and 80 degrees C, respectively, for the intracellular enzyme Cel5A. While Man5 hydrolyzed both galactomannan and glucomannan, no activity was detected on glucans or xylans. Cel5A, however, not only hydrolyzed barley beta-glucan, carboxymethyl cellulose, xyloglucan, and lichenin but also had activity comparable to that of Man5 on galactomannan and higher activity than Man5 on glucomannan. The biochemical characteristics of Cel5A, the fact that Cel5A was induced only when T. maritima was grown on glucomannan, and the intracellular localization of Cel5A suggest that the physiological role of this enzyme includes hydrolysis of glucomannan oligosaccharides that are transported following initial hydrolysis by extracellular glycosidases, such as Man5.  相似文献   

19.
This study investigated the behavior of mannan-degrading enzymes, specifically focusing on differences with respect to their substrate specificities and their synergistic associations with enzymes from different glycoside hydrolase (GH) families. Galactosidases from Cyamopsis tetragonolobus seeds (Aga27A, GH27) and Aspergillus niger (AglC, GH36) were evaluated for their abilities to synergistically interact with mannanases from Clostridium cellulovorans (ManA, GH5) and A. niger (Man26A, GH26) in hydrolysis of guar gum and locust bean gum. Among the mannanases, Man26A was more efficient at hydrolyzing both galactomannan substrates, while among the galactosidases; Aga27A was the most effective at removing galactose substituents on both galactomannan substrates and galactose-containing oligosaccharides. An optimal protein mass ratio of glycoside hydrolases required to maximize the release of both reducing sugar and galactose residues was determined. Clear synergistic enhancement of locust bean gum hydrolysis with respect to reducing sugar release was observed when both mannanases at 75% enzyme dosage were supplemented with 25% enzyme protein dosage of Aga27A. At a protein ratio of 75% Man26A to 25% Aga27A, the presence of Man26A significantly enhanced galactose release by 25% Aga27A (2.36 fold) with locust bean gum, compared to when Aga27A was used alone at 100% enzyme protein dosage. A dosage of Aga27A at 75% and ManA at 25% protein content liberated the highest reducing sugar release on guar gum hydrolysis. A dosage of Man26A and Aga27A at 75–25% protein content, respectively, liberated reducing sugar release equivalent to that when Man26A was used alone at 100% protein content. From the findings obtained in this study, it was observed that the GH family classification of an enzyme affects its substrate specificity and synergistic interactions with other glycoside hydrolases from different families (more so than its EC classification). The GH26 Man26A and GH27 Aga27A enzymes appeared to be more promising for applications that involve the hydrolysis of galactomannan containing biomass. This method of screening for maximal compatibility between various GH families can ultimately lead to a more rational development of tailored enzyme cocktails for lignocellulose hydrolysis.  相似文献   

20.
Two distinct extracellular bifunctional proteins with β-L-arabinopyranosidase/α-D-galactopyranosidase activities were purified from the culture filtrate of Fusarium oxysporum 12S. The molecular masses of the enzymes were estimated to be 55 (Fo/AP1) and 73 kDa (Fo/AP2) by SDS-PAGE. They hydrolyzed both p-nitrophenyl β-L-arabinopyranoside and p-nitrophenyl α-D-galactopyranoside with different specificities. Fo/AP1 also showed low activity towards α-D-galactopyranosyl oligosaccharides such as raffinose. Interestingly, both enzymes hydrolyzed larch wood arabinogalactan (releasing arabinose) but not carob galactomannan, which has α-D-galactopyranosyl side chains. When larch wood arabinogalactan was incubated with excess Fo/AP1 or Fo/AP2, both enzymes released approximately 10% of the total arabinose in the substrate. cDNAs encoding Fo/AP1 and Fo/AP2 (Foap1 and Foap2) were isolated by in vitro cloning. The coding sequences of Foap1 and Foap2 genes were 1,647 and 1,620 bp in length and encode polypeptides of 549 and 540 amino acids, respectively. The N-terminal halves of both proteins had high similarity to putative conserved domains of the melibiase superfamily (Pfam account number 02065). The deduced amino acid sequences of the two enzymes indicate that they belong to glycosyl hydrolase family 27. Moreover, the C-terminal regions of both proteins contain a putative family 35 carbohydrate-binding module.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号