首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Recently, there has been a surge of interest in developing compounds selectively targeting mitochondria for the treatment of neoplasms. The critical role of mitochondria in cellular metabolism and respiration supports this therapeutic rationale. Dysfunction in the processes of energy production and metabolism contributes to attenuation of response to pro-apoptotic stimuli and increased ROS production both of which are implicated in the initiation and progression of most human cancers.

Methodology/Principal Findings

A high-throughput MTT-based screen of over 10,000 drug-like small molecules for anti-proliferative activity identified the phosphonium salts TP187, 197 and 421 as having IC50 concentrations in the submicromolar range. TP treatment induced cell cycle arrest independent of p53 status, as determined by analysis of DNA content in propidium iodide stained cells. In a mouse model of human breast cancer, TP-treated mice showed significantly decreased tumor growth compared to vehicle or paclitaxel treated mice. No toxicities or organ damage were observed following TP treatment. Immunohistochemical staining of tissue sections from TP187-treated tumors demonstrated a decrease in cellular proliferation and increased caspase-3 cleavage. The fluorescent properties of analog TP421 were exploited to assess subcellular uptake of TP compounds, demonstrating mitochondrial localization. Following mitochondrial uptake cells exhibited decreased oxygen consumption and concomittant increase in mitochondrial superoxide production. Proteomics analysis of results from a 600 target antibody microarray demonstrated that TP compounds significantly affected signaling pathways relevant to growth and proliferation.

Conclusions/Significance

Through our continued interest in designing compounds targeting cancer-cell metabolism, the Warburg effect, and mitochondria we recently discovered a series of novel, small-molecule compounds containing a triphenylphosphine moiety that show remarkable activity in a panel of cancer cell lines as well as in a mouse model of human breast cancer. The mechanism of action includes mitochondrial localization causing decreased oxygen consumption, increased superoxide production and attenuated growth factor signaling.  相似文献   

2.

Introduction

Diabetes mellitus (DM) has the potential to impact the pathogenesis, treatment, and outcome of pancreatic cancer. This study evaluates the impact of DM on pancreatic cancer survival.

Methods

We conducted a retrospective cohort study from the Veterans Affairs (VA) Central Cancer Registry (VACCR) for pancreatic cancer cases between 1995 and 2008. DM and no-DM cases were identified from comorbidity data. Univariate and multivariable analysis was performed. Multiple imputation method was employed to account for missing variables.

Results

Of 8,466 cases of pancreatic cancer DM status was known in 4728 cases that comprised this analysis. Males accounted for 97.7% cases, and 78% were white. Overall survival was 4.2 months in DM group and 3.6 months in the no-DM group. In multivariable analysis, DM had a HR = 0.91 (0.849–0.974). This finding persisted after accounting for missing variables using multiple imputations method with the HR in DM group of 0.93 (0.867–0.997).

Conclusions

Our data suggest DM is associated with a reduction in risk of death in pancreatic cancer. Future studies should be directed towards examining this association, specifically impact of DM medications on cancer outcome.  相似文献   

3.

Background

Pancreatic cancer (PDAC) is characterized by an abundant fibrous tissue rich in Tenascin-C (TNC), a large ECM glycoprotein mainly synthesized by pancreatic stellate cells (PSCs). In human pancreatic tissues, TNC expression increases in the progression from low-grade precursor lesions to invasive cancer. Aim of this study was the functional characterization of the effects of TNC on biologic relevant properties of pancreatic cancer cells.

Methods

Proliferation, migration and adhesion assays were performed on pancreatic cancer cell lines treated with TNC or grown on a TNC-rich matrix. Stable transfectants expressing the large TNC splice variant were generated to test the effects of endogenous TNC. TNC-dependent integrin signaling was investigated by immunoblotting, immunofluorescence and pharmacological inhibition.

Results

Endogenous TNC promoted pancreatic cancer cell growth and migration. A TNC-rich matrix also enhanced migration as well as the adhesion to the uncoated growth surface of poorly differentiated cell lines. In contrast, adhesion to fibronectin was significantly decreased in the presence of TNC. The effects of TNC on cell adhesion were paralleled by changes in the activation state of paxillin and Akt.

Conclusion

TNC affects proliferation, migration and adhesion of poorly differentiated pancreatic cancer cell lines and might therefore play a role in PDAC spreading and metastasis in vivo.  相似文献   

4.
5.

Background

We have investigated the potential anticancer effects of karanjin, a principal furanoflavonol constituent of the Chinese medicine Fordia cauliflora, using cytotoxic assay, cell cycle arrest, and induction of apoptosis in three human cancer cell lines (A549, HepG2 and HL-60 cells).

Results

MTT cytotoxic assay showed that karanjin could inhibit the proliferation and viability of all three cancer cells. The induction of cell cycle arrest was observed via a PI (propidium iodide)/RNase Staining Buffer detection kit and analyzed by flow cytometry: karanjin could dose-dependently induce cell cycle arrest at G2/M phase in the three cell lines. Cell apoptosis was assessed by Annexin V-FITC/PI staining: all three cancer cells treated with karanjin exhibited significantly increased apoptotic rates, especially in the percentage of late apoptosis cells.

Conclusion

Karanjin can induce cancer cell death through cell cycle arrest and enhance apoptosis. This compound may be effective clinically for cancer pharmacotherapy.  相似文献   

6.
SE Lee  H Yang  SI Jeong  YH Jin  CS Park  YS Park 《PloS one》2012,7(7):e41676

Background

Crotonaldehyde, an alpha, beta-unsaturated aldehyde present in cigarette smoke, is an environmental pollutant and a product of lipid peroxidation. It also produces adverse effects to humans and is considered as a risk factor for various diseases. Heme oxygenase-1 (HO-1) plays important roles in protecting cells against oxidative stress as a prime cellular defense mechanism. However, HO-1 may be associated with cell proliferation and resistance to apoptosis in cancer cells. The aim of this study was to examine the effects of HO-1 induction on cell survival in crotonaldehyde-stimulated human hepatocellular carcinoma (HepG2) cells.

Methods

To investigate the signaling pathway involved in crotonaldehyde-induced HO-1 expression, we compared levels of inhibition efficiency of specific inhibitors and specific small interfering RNAs (siRNAs) of several kinases. The cell-cycle and cell death was measured by FACS and terminal dUTP nick-end labeling (TUNEL) staining.

Results

Treatment with crotonaldehyde caused a significant increase in nuclear translocation of NF-E2 related factor (Nrf2). Treatment with inhibitors of the protein kinase C-δ (PKC-δ) and p38 pathways resulted in obvious blockage of crotonaldehyde-induced HO-1 expression. Furthermore, treatment with HO-1 siRNA and the specific HO-1 inhibitor zinc-protoporphyrin produced an increase in the G0/G1 phase of the cell cycle in crotonaldehyde-stimulated HepG2 cells.

Conclusions

Taken together, the results support an anti-apoptotic role for HO-1 in crotonaldehyde-stimulated human hepatocellular carcinoma cells and provide a mechanism by which induction of HO-1 expression via PKC-δ–p38 MAPK–Nrf2 pathway may promote tumor resistance to oxidative stress.  相似文献   

7.

Background

Houttuynia cordata Thunb (HCT) is commonly used in Taiwan and other Asian countries as an anti-inflammatory, antibacterial and antiviral herbal medicine. In this study, we investigated the anti-human lung cancer activity and growth inhibition mechanisms of HCT in human lung cancer A549 cells.

Results

In order to investigate effects of HCT on A549 cells, MTT assay was used to evaluate cell viability. Flow cytometry was employed for cell cycle analysis, DAPI staining, and the Comet assay was used for DNA fragmentation and DNA condensation. Western blot analysis was used to analyze cell cycle and apoptotic related protein levels. HCT induced morphological changes including cell shrinkage and rounding. HCT increased the G0/G1 and Sub-G1 cell (apoptosis) populations and HCT increased DNA fragmentation and DNA condensation as revealed by DAPI staining and the Comet assay. HCT induced activation of caspase-8 and caspase-3. Fas/CD95 protein levels were increased in HCT-treated A549 cells. The G0/G1 phase and apoptotic related protein levels of cyclin D1, cyclin A, CDK 4 and CDK 2 were decreased, and p27, caspase-8 and caspase-3 were increased in A549 cells after HCT treatment.

Conclusions

The results demonstrated that HCT-induced G0/G1 phase arrest and Fas/CD95-dependent apoptotic cell death in A549 cells  相似文献   

8.

Background

Ovarian cancer remains a leading cause of death in women and development of new therapies is essential. Second mitochondria derived activator of caspase (SMAC) has been described to sensitize for apoptosis. We have explored the pro-apoptotic activity of LBW242, a mimic of SMAC/DIABLO, on ovarian cancer cell lines (A2780 cells and its chemoresistant derivative A2780/ADR, SKOV3 and HEY cells) and in primary ovarian cancer cells. The effects of LBW242 on ovarian cancer cell lines and primary ovarian cancer cells was determined by cell proliferation, apoptosis and biochemical assays.

Principal Findings

LBW242 added alone elicited only a moderate pro-apoptotic effect; however, it strongly synergizes with tumor necrosis factor-related apoptosis inducing ligand (TRAIL) or anticancer drugs in inducing apoptosis of both ovarian cancer cell lines and primary ovarian cancer cells. Mechanistic studies show that LBW242-induced apoptosis in ovarian cancer cells is associated with activation of caspase-8. In line with this mechanism, c-FLIP overexpression inhibits LBW242-mediated apoptosis.

Conclusion

LBW242 sensitizes ovarian cancer cells to the antitumor effects of TRAIL and anticancer drugs commonly used in clinic. These observations suggest that the SMAC/DIABLO mimic LBW242 could be of value for the development of experimental strategies for treatment of ovarian cancer.  相似文献   

9.

Background

The potential prognostic value of human equilibrative nucleoside transporter1 in pancreatic cancer receiving gemcitabine-based chemotherapy is variably reported.

Objective

The objective of this study was to conduct a systematic review of literature evaluating human equilibrative nucleoside transporter1 expression as a prognostic factor in pancreatic cancer receiving gemcitabine-based chemotherapy and to conduct a subsequent meta-analysis to quantify the overall prognostic effect.

Methods

Related studies were identified and evaluated for quality through multiple search strategies. Only studies analyzing pancreatic cancer receiving gemcitabine-based chemotherapy were eligible for inclusion. Data were collected from studies comparing overall, disease-free and progression-free survival (OS, DFS and PFS) in patients with low human equilibrative nucleoside transporter1 levels and those having high levels. The hazard ratio (HR) and its 95% confidence interval (95%CI) were used to assess the strength of associations. Hazard ratios greater than 1 reflect adverse survival associated with low human equilibrative nucleoside transporter1 levels.

Results

A total of 12 studies (n = 875) were involved in this meta-analysis (12 for OS, 5 for DFS, 3 for PFS). For overall and disease-free survival, the pooled HRs of human equilibrative nucleoside transporter1 were significant at 2.93 (95% confidence interval [95% CI], 2.37–3.64) and 2.67 (95% CI, 1.87–3.81), respectively. For progression-free survival, the pooled HR in higher human equilibrative nucleoside transporter1 expression in pancreatic cancer receiving gemcitabine-based chemotherapy was 2.76 (95% CI, 1.76–4.34). No evidence of significant heterogeneity or publication bias was seen in any of these studies.

Conclusion

These results support the case for a low human equilibrative nucleoside transporter1 level representing a significant and reproducible marker of adverse prognosis in pancreatic cancer receiving gemcitabine-based chemotherapy.  相似文献   

10.
11.

Background

This study evaluated the cytotoxic activity of extracts from Caesalpinia sappan heartwood against multiple cancer cell lines using an MTT cell viability assay. The cell death though induction of apoptosis was as indicated by DNA fragmentation and caspase-3 enzyme activation.

Results

A methanol extract from C. sappan (MECS) showed cytotoxic activity against several of the cancer cell lines. The most potent activity exhibited by the MECS was against HeLa cells with an IC50 value of 26.5 ± 3.2 μg/mL. Treatment of HeLa cells with various MECS concentrations resulted in growth inhibition and induction of apoptosis, as indicated by DNA fragmentation and caspase-3 enzyme activation.

Conclusion

This study is the first report of the anticancer properties of the heartwood of C. sappan native to Vietnam. Our findings demonstrate that C. sappan heartwood may have beneficial applications in the field of anticancer drug discovery.  相似文献   

12.
Ma K  Liu Y  Zhu Q  Liu CH  Duan JL  Tan BK  Zhu YZ 《PloS one》2011,6(6):e20525

Background

S-propargyl-cysteine (SPRC), an H2S donor, is a structural analogue of S-allycysteine (SAC). It was investigated for its potential anti-cancer effect on SGC-7901 gastric cancer cells and the possible mechanisms that may be involved.

Methods and Findings

SPRC treatment significantly decreased cell viability, suppressed the proliferation and migration of SPRC-7901 gastric cancer cells, was pro-apoptotic as well as caused cell cycle arrest at the G1/S phase. In an in vivo study, intra-peritoneal injection of 50 mg/kg and 100 mg/kg of SPRC significantly reduced tumor weights and tumor volumes of gastric cancer implants in nude mice, with a tumor growth inhibition rate of 40–75%. SPRC also induced a pro-apoptotic effect in cancer tissues and elevated the expressions of p53 and Bax in tumors and cells. SPRC treatment also increased protein expression of cystathione-γ-lyase (CSE) in cells and tumors, and elevated H2S levels in cell culture media, plasma and tumoral CSE activity of gastric cancer-induced nude mice by 2, 2.3 and 1.4 fold, respectively. Most of the anti-cancer functions of SPRC on cells and tumors were significantly suppressed by PAG, an inhibitor of CSE activity.

Conclusions

Taken together, the results of our study provide insights into a novel anti-cancer effect of H2S as well as of SPRC on gastric cancer through inducing the activity of a new target, CSE.  相似文献   

13.

Background

Some common genetic variants of TERT-CLPTM1L gene, which encode key protein subunits of telomerase, have been suggested to play a crucial role in tumorigenesis. The TERT-CLPTM1L polymorphism rs401681 was of special interest for cancers risk but with inconclusive results.

Methodology/Principal Findings

We performed a comprehensive meta-analysis of 29 publications with a total of 91263 cases and 735952 controls. We assessed the strength of the association between rs401681 and overall cancers risk and performed subgroup analyses by cancer type, ethnicity, source of control, sample size and expected power. Rs401681 C allele was found to be associated with marginally increased cancers risk, with per allele OR of 1.04 (95%CI = 1.00–1.08, P heterogeneity<0.001) and an expected power of 1.000. Following further stratified analyses, the increased cancers risk were discovered in subgroups of lung, bladder, prostate, basal cell carcinomas and Asians, while a declined risk of pancreatic cancer and melanoma were detected.

Conclusions/Significance

These findings suggested that rs401681 C allele was a low-penetrance risk allele for the development of cancers of lung, bladder, prostate and basal cell carcinoma, but a potential protective allele for melanoma and pancreatic cancer.  相似文献   

14.

Background

CD166, also known as activated leukocyte cell adhesion molecule (ALCAM), is expressed by various cells in several tissues including cancer. However, the role of CD166 in malignant tumors is controversial, especially in pancreatic cancer. This study aimed to clarify the role and significance of CD166 expression in pancreatic cancer.

Methods

We performed immunohistochemistry and flow cytometry to analyze the expression of CD166 in surgical pancreatic tissues and pancreatic cancer cell lines. The differences between isolated CD166+ and CD166- pancreatic cancer cells were analyzed by invasion and migration assays, and in mouse xenograft models. We also performed quantitative RT-PCR and microarray analyses to evaluate the expression levels of CD166 and related genes in cultured cells.

Results

Immunohistochemistry revealed high expression of CD166 in pancreatic cancer tissues (12.2%; 12/98) compared with that in normal pancreas controls (0%; 0/17) (p = 0.0435). Flow cytometry indicated that CD166 was expressed in 33.8–70.2% of cells in surgical pancreatic tissues and 0–99.5% of pancreatic cancer cell lines. Invasion and migration assays demonstrated that CD166- pancreatic cancer cells showed stronger invasive and migratory activities than those of CD166+ cancer cells (p<0.05). On the other hand, CD166+ Panc-1 cells showed a significantly stronger colony formation activity than that of CD166- Panc-1 cells (p<0.05). In vivo analysis revealed that CD166+ cells elicited significantly greater tumor growth than that of CD166- cells (p<0.05) in both subcutaneous and orthotopic mouse tumor models. mRNA expression of the epithelial-mesenchymal transition activator Zeb1 was over-expressed in CD166- cells (p<0.001). Microarray analysis showed that TSPAN8 and BST2 were over-expressed in CD166+ cells, while BMP7 and Col6A1 were over-expressed in CD166- cells.

Conclusions

CD166+ pancreatic cancer cells are strongly tumorigenic, while CD166- pancreatic cancer cells exhibit comparatively stronger invasive and migratory activities. These findings suggest that CD166 expression is related to different functions in pancreatic cancer cells.  相似文献   

15.
16.

Background

The zinc transporter ZIP4 (Slc39a4) is important for proper mammalian development and is an essential gene in mice. Recent studies suggest that this gene may also play a role in pancreatic cancer.

Methods/Principal Findings

Herein, we present evidence that this essential zinc transporter is expressed in hepatocellular carcinomas. Zip4 mRNA and protein were dramatically elevated in hepatocytes in the majority of human hepatocellular carcinomas relative to noncancerous surrounding tissues, as well as in hepatocytes in hepatocellular carcinomas occurring in farnesoid X receptor-knockout mice. Interestingly, meta-analysis of microarray data in the Geo and Oncomine databases suggests that Zip4 mRNA may also be elevated in many types of cancer. Potential mechanisms of action of ZIP4 were examined in cultured cell lines. RNAi knockdown of Zip4 in mouse Hepa cells significantly increased apoptosis and modestly slowed progression from G0/G1 to S phase when cells were released from hydroxyurea block into zinc-deficient medium. Cell migration assays revealed that RNAi knockdown of Zip4 in Hepa cells depressed in vitro migration whereas forced over-expression in Hepa cells and MCF-7 cells enhanced in vitro migration.

Conclusions

ZIP4 may play a role in the acquisition of zinc by hepatocellular carcinomas, and potentially many different cancerous cell-types, leading to repressed apoptosis, enhanced growth rate and enhanced invasive behavior.  相似文献   

17.
Santi SA  Lee H 《PloS one》2011,6(1):e14614

Background

Akt/PKB is a promising anticancer therapeutic target, since abnormally elevated Akt activity is directly correlated to tumor development, progression, poor prognosis and resistance to cancer therapies. Currently, the unique role of each Akt isoform and their relevance to human breast cancer are poorly understood.

Methodology/Principal Findings

We previously found that Akt1, 2 and 3 are localized at specific subcellular compartments (the cytoplasm, mitochondria and nucleus, respectively), raising the possibility that each isoform may have unique functions and employ different regulation mechanisms. By systematically studying Akt-ablated MDA-MB231 breast cancer cells with isoform-specific siRNA, we here show that Akt2 is the most relevant isoform to cell proliferation and survival in our cancer model. Prolonged ablation of Akt2 with siRNA resulted in cell-cycle arrest in G0/G1 by downregulating Cdk2 and cyclin D, and upregulating p27. The analysis of the Akt downstream signaling pathways suggested that Akt2 specifically targets and activates the p70S6K signaling pathway. We also found that Akt2 ablation initially resulted in an increase in the mitochondrial volume concomitantly with the upregulation of PGC-1α, a regulator of mitochondrial biogenesis. Prolonged ablation of Akt2, but not Akt1 or Akt3, eventually led to cell death by autophagy of the mitochondria (i.e., mitophagy).

Conclusions/Significance

Collectively, our data demonstrates that Akt2 augments cell proliferation by facilitating cell cycle progression through the upregulation of the cell cycle engine, and protects a cell from pathological autophagy by modulating mitochondrial homeostasis. Our data, thus, raises the possibility that Akt2 can be an effective anticancer target for the control of (breast) cancer.  相似文献   

18.
19.
20.

Background

Pancreatic cancer is a devastating disease with dismal prognosis. Large population-based evidence on its survival rate and influence factors is lacking in China.

Objective

This study aimed to depict the demographic factors, tumor characteristics, incidence rate and survival rate of pancreatic cancer cases in urban China.

Methods

The demographic factors, tumor characteristics were collected for all the pancreatic cancer cases identified during 2004 to 2009 from the Shanghai Cancer Registry. The survival time was ascertained through linkage of the Shanghai Cancer Registry and the Shanghai Vital Statistics Registry. The deadline of death certificates was the end of December 2012. Kaplan-Meier method and Cox proportional-hazards regression model were used to explore the survival rate and influence factors.

Results

11,672 new pancreatic cancer cases were identified among Shanghai residency during 2004 to 2009. The crude incidence rate of pancreatic cancer was increasing from 12.80/100,000 in 2004 to 15.66/100,000 in 2009, while the standardized incidence rate was about 6.70/100,000 and didn''t change a lot. The overall 5-year survival rate was 4.1% and the median survival time was 3.9 (95% Confidence Interval (CI) 3.8–4.0) months. Subjects had received surgical resection had improved survival (HR  = 0.742, 95% CI: 0.634–0.868) than its counterparts. In adjusted multivariable Cox proportional-hazard models, factors associated with poor survival included older age at diagnosis (age > = 70 years: hazard ratio (HR)  = 1.827, 95% CI: 1.614–2.067), male sex (HR  = 1.155, 95% CI: 1.041–1.281), distant disease at diagnosis (HR =  1.257, 95% CI: 1.061–1.488), positive lymph node (HR  = 1.236, 95% CI: 1.085–1.408), tumor stage (Stage IV HR  = 2.817, 95% CI: 2.029–3.909).

Conclusion

The age-adjusted incidence rate was stable and overall survival rate was low among pancreatic cancer patients of Shanghai residency. Early detection and improved treatment strategies are needed to improve prognosis for this deadly disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号