首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The phosphatidylinositol 3-kinase (PI3K)/AKT pathway plays important roles in regulating cell motility. TSC2, a downstream target of AKT, is a central player in negatively controlling cell proliferation and protein translation through suppressing the activity of mTOR (mammalian target of rapamycin). However, the function of TSC2 in regulating cell migration remains unclear. Here, we show that TSC2 plays a critical role in the control of cell spreading, polarity, and migration. TSC2-deficient fibroblast cells were impaired in their ability to spread and alter actin cytoskeleton upon stimulation with insulin-like growth factor-1. Using scratch-induced polarization assay, we demonstrate that TSC2(−/−) fibroblast cells polarized poorly toward the wound compared with wild-type cells. Similarly, knockdown of TSC2 expression in colon cancer cells resulted in a marked decrease in cell motility. Functionally, the activation of CDC42- and RAC1-GTPase was largely reduced in TSC2 knock-out fibroblast and TSC2 knockdown cancer cells. Furthermore, overexpression of an activating p110α mutant or short term rapamycin treatment rescued the cell polarization defect in TSC2(−/−) fibroblast cells. Concurrently, the activation of CDC42 and RAC1 increased. The defect in cell migration and CDC42 and RAC1 activation was reversed by reintroducing TSC2 back into TSC2(−/−) fibroblast cells. Taken together, we identified a novel role of TSC2 in controlling cell polarity and migration by regulating CDC42 and RAC1 activation.  相似文献   

2.
The spatiotemporal control of cell polarity is crucial for the development of multicellular organisms and for reliable polarity switches during cell cycle progression in unicellular systems. A tight control of cell polarity is especially important in haploid budding yeast, where the new polarity site (bud site) is established next to the cell division site after cell separation. How cells coordinate the temporal establishment of two adjacent polarity sites remains elusive. Here, we report that the bud neck associated protein Gps1 (GTPase-mediated polarity switch 1) establishes a novel polarity cue that concomitantly sustains Rho1-dependent polarization and inhibits premature Cdc42 activation at the site of cytokinesis. Failure of Gps1 regulation leads to daughter cell death due to rebudding inside the old bud site. Our findings provide unexpected insights into the temporal control of cytokinesis and describe the importance of a Gps1-dependent mechanism for highly accurate polarity switching between two closely connected locations.  相似文献   

3.
4.
In the yeast Saccharomyces cerevisiae the guanosine triphosphatase (GTPase) Rho1 controls actin polarization and cell wall expansion. When cells are exposed to various environmental stresses that perturb the cell wall, Rho1 activates Pkc1, a mammalian Protein Kinase C homologue, and Mpk1, a mitogen activated protein kinase (MAPK), resulting in actin depolarization and cell wall remodeling. In this study, we demonstrate a novel feedback loop in this Rho1-mediated Pkc1-MAPK pathway that involves regulation of Rom2, the guanine nucleotide exchange factor of Rho1, by Mpk1, the end kinase of the pathway. This previously unrecognized Mpk1-depedent feedback is a critical step in regulating Rho1 function. Activation of this feedback mechanism is responsible for redistribution of Rom2 and cell wall synthesis activity from the bud to cell periphery under stress conditions. It is also required for terminating Rho1 activity toward the Pkc1-MAPK pathway and for repolarizing actin cytoskeleton and restoring growth after the stressed cells become adapted.  相似文献   

5.
Rho family GTPases are critical regulators in determining and maintaining cell polarity. In Saccharomyces cerevisiae, Rho3 and Cdc42 play important but distinct roles in regulating polarized exocytosis and overall polarity. Cdc42 is highly polarized during bud emergence and is specifically required for exocytosis at this stage. In contrast, Rho3 appears to play an important role during the isotropic growth of larger buds. Using a novel monoclonal antibody against Rho3, we find that Rho3 localizes to the cell surface in a dispersed pattern which is clearly distinct from that of Cdc42. Using chimeric forms of these GTPases, we demonstrate that a small region at the N terminus is necessary and sufficient to confer Rho3 localization and function onto Cdc42. Analysis of this domain reveals two essential elements responsible for distinguishing function. First, palmitoylation of a cysteine residue by the Akr1 palmitoyltransferase is required both for the switch of function and the switch of localization properties of this domain. Second, two basic residues distal to the palmitoylation site are required for regulating binding affinity with the Exo70 and Sec3 effectors. This demonstrates the importance of localization and effector binding in determining how these GTPases evolved specific functions at distinct stages of polarized growth.Cell polarity is a highly conserved feature of eukaryotic cells and is important for a number of events in animal cell biology, including embryonic development, cell migration, and epithelial function (21). The budding yeast Saccharomyces cerevisiae provides a simple model system in which to understand cell polarity, as much of the machinery that is responsible for polarity between yeast and animal cells is highly conserved. Rho/Cdc42 family GTPases are examples of this conservation and have been shown to be critical determinants of polarity in both yeast and animal cells. Rho GTPases are thought to exert their effects on cell polarization through regulation of a number of cellular processes, including the cytoskeleton and polarized delivery of new membrane to sites of active growth.Previous studies have demonstrated that Rho3 and Cdc42 have direct roles in regulating exocytosis which are independent of their role in regulating the polarity of the actin cytoskeleton (1, 2). Studies from a number of laboratories have shown that a multisubunit vesicle tethering complex known as the exocyst is likely to be a critical effector for Rho/Cdc42 signaling during polarized exocytosis (1, 2, 11, 22). A number of models have been suggested to describe the action of Rho GTPases in regulating exocytic function (28, 30). Analysis of specific loss-of-function alleles of RHO3 and CDC42 demonstrated that defects in secretion could be distinguished not only from actin polarity but from the polarization of the exocytic machinery as well. This led to the suggestion that Rho GTPases act by local activation rather than recruitment of the exocytic machinery (25).Genetic analysis suggests that the pathway by which Cdc42 regulates secretion is closely linked to that of Rho3. Secretion-defective alleles in each of these GTPases are suppressed by a common set of genes, and the mutants exhibit synthetic lethality when combined in the same cell (1). Recent work has provided direct evidence that the Exo70 subunit of the exocyst both genetically and physically interacts with both Rho3 and Cdc42 (29).Although Rho3 and Cdc42 share a effector and have overlapping functions, there are different characteristics in how these two proteins regulate exocytosis in yeast. Analysis of the Rho3 and Cdc42 secretory mutants by electron microscopy and secretory assays revealed that cdc42-6 mutants showed defects only in cells with small or emerging buds; in contrast, rho3-V51 mutants exhibited secretory defects throughout bud growth (1, 2). These phenotypes suggested that the exocytic function of Rho3 and Cdc42 is required at overlapping but distinct stages of bud growth.Most small GTPases require multiple elements to promote their association with the membrane on which they engage their downstream targets (26). Modification of the C-terminal CAAX motif by prenylation is common to both Rho3 and Cdc42, with Rho3 predicted to be farnesylated and Cdc42 shown to be geranylgeranylated (14, 17, 19). However, as with other small GTPases, C-terminal prenylation by itself is not sufficient for stable membrane association (10, 18). As with many other small GTPases, a second site of interaction is thought to be required for both Rho3 and Cdc42 GTPases. Sequence alignment of Rho3 and Cdc42 revealed that Rho3 has a long N-terminal extension, which contains a site (a cysteine at position 5) for palmitoylation (24). In contrast, Cdc42 is not palmitoylated but instead contains a polybasic domain adjacent to the CAAX motif at its C terminus, which is thought to act as a membrane targeting signal via the electrostatic interactions with phospholipids at the plasma membrane (6, 12).In this study we examine how the function and localization of two Rho GTPases are specified at distinct stages of polarized growth in yeast. Using a novel monoclonal antibody, we find that the pattern of cell surface localization observed for the Rho3 GTPase is clearly distinct from that of Cdc42. Using chimeric forms of these GTPases, we find that the N terminus plays a particularly important role in this specification. The functional effect imparted by the N terminus appears to have two key elements. One element involves palmitoylation of a cysteine in the N terminus of Rho3 that is critical in generating the dispersed pattern of localization observed for Rho3. A second element regulates the affinity of the GTPases for a common effector, the exocyst complex. Taken together, this work provides a model for how these GTPases have evolved distinct functions by adopting sequence elements that affect both the pattern of localization and the ability to engage the downstream effector in a way that allows each GTPase to function at different stages of polarized growth.  相似文献   

6.
Protein functions are often revealed by their localization to specialized cellular sites. Recent reports demonstrated that swiprosin-1 is found together with actin and actin-binding proteins in the cytoskeleton fraction of human mast cells and NK-like cells. However, direct evidence of whether swiprosin-1 regulates actin dynamics is currently lacking. We found that swiprosin-1 localizes to microvilli-like membrane protrusions and lamellipodia and exhibits actin-binding activity. Overexpression of swiprosin-1 enhanced lamellipodia formation and cell spreading. In contrast, swiprosin-1 knockdown showed reduced cell spreading and migration. Swiprosin-1 induced actin bundling in the presence of Ca2+, and deletion of the EF-hand motifs partially reduced bundling activity. Swiprosin-1 dimerized in the presence of Ca2+ via its coiled-coil domain, and a lysine (Lys)-rich region in the coiled-coil domain was essential for regulation of actin bundling. Consistent with these observations, mutations of the EF-hand motifs and coiled-coil region significantly reduced cell spreading and lamellipodia formation. We provide new evidence of how swiprosin-1 influences cytoskeleton reorganization and cell spreading.  相似文献   

7.
Planar cell polarity (PCP) regulates cell alignment required for collective cell movement during embryonic development. This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both ciliogenesis and collective cell movement, but the underlying mechanism is unknown. Here we show Wdpcp can regulate PCP by direct modulation of the actin cytoskeleton. These studies were made possible by recovery of a Wdpcp mutant mouse model. Wdpcp-deficient mice exhibit phenotypes reminiscent of Bardet–Biedl/Meckel–Gruber ciliopathy syndromes, including cardiac outflow tract and cochlea defects associated with PCP perturbation. We observed Wdpcp is localized to the transition zone, and in Wdpcp-deficient cells, Sept2, Nphp1, and Mks1 were lost from the transition zone, indicating Wdpcp is required for recruitment of proteins essential for ciliogenesis. Wdpcp is also found in the cytoplasm, where it is localized in the actin cytoskeleton and in focal adhesions. Wdpcp interacts with Sept2 and is colocalized with Sept2 in actin filaments, but in Wdpcp-deficient cells, Sept2 was lost from the actin cytoskeleton, suggesting Wdpcp is required for Sept2 recruitment to actin filaments. Significantly, organization of the actin filaments and focal contacts were markedly changed in Wdpcp-deficient cells. This was associated with decreased membrane ruffling, failure to establish cell polarity, and loss of directional cell migration. These results suggest the PCP defects in Wdpcp mutants are not caused by loss of cilia, but by direct disruption of the actin cytoskeleton. Consistent with this, Wdpcp mutant cochlea has normal kinocilia and yet exhibits PCP defects. Together, these findings provide the first evidence, to our knowledge, that a PCP component required for ciliogenesis can directly modulate the actin cytoskeleton to regulate cell polarity and directional cell migration.  相似文献   

8.
9.
10.
Summary: The establishment of cell polarity is critical for the development of many organisms and for the function of many cell types. A large number of studies of diverse organisms from yeast to humans indicate that the conserved, small-molecular-weight GTPases function as key signaling proteins involved in cell polarization. The budding yeast Saccharomyces cerevisiae is a particularly attractive model because it displays pronounced cell polarity in response to intracellular and extracellular cues. Cells of S. cerevisiae undergo polarized growth during various phases of their life cycle, such as during vegetative growth, mating between haploid cells of opposite mating types, and filamentous growth upon deprivation of nutrition such as nitrogen. Substantial progress has been made in deciphering the molecular basis of cell polarity in budding yeast. In particular, it becomes increasingly clear how small GTPases regulate polarized cytoskeletal organization, cell wall assembly, and exocytosis at the molecular level and how these GTPases are regulated. In this review, we discuss the key signaling pathways that regulate cell polarization during the mitotic cell cycle and during mating.  相似文献   

11.
Pancreatic β cells, organized in the islets of Langerhans, sense glucose and secrete appropriate amounts of insulin. We have studied the roles of LKB1, a conserved kinase implicated in the control of cell polarity and energy metabolism, in adult β cells. LKB1-deficient β cells show a dramatic increase in insulin secretion in vivo. Histologically, LKB1-deficient β cells have striking alterations in the localization of the nucleus and cilia relative to blood vessels, suggesting a shift from hepatocyte-like to columnar polarity. Additionally, LKB1 deficiency causes a 65% increase in β cell volume. We show that distinct targets of LKB1 mediate these effects. LKB1 controls β cell size, but not polarity, via the mTOR pathway. Conversely, the precise position of the β cell nucleus, but not cell size, is controlled by the LKB1 target Par1b. Insulin secretion and content are restricted by LKB1, at least in part, via AMPK. These results expose a molecular mechanism, orchestrated by LKB1, for the coordinated maintenance of β cell size, form, and function.  相似文献   

12.
We here identify protein kinase D (PKD) as an upstream regulator of the F-actin-binding protein cortactin and the Arp actin polymerization machinery. PKD phosphorylates cortactin in vitro and in vivo at serine 298 thereby generating a 14-3-3 binding motif. In vitro, a phosphorylation-deficient cortactin-S298A protein accelerated VCA-Arp-cortactin-mediated synergistic actin polymerization and showed reduced F-actin binding, indicative of enhanced turnover of nucleation complexes. In vivo, cortactin co-localized with the nucleation promoting factor WAVE2, essential for lamellipodia extension, in the actin polymerization zone in Heregulin-treated MCF-7 cells. Using a 3-dye FRET-based approach we further demonstrate that WAVE2-Arp and cortactin prominently interact at these structures. Accordingly, cortactin-S298A significantly enhanced lamellipodia extension and directed cell migration. Our data thus unravel a previously unrecognized mechanism by which PKD controls cancer cell motility.  相似文献   

13.
The small G protein Rap1 can mediate “inside-out signaling” by recruiting effectors to the plasma membrane that signal to pathways involved in cell adhesion and cell migration. This action relies on the membrane association of Rap1, which is dictated by post-translational prenylation as well as by a stretch of basic residues within its carboxyl terminus. One feature of this stretch of acidic residues is that it lies adjacent to a functional phosphorylation site for the cAMP-dependent protein kinase PKA. This phosphorylation has two effects on Rap1 action. One, it decreases the level of Rap1 activity as measured by GTP loading and the coupling of Rap1 to RapL, a Rap1 effector that couples Rap1 GTP loading to integrin activation. Two, it destabilizes the membrane localization of Rap1, promoting its translocation into the cytoplasm. These two actions, decreased GTP loading and decreased membrane localization, are related, as the translocation of Rap1-GTP into the cytoplasm is associated with its increased GTP hydrolysis and inactivation. The consequences of this phosphorylation in Rap1-dependent cell adhesion and cell migration were also examined. Active Rap1 mutants that lack this phosphorylation site had a minimal effect on cell adhesion but strongly reduced cell migration, when compared with an active Rap1 mutant that retained the phosphorylation site. This suggests that optimal cell migration is associated with cycles of Rap1 activation, membrane egress, and inactivation, and requires the regulated phosphorylation of Rap1 by PKA.  相似文献   

14.
Although of fundamental importance in developmental biology, the genetic basis for the symmetry breaking events that polarize the vertebrate oocyte and egg are largely unknown. In vertebrates, the first morphological asymmetry in the oocyte is the Balbiani body, a highly conserved, transient structure found in vertebrates and invertebrates including Drosophila, Xenopus, human, and mouse. We report the identification of the zebrafish magellan (mgn) mutant, which exhibits a novel enlarged Balbiani body phenotype and a disruption of oocyte polarity. To determine the molecular identity of the mgn gene, we positionally cloned the gene, employing a novel DNA capture method to target region-specific genomic DNA of 600 kb for massively parallel sequencing. Using this technique, we were able to enrich for the genomic region linked to our mutation within one week and then identify the mutation in mgn using massively parallel sequencing. This is one of the first successful uses of genomic DNA enrichment combined with massively parallel sequencing to determine the molecular identity of a gene associated with a mutant phenotype. We anticipate that the combination of these technologies will have wide applicability for the efficient identification of mutant genes in all organisms. We identified the mutation in mgn as a deletion in the coding sequence of the zebrafish microtubule actin crosslinking factor 1 (macf1) gene. macf1 is a member of the highly conserved spectraplakin family of cytoskeletal linker proteins, which play diverse roles in polarized cells such as neurons, muscle cells, and epithelial cells. In mgn mutants, the oocyte nucleus is mislocalized; and the Balbiani body, localized mRNAs, and organelles are absent from the periphery of the oocyte, consistent with a function for macf1 in nuclear anchoring and cortical localization. These data provide the first evidence for a role for spectraplakins in polarization of the vertebrate oocyte and egg.  相似文献   

15.
CAP (adenylyl cyclase-associated protein) was first identified in yeast as a protein that regulates both the actin cytoskeleton and the Ras/cAMP pathway. Although the role in Ras signaling does not extend beyond yeast, evidence supports that CAP regulates the actin cytoskeleton in all eukaryotes including mammals. In vitro actin polymerization assays show that both mammalian and yeast CAP homologues facilitate cofilin-driven actin filament turnover. We generated HeLa cells with stable CAP1 knockdown using RNA interference. Depletion of CAP1 led to larger cell size and remarkably developed lamellipodia as well as accumulation of filamentous actin (F-actin). Moreover, we found that CAP1 depletion also led to changes in cofilin phosphorylation and localization as well as activation of focal adhesion kinase (FAK) and enhanced cell spreading. CAP1 forms complexes with the adhesion molecules FAK and Talin, which likely underlie the cell adhesion phenotypes through inside-out activation of integrin signaling. CAP1-depleted HeLa cells also had substantially elevated cell motility as well as invasion through Matrigel. In summary, in addition to generating in vitro and in vivo evidence further establishing the role of mammalian CAP1 in actin dynamics, we identified a novel cellular function for CAP1 in regulating cell adhesion.  相似文献   

16.
17.
Members of the Rho GTPase family regulate the organization of the actin cytoskeleton in response to extracellular growth factors. We have identified three proteins that form a distinct branch of the Rho family: Rnd1, expressed mostly in brain and liver; Rnd2, highly expressed in testis; and Rnd3/RhoE, showing a ubiquitous low expression. At the subcellular level, Rnd1 is concentrated at adherens junctions both in confluent fibroblasts and in epithelial cells. Rnd1 has a low affinity for GDP and spontaneously exchanges nucleotide rapidly in a physiological buffer. Furthermore, Rnd1 lacks intrinsic GTPase activity suggesting that in vivo, it might be constitutively in a GTP-bound form. Expression of Rnd1 or Rnd3/RhoE in fibroblasts inhibits the formation of actin stress fibers, membrane ruffles, and integrin-based focal adhesions and induces loss of cell–substrate adhesion leading to cell rounding (hence Rnd for “round”). We suggest that these proteins control rearrangements of the actin cytoskeleton and changes in cell adhesion.  相似文献   

18.
Cadherins are calcium-dependent cell–cell adhesion molecules that require the interaction of the cytoplasmic tail with the actin cytoskeleton for adhesive activity. Because of the functional relationship between cadherin receptors and actin filament organization, we investigated whether members of the Rho family of small GTPases are necessary for cadherin adhesion. In fibroblasts, the Rho family members Rho and Rac regulate actin polymerization to produce stress fibers and lamellipodia, respectively. In epithelial cells, we demonstrate that Rho and Rac are required for the establishment of cadherin-mediated cell–cell adhesion and the actin reorganization necessary to stabilize the receptors at sites of intercellular junctions. Blocking endogenous Rho or Rac selectively removed cadherin complexes from junctions induced for up to 3 h, while desmosomes were not perturbed. In addition, withdrawal of cadherins from intercellular junctions temporally precedes the removal of CD44 and integrins, other microfilament-associated receptors. Our data showed that the concerted action of Rho and Rac modulate the establishment of cadherin adhesion: a constitutively active form of Rac was not sufficient to stabilize cadherindependent cell–cell contacts when endogenous Rho was inhibited. Upon induction of calcium-dependent intercellular adhesion, there was a rapid accumulation of actin at sites of cell–cell contacts, which was prevented by blocking cadherin function, Rho or Rac activity. However, if cadherin complexes are clustered by specific antibodies attached to beads, actin recruitment to the receptors was perturbed by inhibiting Rac but not Rho. Our results provide new insights into the role of the small GTPases in the cadherin-dependent cell– cell contact formation and the remodelling of actin filaments in epithelial cells.  相似文献   

19.
Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. Fibrillin-1 contains one evolutionarily conserved RGD sequence that mediates cell–matrix interactions through cell-surface integrins. Here, we present a novel paradigm how extracellular fibrillin-1 controls cellular function through integrin-mediated microRNA regulation. Comparative mRNA studies by global microarray analysis identified growth factor activity, actin binding and integrin binding as the most important functional groups that are regulated upon fibrillin-1 binding to dermal fibroblasts. Many of these mRNAs are targets of miRNAs that were identified when RNA from the fibrillin-1-ligated fibroblasts was analyzed by a miRNA microarray. The expression profile was specific to fibrillin-1 since interaction with fibronectin displayed a partially distinct profile. The importance of selected miRNAs for the regulation of the identified mRNAs was suggested by bioinformatics prediction and the interactions between miRNAs and mRNAs were experimentally validated. Functionally, we show that miR-503 controls p-Smad2-dependent TGF-β signaling, and that miR-612 and miR-3185 are involved in the focal adhesion formation regulated by fibrillin-1. In conclusion, we demonstrate that fibrillin-1 interaction with fibroblasts regulates miRNA expression profiles which in turn control critical cell functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号