首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Purpose

To investigate the effects of icariin, a major constituent of flavonoids isolated from the herb Epimedium, on cigarette smoke (CS) induced inflammatory responses in vivo and in vitro.

Methods

In vivo, BALB/c mice were exposed to smoke of 15 cigarettes for 1 h/day, 6 days/week for 3 months and dosed with icariin (25, 50 and 100 mg/kg) or dexamethasone (1 mg/kg). In vitro, A549 cells were incubated with icariin (10, 50 and 100 µM) followed by treatments with CSE (2.5%).

Results

We found that icariin significantly protected pulmonary function and attenuated CS-induced inflammatory response by decreasing inflammatory cells and production of TNF-α, IL-8 and MMP-9 in both the serum and BALF of CS-exposed mice and decreasing production of TNF-α and IL-8 in the supernatant of CSE-exposed A549 cells. Icariin also showed properties in inhibiting the phosphorylation of NF-κB p65 protein and blocking the degradation of IΚB-α protein. Further studies revealed that icariin administration markedly restore CS-reduced GR protein and mRNA expression, which might subsequently contribute to the attenuation of CS-induced respiratory inflammatory response.

Conclusion

Together these results suggest that icariin has anti-inflammatory effects in cigarette smoke induced inflammatory models in vivo and in vitro, possibly achieved by suppressing NF-κB activation and modulating GR protein expression.  相似文献   

2.
BST2 (CD317, tetherin, HM1.24) is an interferon-inducible transmembrane protein which can directly inhibit the release of enveloped virus particles from infected cells, and its anti-viral activity is reported to be related to the specific topological arrangement of its four structural domains. The N-terminal cytoplasmic tail of feline BST2 (fBST2) is characterized by a shorter N-terminal region compared to those of other known homologs. In this study, we investigated the functional impact of modifying the cytoplasmic tail region of fBST2 and its molecular mechanism. The fBST2 protein with the addition of a peptide at the N-terminus retained anti-release activity against human immunodeficiency virus type-1 and pseudovirus based on feline immunodeficiency virus at a weaker level compared with the wild-type fBST2. However, the fBST2 protein with addition of a peptide internally in the ectodomain proximal to the GPI anchor still retained its anti-viral activity well. Notably, the N-glycosylation state and the cell surface level of the N-terminally modified variants were unlike those of the wild-type protein, while no difference was observed in their intracellular localizations. However, in contrast to human BST2, the wild-type fBST2 did not show the ability to activate NF-κB. Consistent with previous reports, our findings showed that adding a peptide in the cytoplasmic tail region of fBST2 may influence its anti-viral activity. The shorter N-terminal cytoplasmic region of fBST2 compared with human BST2 did not apparently affect its anti-viral activity, which is independent of its N-glycosylation and ability to activate NF-κB.  相似文献   

3.
Nucleotide-binding domain and leucine-rich repeat-containing family, pyrin domain containing 3 (NLRP3) has recently emerged as a central regulator of innate immunity and inflammation in response to both sterile inflammatory and microbial invasion signals. Although its ability to drive proteolytic procaspase-1 processing has drawn more attention, NLPR3 can also activate NF-κB. To clarify the physiological relevance of this latter function, we examined the effect of NLRP3 on NF-κB activation and cytokine induction in RNA-interference-based NLRP3-knockdown cell lines generated from the human monocytic cell line THP-1. Knocking down NLRP3 reduced NF-κB activation and cytokine induction in the early stages of Staphylococcus aureus infection. Expression of cytokine genes induced by Staphylococcus aureus was not inhibited by a caspase-1 inhibitor, and did not occur through an autocrine mechanism in response to newly synthesized cytokines. We also demonstrated that NLRP3 could activate NF-κB and induce cytokines in response to sterile signals, monosodium urate crystals and aluminum adjuvant. Thus, NLRP3 mediates NF-κB activation in both sterile and microbially induced inflammation. Our findings show that not only does NLRP3 activate caspase-1 post-translationally, but it also induces multiple cytokine genes in the innate immune system.  相似文献   

4.
5.

Background

Mutation of the cystic fibrosis transmembrane-conductance regulator (CFTR) causes cystic fibrosis (CF) but not all CF aspects can easily be explained by deficient ion transport. CF-inflammation provides one example but its pathogenesis remains controversial. Here, we tested the simple but fundamental hypothesis that wild-type CFTR is needed to suppress NF-κB activity.

Methodology/Principal Findings

In lung epithelial (H441) and engineered (H57) cell lines; we report that inflammatory markers are significantly suppressed by wild-type CFTR. Transient-transfection of wild-type CFTR into CFTR-naïve H441 cells, dose-dependently down-regulates both basal and Tumour Necrosis Factor-α evoked NF-κB activity when compared to transfection with empty vector alone (p<0.01, n>5). This effect was also observed in CFTR-naïve H57-HeLa cells which stably express a reporter of NF-κB activity, confirming that the CFTR-mediated repression of inflammation was not due to variable reporter gene transfection efficiency. In contrast, H57 cells transfected with a control cyano-fluorescent protein show a significantly elevated basal level of NF-κB activity above control. Initial cell seeding density may be a critical factor in mediating the suppressive effects of CFTR on inflammation as only at a certain density (1×105 cells/well) did we observe the reduction in NF-κB activity. CFTR channel activity may be necessary for this suppression because the CFTR specific inhibitor CFTRinh172 significantly stimulates NF-κB activity by ∼30% in CFTR expressing 16HBE14o− cells whereas pharmacological elevation of cyclic-AMP depresses activity by ∼25% below baseline.

Conclusions/Significance

These data indicate that CFTR has inherent anti-inflammatory properties. We propose that the hyper-inflammation found in CF may arise as a consequence of disrupted repression of NF-κB signalling which is normally mediated by CFTR. Our data therefore concur with in vivo and in vitro data from Vij and colleagues which highlights CFTR as a suppressor of basal inflammation acting through NF-κB, a central hub in inflammatory signalling.  相似文献   

6.

Background

Cigarette smoking induces inflammatory responses in all smokers and is the major risk factor for lung disease such as chronic obstructive pulmonary disease (COPD). In this progressive disease, chronic inflammation in the lung contributes to lung tissue destruction leading to the formation of chemotactic collagen fragments such as N-acetylated Proline-Glycine-Proline (N-ac-PGP). The generation of this tripeptide is mediated by a multistep pathway involving matrix metalloproteases (MMPs) 8 and 9 and prolyl endopeptidase (PE). Here we investigated whether cigarette smoke extract (CSE) stimulates human PMNs to breakdown whole matrix collagen leading to the generation of the chemotactic collagen fragment N-ac-PGP.

Methodology/Principal Findings

Incubating PMNs with CSE led to the release of chemo-attractant CXCL8 and proteases MMP8 and MMP9. PMNs constitutively expressed PE activity as well as PE protein. Incubating CSE-primed PMNs with collagen resulted in collagen breakdown and in N-ac-PGP generation. Incubation of PMNs with the tripeptide N-ac-PGP resulted in the release of CXCL8, MMP8 and MMP9. Moreover, we tested whether PMNs from COPD patients are different from PMNs from healthy donors. Here we show that the intracellular basal PE activity of PMNs from COPD patients increased 25-fold compared to PMNs from healthy donors. Immunohistological staining of human lung tissue for PE showed that besides neutrophils, macrophages and epithelial cells express PE.

Conclusions

This study indicates that neutrophils activated by cigarette smoke extract can breakdown collagen into N-ac-PGP and that this collagen fragment itself can activate neutrophils, which may lead in vivo to a self-propagating cycle of neutrophil infiltration, chronic inflammation and lung emphysema. MMP-, PE- or PGP-inhibitors can serve as an attractive therapeutic target and may open new avenues towards effective treatment of COPD.  相似文献   

7.
Neurochemical Research - Carbendazim (CBZ) is one of the most common fungicides used to fight plant fungal diseases, otherwise, it leaves residue on fruits, vegetables, and soil that contaminate...  相似文献   

8.
9.
Dedifferentiated hepatoma cells, in contrast to most other cell types including hepatoma cells, undergo apoptosis when treated with lipopolysaccharide (LPS) plus the protein synthesis inhibitor cycloheximide (CHx). We recently reported that the dedifferentiated hepatoma cells also exhibit a strong and prolonged NF-κB induction phenotype upon exposure to LPS, suggesting that NF-κB signaling may play a pro-survival role, as reported in several other cell systems. To test the role of NF-κB in preventing LPS-mediated apoptosis, we examined the dedifferentiated cell line M38. Results show that antioxidants strongly inhibited LPS + CHx-mediated cell death in the M38 cells, yet only modestly inhibited NF-κB induction. In addition, inhibition of NF-κB translocation by infection of the M38 cells with an adenoviral vector expressing an IκBα super-repressor did not result in LPS-mediated cell death. These results suggest that unlike TNFα induction, the cell survival pathway activated in response to LPS is independent of NF-κB translocation in the dedifferentiated cells. Addition of inhibitors of JNK, p38 and ERK pathways also failed to elicit LPS-mediated apoptosis similar to that observed when protein synthesis is prevented. Thus, cell survival pathways other than those involving NF-κB inducible gene expression or other well-known pathways appear to be involved in protecting the dedifferentiated hepatoma variant cells from LPS-mediated apoptosis. Importantly, this pro-apoptotic function of LPS appears to be a function of loss of hepatic gene expression, as the parental hepatoma cells resist LPS-mediated apoptosis in the presence of protein synthesis inhibitors.  相似文献   

10.
11.

Background/Objective

Respiratory infections including atypical bacteria Mycoplasma pneumoniae (Mp) contribute to the pathobiology of asthma and chronic obstructive pulmonary disease (COPD). Mp infection mainly targets airway epithelium and activates various signaling pathways such as nuclear factor κB (NF-κB). We have shown that short palate, lung, and nasal epithelium clone 1 (SPLUNC1) serves as a novel host defense protein and is up-regulated upon Mp infection through NF-κB activation in cultured human and mouse primary airway epithelial cells. However, the in vivo role of airway epithelial NF-κB activation in host defense against Mp infection has not been investigated. In the current study, we investigated the effects of in vivo airway epithelial NF-κB activation on lung Mp clearance and its association with airway epithelial SPLUNC1 expression.

Methodology/Main Results

Non-antimicrobial tetracycline analog 9-t-butyl doxycycline (9-TB) was initially optimized in mouse primary tracheal epithelial cell culture, and then utilized to induce in vivo airway epithelial specific NF-κB activation in conditional NF-κB transgenic mice (CC10-CAIKKβ) with or without Mp infection. Lung Mp load and inflammation were evaluated, and airway epithelial SPLUNC1 protein was examined by immunohistochemistry. We found that 9-TB treatment in NF-κB transgene positive (Tg+), but not transgene negative (Tg−) mice significantly reduced lung Mp load. Moreover, 9-TB increased airway epithelial SPLUNC1 protein expression in NF-κB Tg+ mice.

Conclusion

By using the non-antimicrobial 9-TB, our study demonstrates that in vivo airway epithelial NF-κB activation promotes lung bacterial clearance, which is accompanied by increased epithelial SPLUNC1 expression.  相似文献   

12.
Oxoglutarate dehydrogenase (OGDH) is the first and rate-limiting component of the multi-enzyme OGDH complex (OGDHC) whose malfunction is associated with neuro-degeneration. The essential role of this complex is in the degradation of glucose and glutamate and the OGDHL gene (one component of OGDHC) is down-regulated by promoter hypermethylation in many different cancer types. These properties suggest a potential growth modulating role of OGDHL in cancer; however, the molecular mechanism through which OGDHL exerts its growth modulating function has not been elucidated.Here, we report that restoration of OGDHL expression in cervical cancer cells lacking endogenous OGDHL expression suppressed cell proliferation, invasion and soft agar colony formation in vitro. Knockdown of OGDHL expression in cervical cancer cells expressing endogenous OGDHL had the opposite effect. Forced expression of OGDHL increased the production of reactive oxygen species (ROS) leading to apoptosis through caspase 3 mediated down-regulation of the AKT signaling cascade and decreased NF-κB phosphorylation. Conversely, silencing OGDHL stimulated the signaling pathway via increased AKT phosphorylation. Moreover, the addition of caspase 3 or ROS inhibitors in the presence of OGDHL increased AKT signaling and cervical cancer cell proliferation.Taken together, these data suggest that inactivation of OGDHL can contribute to cervical tumorigenesis via activation of the AKT signaling pathway and thus support it as an important anti-proliferative gene in cervical cancer.  相似文献   

13.
14.
15.
16.
17.
TNF induced nuclear factor kappa B (NF-κB) is one of the central signaling pathways that plays a critical role in carcinogenesis and inflammatory diseases. Post-translational modification through ubiquitin plays important role in the regulation of this pathway. In the current study, we investigated the role of TRIM8, member of RING family ubiquitin ligase in regulation of NF-κB pathway. We observed that TRIM8 positively regulates TNF induced NF-κB pathway. Different domains of TRIM8 showed discrete functions at the different steps in regulation of TNF induced NF-κB pathway. Ubiquitin ligase activity of TRIM8 is essential for regulation of NF-κB activation in both cytoplasm as well as nucleus. TRIM8 negates PIAS3 mediated negative repression of NF-κB at p65 by inducing translocation of PIAS3 from nucleus to cytoplasm as well as its turnover. TNF induces translocation of TRIM8 from nucleus to cytoplasm, which positively regulates NF-κB. The cytoplasmic translocation of TRIM8 is essential for TNF induced NF-κB but not for p65 mediated NF-κB regulation. TRIM8 also enhanced the clonogenic and migration ability of cells by modulating NF-κB. The further study will help to understand the role of TRIM8 in inflammation and cancer.  相似文献   

18.
NF-κB signaling plays an essential role in maintaining the undifferentiated state of embryonic stem (ES) cells. However, opposing roles of NF-κB have been reported in mouse and human ES cells, and the role of NF-κB in human induced pluripotent stem (iPS) cells has not yet been clarified. Here, we report the role of NF-κB signaling in maintaining the undifferentiated state of human iPS cells. Compared with differentiated cells, undifferentiated human iPS cells showed an augmentation of NF-κB activity. During differentiation induced by the removal of feeder cells and FGF2, we observed a reduction in NF-κB activity, the expression of the undifferentiation markers Oct3/4 and Nanog, and the up-regulation of the differentiated markers WT-1 and Pax-2. The specific knockdown of NF-κB signaling using p65 siRNA also reduced the expression of Oct3/4 and Nanog and up-regulated WT-1 and Pax-2 but did not change the ES-like colony formation. Our results show that the augmentation of NF-κB signaling maintains the undifferentiated state of human iPS and suggest the importance of this signaling pathway in maintenance of human iPS cells.  相似文献   

19.
High-grade gliomas, such as glioblastomas (GBMs), are very aggressive, invasive brain tumors with low patient survival rates. The recent identification of distinct glioma tumor subtypes offers the potential for understanding disease pathogenesis, responses to treatment and identification of molecular targets for personalized cancer therapies. However, the key alterations that drive tumorigenesis within each subtype are still poorly understood. Although aberrant NF-κB activity has been implicated in glioma, the roles of specific members of this protein family in tumorigenesis and pathogenesis have not been elucidated. In this study, we show that the NF-κB protein RelB is expressed in a particularly aggressive mesenchymal subtype of glioma, and loss of RelB significantly attenuated glioma cell survival, motility and invasion. We find that RelB promotes the expression of mesenchymal genes including YKL-40, a marker of the MES glioma subtype. Additionally, RelB regulates expression of Olig2, a regulator of cancer stem cell proliferation and a candidate marker for the cell of origin in glioma. Furthermore, loss of RelB in glioma cells significantly diminished tumor growth in orthotopic mouse xenografts. The relevance of our studies for human disease was confirmed by analysis of a human GBM genome database, which revealed that high RelB expression strongly correlates with rapid tumor progression and poor patient survival rates. Thus, our findings demonstrate that RelB is an oncogenic driver of mesenchymal glioma tumor growth and invasion, highlighting the therapeutic potential of inhibiting the noncanonical NF-κB (RelB-mediated) pathway to treat these deadly tumors.  相似文献   

20.
The inflammatory cytokine TNF-α is a central mediator in many immune-mediated diseases, such as Crohn’s disease (CD), spondyloarthritis (SpA) and chronic obstructive pulmonary disease (COPD). Epidemiologic studies have shown that cigarette smoking (CS) is a prominent common risk factor in these TNF-dependent diseases. We exposed TNFΔARE mice; in which a systemic TNF-α overexpression leads to the development of inflammation; to 2 or 4 weeks of air or CS. We investigated the effect of deregulated TNF expression on CS-induced pulmonary inflammation and the effect of CS exposure on the initiation and progression of gut and joint inflammation. Upon 2 weeks of CS exposure, inflammation in lungs of TNFΔARE mice was significantly aggravated. However, upon 4 weeks of CS-exposure, this aggravation was no longer observed. TNFΔARE mice have no increases in CD4+ and CD8+ T cells and a diminished neutrophil response in the lungs after 4 weeks of CS exposure. In the gut and joints of TNFΔARE mice, 2 or 4 weeks of CS exposure did not modulate the development of inflammation. In conclusion, CS exposure does not modulate gut and joint inflammation in TNFΔARE mice. The lung responses towards CS in TNFΔARE mice however depend on the duration of CS exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号