首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The proton-pumping NADH:ubiquinone oxidoreductase is the first of the respiratory chain complexes in many bacteria and the mitochondria of most eukaryotes. In general, the bacterial complex consists of 14 different subunits. In addition to the homologues of these subunits, the mitochondrial complex contains approximately 31 additional proteins. While it was shown that the mitochondrial complex is assembled from distinct intermediates, nothing is known about the assembly of the bacterial complex. We used Escherichia coli mutants, in which the nuo-genes coding the subunits of complex I were individually disrupted by an insertion of a resistance cartridge to determine whether they are required for the assembly of a functional complex I. No complex I-mediated enzyme activity was detectable in the mutant membranes and it was not possible to extract a structurally intact complex I from the mutant membranes. However, the subunits and the cofactors of the soluble NADH dehydrogenase fragment of the complex were detected in the cytoplasm of some of the nuo-mutants. It is discussed whether this fragment represents an assembly intermediate. In addition, a membrane-bound fragment exhibiting NADH/ferricyanide oxidoreductase activity and containing the iron-sulfur cluster N2 was detected in one mutant.  相似文献   

3.
The NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli is composed of 13 subunits called NuoA through NuoN. It catalyzes the electron transfer from NADH to ubiquinone by a chain of redox groups consisting of one FMN and seven iron-sulfur clusters. The function of the additional, nonconserved cluster N7 located on NuoG is not known. It has been speculated that it is not involved in electron transfer, due to its distance of more than 20 A from the electron transfer chain. Dithionite-reduced minus NADH-reduced EPR difference spectra of complex I and of a soluble fragment containing NuoG revealed for the first time the EPR spectrum of N7 in the complex. Individual mutation of the cysteines ligating this cluster to alanine led to a decreased amount of complex I in the membrane without affecting the electron transfer activity. Sucrose gradient centrifugation revealed that the complex from the C230A and C233A mutants decayed in detergent solution while the C237A and C265A mutant complex was stable. Cluster N7 was detectable in the latter mutants but with shifted g-values, indicating a different ligation of N7. Thus, N7 is essential for the stability of the complex but is not involved in electron transfer.  相似文献   

4.
The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Electron microscopy revealed the two-part structure of the complex with a peripheral arm involved in electron transfer and a membrane arm most likely involved in proton translocation. It was proposed that the quinone binding site is located at the joint of the two arms. Most likely, proton translocation in the membrane arm is enabled by the energy of the electron transfer reaction in the peripheral arm transmitted by conformational changes. For the detection of the conformational changes and the localization of the quinone binding site, we set up a combination of site-directed spin labeling and EPR spectroscopy. Cysteine residues were introduced to the surface of the Escherichia coli complex I. The spin label (1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl)-methanethiosulfonate (MTSL) was exclusively bound to the engineered positions. Neither the mutation nor the labeling had an effect on the NADH:decyl-ubiquinone oxidoreductase activity. The characteristic signals of the spin label were detected by EPR spectroscopy, which did not change by reducing the preparation with NADH. A decyl-ubiquinone derivative with the spin label covalently attached to the alkyl chain was synthesized in order to localize the quinone binding site. The distance between a MTSL labeled complex I variant and the bound quinone was determined by continuous-wave (cw) EPR allowing an inference on the location of the quinone binding site. The distances between the labeled quinone and other complex I variants will be determined in future experiments to receive further geometry information by triangulation.  相似文献   

5.
Uhlmann M  Friedrich T 《Biochemistry》2005,44(5):1653-1658
The proton-pumping NADH:ubiquinone oxidoreductase, which is also called respiratory complex I, transfers electrons from NADH to ubiquinone via one flavin mononucleotide (FMN) and up to nine iron-sulfur clusters. A structural minimal form of complex I consisting of 14 different subunits called NuoA to NuoN (or Nqo1 to Nqo14) is found in bacteria. The isolated Escherichia coli complex I can be split into a NADH dehydrogenase fragment, a connecting fragment, and a membrane fragment. The soluble NADH dehydrogenase fragment represents the electron input part of the complex and consists of the subunits NuoE, F, and G. The FMN and four iron-sulfur clusters have been detected in this fragment by means of EPR spectroscopy. One of the EPR signals, called N1c, has spectral properties, which are not found in preparations of the complex from other organisms. Therefore, it is attributed to an additional binding motif on NuoG, which is present only in a few bacteria including E. coli. Here, we show by means of EPR spectroscopic analysis of the NADH dehydrogenase fragment containing site-directed mutations on NuoG that the EPR signals in question derived from cluster N1a on NuoE. The mutations in NuoG disturbed the assembly of the overproduced NADH dehydrogenase fragment indicating that a yet undetected cluster might be bound to the additional motif. Thus, there is no third binuclear iron-sulfur "N1c" in the E. coli complex I but an additional tetranuclear cluster that may be coined N7.  相似文献   

6.
The proton-pumping NADH:ubiquinone oxidoreductase, also called respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. One FMN and up to 9 iron-sulfur (Fe/S) clusters participate in the redox reaction. There is discussion that the EPR-detectable Fe/S cluster N2 is involved in proton pumping. However, the assignment of this cluster to a distinct subunit of the complex as well as the number of Fe/S clusters giving rise to the EPR signal are still under debate. Complex I from Escherichia coli consists of 13 polypeptides called NuoA to N. Either subunit NuoB or NuoI could harbor Fe/S cluster N2. Whereas NuoB contains a unique motif for the binding of one Fe/S cluster, NuoI contains a typical ferredoxin motif for the binding of two Fe/S clusters. Individual mutation of all four conserved cysteine residues in NuoB resulted in a loss of complex I activity and of the EPR signal of N2 in the cytoplasmic membrane as well as in the isolated complex. Individual mutations of all eight conserved cysteine residues of NuoI revealed a variable phenotype. Whereas cluster N2 was lost in most NuoI mutants, it was still present in the cytoplasmic membranes of the mutants NuoI C63A and NuoI C102A. N2 was also detected in the complex isolated from the mutant NuoI C102A. From this we conclude that the Fe/S cluster N2 is located on subunit NuoB.  相似文献   

7.
The NADH:ubiquinone oxidoreductase (respiratory complex I) is the main entry point for electrons into the Escherichia coli aerobic respiratory chain. With its sophisticated setup of 13 different subunits and 10 cofactors, it is anticipated that various chaperones are needed for its proper maturation. However, very little is known about the assembly of E. coli complex I, especially concerning the incorporation of the iron‐sulfur clusters. To identify iron‐sulfur cluster carrier proteins possibly involved in the process, we generated knockout strains of NfuA, BolA, YajL, Mrp, GrxD and IbaG that have been reported either to be involved in the maturation of mitochondrial complex I or to exert influence on the clusters of bacterial complex. We determined the NADH and succinate oxidase activities of membranes from the mutant strains to monitor the specificity of the individual mutations for complex I. The deletion of NfuA, BolA and Mrp led to a decreased stability and partially disturbed assembly of the complex as determined by sucrose gradient centrifugation and native PAGE. EPR spectroscopy of cytoplasmic membranes revealed that the BolA deletion results in the loss of the binuclear Fe/S cluster N1b.  相似文献   

8.
The quantitative data on the binding affinity of NADH, NAD(+), and their analogues for complex I as emerged from the steady-state kinetics data and from more direct studies under equilibrium conditions are summarized and discussed. The redox-dependency of the nucleotide binding and the reductant-induced change of FMN affinity to its tight non-covalent binding site indicate that binding (dissociation) of the substrate (product) may energetically contribute to the proton-translocating activity of complex I.  相似文献   

9.
Electron microscopy has demonstrated the unusual L-shaped structure of the respiratory complex I consisting of two arms, which are arranged perpendicular to each other. We found that the Escherichia coli complex I has an additional stable conformation, with the two arms arranged side by side, resulting in a horseshoe-shaped structure. The structure of both conformations was determined by means of electron microscopy of gold thioglucose-stained single particles. They were distinguished from each other by titration of the complex with polyethylene glycol and by means of analytical ultracentrifugation. The transition between the two conformations is induced by the ionic strength of the buffer and is reversible. Only the horseshoe-shaped complex I exhibits enzyme activity in detergent solution, which is abolished by the addition of salt. Therefore, it is proposed that this structure is the native conformation of the complex in the membrane.  相似文献   

10.
The NADH:ubiquinone oxidoreductase (complex I) couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Recently, it was demonstrated that complex I from Klebsiella pneumoniae translocates sodium ions instead of protons. Experimental evidence suggested that complex I from the close relative Escherichia coli works as a primary sodium pump as well. However, data obtained with whole cells showed the presence of an NADH-induced electrochemical proton gradient. In addition, Fourier transform IR spectroscopy demonstrated that the redox reaction of the E. coli complex I is coupled to a protonation of amino acids. To resolve this contradiction we measured the properties of isolated E. coli complex I reconstituted in phospholipids. We found that the NADH:ubiquinone oxidoreductase activity did not depend on the sodium concentration. The redox reaction of the complex in proteoliposomes caused a membrane potential due to an electrochemical proton gradient as measured with fluorescent probes. The signals were sensitive to the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), the inhibitors piericidin A, dicyclohexylcarbodi-imide (DCCD), and amiloride derivatives, but were insensitive to the sodium ionophore ETH-157. Furthermore, monensin acting as a Na(+)/H(+) exchanger prevented the generation of a proton gradient. Thus, our data demonstrated that the E. coli complex I is a primary electrogenic proton pump. However, the magnitude of the pH gradient depended on the sodium concentration. The capability of complex I for secondary Na(+)/H(+) antiport is discussed.  相似文献   

11.
The proton-pumping NADH:ubiquinone oxidoreductase (complex I) of Escherichia coli is composed of 13 different subunits. The corresponding genes are organized in the nuo-operon (from NADH:ubiquinone oxidoreductase) at min 51 of the E. coli chromosome. To study the structure and function of this complex enzyme, a suitable purification protocol yielding sufficient amount of a stable protein is needed. Here, we report the overproduction of complex I in E. coli and a novel isolation procedure of the complex. Overexpression of the nuo-operon on the chromosome was achieved by replacing its 5'-promotor region with the phage-T7 RNA polymerase promotor and by expressing the genes with the T7 RNA polymerase coded on an inducible plasmid. It is shown by means of enzymatic activity and EPR spectroscopy of cytoplasmic membranes that complex I is overproduced 4-fold after induction. Complex I was isolated by chromatographic steps performed in the presence of dodecyl maltoside. The preparation comprises all subunits and known cofactors and exhibits a high enzymatic activity and inhibitor sensitivity. Due to its stability over a wide pH range and at very high salt concentrations, this preparation is well suited for structural investigations.  相似文献   

12.
13.
Three-dimensional structures of NADH:ubiquinone oxidoreductase (or complex I) from the respiratory chain of mitochondria and bacteria have been recently studied by electron microscopy. The low-resolution structures all reveal a characteristic L shape for complex I; however, some of the differences among these structures may have important implications for the location of the functional elements of complex I, for example, the ubiquinone-binding site.  相似文献   

14.
The NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli is composed of 13 subunits called NuoA through NuoN and contains one FMN and 9 iron-sulfur clusters as redox groups. Electron transfer from NADH to ubiquinone is coupled with the translocation of protons across the membrane by a yet unknown mechanism. Redox-induced Fourier transform infrared difference spectroscopy showed that the oxidation of iron-sulfur cluster N2 located on NuoB is accompanied by the protonation of acidic amino acid(s). Here, we describe the effect of mutating the conserved acidic amino acids on NuoB. The complex was assembled in all mutants but the electron transfer activity was completely abolished in the mutants E67Q, D77N, and D94N. The complex isolated from these mutants contained N2 although in diminished amounts. The protonation of acidic amino acid(s) coupled with the oxidation of N2 was not detectable in the complex from the mutant E67Q. However, the conservative mutations E67D and D77E did not disturb the enzymatic activity, and the signals because of the protonation of acidic amino acid(s) were detectable in the E67D mutant. We discuss the possible participation of Glu(67) in a proton pathway coupled with the redox reaction of N2.  相似文献   

15.
Pohl T  Uhlmann M  Kaufenstein M  Friedrich T 《Biochemistry》2007,46(37):10694-10702
The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. The Escherichia coli complex I consists of 13 different subunits named NuoA-N (from NADH:ubiquinone oxidoreductase), that are coded by the genes of the nuo-operon. Genetic manipulation of the operon is difficult due to its enormous size. The enzymatic activity of variants is obscured by an alternative NADH dehydrogenase, and purification of the variants is hampered by their instability. To overcome these problems the entire E. coli nuo-operon was cloned and placed under control of the l-arabinose inducible promoter ParaBAD. The exposed N-terminus of subunit NuoF was chosen for engineering the complex with a hexahistidine-tag by lambda-Red-mediated recombineering. Overproduction of the complex from this construct in a strain which is devoid of any membrane-bound NADH dehydrogenase led to the assembly of a catalytically active complex causing the entire NADH oxidase activity of the cytoplasmic membranes. After solubilization with dodecyl maltoside the engineered complex binds to a Ni2+-iminodiacetic acid matrix allowing the purification of approximately 11 mg of complex I from 25 g of cells. The preparation is pure and monodisperse and comprises all known subunits and cofactors. It contains more lipids than earlier preparations due to the gentle and fast purification procedure. After reconstitution in proteoliposomes it couples the electron transfer with proton translocation in an inhibitor sensitive manner, thus meeting all prerequisites for structural and functional studies.  相似文献   

16.
17.
Scheide D  Huber R  Friedrich T 《FEBS letters》2002,512(1-3):80-84
The proton-pumping NADH:ubiquinone oxidoreductase, also called complex I, is the first energy-transducing complex of many respiratory chains. Homologues of complex I are present in the three domains of life. Here, we report the properties of complex I in membranes of the hyperthermophilic bacterium Aquifex aeolicus. The complex reacted with NADH but not with NADPH and F(420)H(2) as electron donors. Short-chain analogues of ubiquinone like decyl-ubiquinone and ubiquinone-2 were suitable electron acceptors. The affinities towards NADH and ubiquinone-2 were comparable to the ones obtained with the Escherichia coli complex I. The reaction was inhibited by piericidin A at the same concentration as in E. coli. The complex showed an unusual pH optimum at pH 9 and a maximal rate at 80 degrees C. We found no evidence for the presence of an alternative, single subunit NADH dehydrogenase in A. aeolicus membranes. The NADH:ferricyanide reductase activity of detergent extracts of A. aeolicus membranes sedimented as a protein with a molecular mass of approximately 550 kDa. From the data we concluded that A. aeolicus contains a NADH:ubiquinone oxidoreductase resembling complex I of mesophilic bacteria.  相似文献   

18.
The redox properties of the cofactors of NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli were studied by following the changes in electron paramagnetic resonance (EPR) and optical spectra upon electrochemical redox titration of the purified protein. At neutral pH, the FMN cofactor had a midpoint redox potential ( E m) approximately -350 mV ( n = 2). Binuclear FeS clusters were well-characterized: N1a was titrated with a single ( n = 1) transition, and E m = -235 mV. In contrast, the titration of N1b can only be fitted with the sum of at least two one-electron Nernstian curves with E m values of -245 and -320 mV. The tetranuclear clusters can also be separated into two groups, either having a single, n = 1, or more complex redox titration curves. The titration curves of the EPR bands attributed to the tetranuclear clusters N2 ( g = 2.045 and g = 1.895) and N6b ( g = 2.089 and g = 1.877) can be presented by the sum of at least two components, each with E m (app) approximately -200/-300 mV and -235/-315 mV, respectively. The titration of the signals at g = 1.956-1.947 (N3 or N7, E m = -315 mV), g = 2.022, and g = 1.932 (Nx, -365 mV) and the low temperature signal at g = 1.929 (N4 or N5, -330 mV) followed Nernstian n = 1 curves. The observed redox titration curves are discussed in terms of intrinsic electrostatic interactions between FeS centers in complex I. A model showing shifts of E m due to the electrostatic interaction between the centers is presented.  相似文献   

19.
The proton-pumping NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of protons across the membrane. In Escherichia coli the complex is made up of 13 different subunits encoded by the so-called nuo-genes. Mutants, in which each of the nuo-genes was individually disrupted by the insertion of a resistance cartridge were unable to assemble a functional complex I. Each disruption resulted in the loss of complex I-mediated activity and the failure to extract a structurally intact complex. Thus, all nuo-genes are required either for the assembly or the stability of a functional E. coli complex I. The three subunits comprising the soluble NADH dehydrogenase fragment of the complex were detected in the cytoplasm of several nuo-mutants as one distinct band after BN-PAGE. It is discussed that the fully assembled NADH dehydrogenase fragment represents an assembly intermediate of the E. coli complex I. A partially assembled complex I bound to the membrane was detected in the nuoK and nuoL mutants, respectively. Overproduction of the ΔNuoL variant resulted in the accumulation of two populations of a partially assembled complex in the cytoplasmic membranes. Both populations are devoid of NuoL. One population is enzymatically active, while the other is not. The inactive population is missing cluster N2 and is tightly associated with the inducible lysine decarboxylase. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

20.
Respiratory chains of bacteria and mitochondria contain closely related forms of the proton-pumping NADH:ubiquinone oxidoreductase, or complex I. The bacterial complex I consists of 14 subunits, whereas the mitochondrial complex contains some 25 extra subunits in addition to the homologues of the bacterial subunits. One of these extra subunits with a molecular mass of 40 kDa belongs to a heterogeneous family of reductases/isomerases with a conserved nucleotide binding site. We deleted this subunit in Neurospora crassa by gene disruption. In the mutant nuo 40, a complex I lacking the 40 kDa subunit is assembled. The mutant complex I does not contain tightly bound NADPH present in wild-type complex I. This NADPH cofactor is not connected to the respiratory electron pathway of complex I. The mutant complex has normal NADH dehydrogenase activity and contains the redox groups known for wild-type complex I, one flavin mononucleotide and four iron-sulfur clusters detectable by electron paramagnetic resonance spectroscopy. In the mutant complex these groups are all readily reduced by NADH. However, the mutant complex is not capable of reducing ubiquinone. A recently described redox group identified in wild-type complex I by UV-visible spectroscopy is not detectable in the mutant complex. We propose that the reductase/isomerase subunit with its NADPH cofactor takes part in the biosynthesis of this new redox group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号