首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objectives

The role of heparanase (HPSE) gene in cancers including hepatocellular carcinoma (HCC) is currently controversial. This study was aimed at investigating the impact of genetic alteration and expression change of HPSE on the progression and prognosis of HCC.

Methods

The HPSE gene was studied in three different aspects: (1) loss of heterozygosity (LOH) by a custom SNP microarray and DNA copy number by real-time PCR; (2) mRNA level by qRT-PCR; and (3) protein expression by immunohistochemistry. The clinical significances of allele loss and expression change of HPSE were analyzed.

Results

Microarray analysis showed that the average LOH frequency for 10 SNPs located within HPSE gene was 31.6%, three of which were significantly correlated with tumor grade, serum HBV-DNA level, and AFP concentration. In agreement with SNP LOH data, DNA copy number loss of HPSE was observed in 38.74% (43/111) of HCC cases. HPSE mRNA level was notably reduced in 74.1% (83/112) of tumor tissues compared with non-tumor liver tissues, which was significantly associated with DNA copy number loss, increased tumor size, and post-operative metastasis. HPSE protein level was also remarkably reduced in 66.3% (53/80) of tumor tissues, which was correlated with tumor grade. Patients with lower expression level of HPSE mRNA or protein had a significantly lower survival rate than those with higher expression. Cox regression analysis suggested that HPSE protein was an independent predictor of overall survival in HCC patients.

Conclusions

The results in this study demonstrate that genetic alteration and reduction of HPSE expression are associated with tumor progression and poor prognosis of HCCs, suggesting that HPSE behaves like a tumor suppressor gene and is a potential prognostic marker for HCC patients.  相似文献   

2.

Background

The 10-kDa culture filtrate protein (CFP10) and 6-kDa early-secreted target antigen (ESAT-6) play important roles in mycobacterial virulence and pathogenesis through a 1∶1 complex formation (CFP10/ESAT-6 protein, CE protein), which have been used in discriminating TB patients from BCG-vaccinated individuals. The B-cell epitopes of CFP10 and ESAT-6 separately have been analyzed before, however, the epitopes of the CE protein are unclear and the precise epitope in the positions 40 to 62 of ESAT-6 is still unknown.

Methods

In the present study, we searched for the B-cell epitopes of CE protein by using phage-display library biopanning with the anti-CE polyclonal antibodies. The epitopes were identified by sequence alignment, binding affinity and specificity detection, generation of polyclonal mouse sera and detection of TB patient sera.

Results

One linear B-cell epitope (KWDAT) consistent with the 162nd–166th sequence of CE and the 57th–61st sequence of ESAT-6 protein was selected and identified. Significantly higher titers of E5 peptide-binding antibodies were found in the sera of TB patients compared with those of healthy individuals.

Conclusion

There was a B-cell epitope for CE and ESAT-6 protein in the position 40 to 62 of ESAT-6. E5 peptide may be useful in the serodiagnosis of tuberculosis, which need to be further confirmed by more sera samples.  相似文献   

3.

Background

The envelope (E) protein of dengue virus (DENV) is the major target of neutralizing antibodies and vaccine development. While previous studies on domain III or domain I/II alone have reported several epitopes of monoclonal antibodies (mAbs) against DENV E protein, the possibility of interdomain epitopes and the relationship between epitopes and neutralizing potency remain largely unexplored.

Methodology/Principal Findings

We developed a dot blot assay by using 67 alanine mutants of predicted surface-exposed E residues as a systematic approach to identify epitopes recognized by mAbs and polyclonal sera, and confirmed our findings using a capture-ELISA assay. Of the 12 mouse mAbs tested, three recognized a novel epitope involving residues (Q211, D215, P217) at the central interface of domain II, and three recognized residues at both domain III and the lateral ridge of domain II, suggesting a more frequent presence of interdomain epitopes than previously appreciated. Compared with mAbs generated by traditional protocols, the potent neutralizing mAbs generated by a new protocol recognized multiple residues in A strand or residues in C strand/CC′ loop of DENV2 and DENV1, and multiple residues in BC loop and residues in DE loop, EF loop/F strand or G strand of DENV1. The predominant epitopes of anti-E antibodies in polyclonal sera were found to include both fusion loop and non-fusion residues in the same or adjacent monomer.

Conclusions/Significance

Our analyses have implications for epitope-specific diagnostics and epitope-based dengue vaccines. This high throughput method has tremendous application for mapping both intra and interdomain epitopes recognized by human mAbs and polyclonal sera, which would further our understanding of humoral immune responses to DENV at the epitope level.  相似文献   

4.

Background

Antibodies to P. falciparum apical membrane protein 1 (AMA1) may contribute to protective immunity against clinical malaria by inhibiting blood stage growth of P. falciparum, and AMA1 is a leading malaria vaccine candidate. Currently, there is limited knowledge of the acquisition of strain-specific and cross-reactive antibodies to AMA1 in humans, or the acquisition of invasion-inhibitory antibodies to AMA1.

Methodology/Findings

We examined the acquisition of human antibodies to specific polymorphic invasion-inhibitory and non-inhibitory AMA1 epitopes, defined by the monoclonal antibodies 1F9 and 2C5, respectively. Naturally acquired antibodies were measured in cohorts of Kenyan children and adults. Antibodies to the invasion-inhibitory 1F9 epitope and non-inhibitory 2C5 epitope were measured indirectly by competition ELISA. Antibodies to the 1F9 and 2C5 epitopes were acquired by children and correlated with exposure, and higher antibody levels and prevalence were observed with increasing age and with active P. falciparum infection. Of note, the prevalence of antibodies to the inhibitory 1F9 epitope was lower than antibodies to AMA1 or the 2C5 epitope. Antibodies to AMA1 ectodomain, the 1F9 or 2C5 epitopes, or a combination of responses, showed some association with protection from P. falciparum malaria in a prospective longitudinal study. Furthermore, antibodies to the invasion-inhibitory 1F9 epitope were positively correlated with parasite growth-inhibitory activity of serum antibodies.

Conclusions/Significance

Individuals acquire antibodies to functional, polymorphic epitopes of AMA1 that may contribute to protective immunity, and these findings have implications for AMA1 vaccine development. Measuring antibodies to the 1F9 epitope by competition ELISA may be a valuable approach to assessing human antibodies with invasion-inhibitory activity in studies of acquired immunity and vaccine trials of AMA1.  相似文献   

5.

Background

In Plasmodium falciparum malaria endemic areas placental malaria (PM) is an important complication of malaria. The recurrence of malaria in primigravidae women irrespective of acquired protection during childhood is caused by the interaction between the parasite-expressed VAR2CSA antigen and chondroitin sulfate A (CSA) in the placental intervillous space and lack of protective antibodies. PM impairs fetal development mainly by excessive inflammation processes. After infections during pregnancy women acquire immunity to PM conferred by antibodies against VAR2CSA. Ideally, a vaccine against PM will induce antibody-mediated immune responses that block the adhesion of infected erythrocytes (IE) in the placenta.

Principal Findings

We have previously shown that antibodies raised in rat against individual domains of VAR2CSA can block IE binding to CSA. In this study we have immunized mice, rats and rabbits with each individual domain and the full-length protein corresponding to the FCR3 VAR2CSA variant. We found there is an inherently higher immunogenicity of C-terminal domains compared to N-terminally located domains. This was irrespective of whether antibodies were induced against single domains or the full-length protein. Species-specific antibody responses were also found, these were mainly directed against single domains and not the full-length VAR2CSA protein.

Conclusions/Significance

Binding inhibitory antibodies appeared to be against conformational B-cell epitopes. Non-binding inhibitory antibodies reacted highly against the C-terminal end of the VAR2CSA molecule especially the highly polymorphic DBL6ε domain. Differential species-specific induction of antibody responses may allow for more direct analysis of functional versus non-functional B-cell epitopes.  相似文献   

6.

Background

Human papillomavirus (HPV) capsids are composed of 72 pentamers of the major capsid protein L1, and an unknown number of L2 minor capsid proteins. An N-terminal “external loop” of L2 contains cross-neutralizing epitopes, and native HPV16 virions extracted from 20-day-old organotypic tissues are neutralized by anti-HPV16 L2 antibodies but virus from 10-day-old cultures are not, suggesting that L2 epitopes are more exposed in mature, 20-day virions. This current study was undertaken to determine whether cross-neutralization of other HPV types is similarly dependent on time of harvest and to screen for the most effective cross-neutralizing epitope in native virions.

Methodology and Principal Findings

Neutralization assays support that although HPV16 L2 epitopes were only exposed in 20-day virions, HPV31 or HPV18 epitopes behaved differently. Instead, HPV31 and HPV18 L2 epitopes were exposed in 10-day virions and remained so in 20-day virions. In contrast, presumably due to sequence divergence, HPV45 was not cross-neutralized by any of the anti-HPV16 L2 antibodies. We found that the most effective cross-neutralizing antibody was a polyclonal antibody named anti-P56/75 #1, which was raised against a peptide consisting of highly conserved HPV16 L2 amino acids 56 to 75.

Conclusions and Significance

This is the first study to determine the susceptibility of multiple, native high-risk HPV types to neutralization by L2 antibodies. Multiple anti-L2 antibodies were able to cross-neutralize HPV16, HPV31, and HPV18. Only neutralization of HPV16 depended on the time of tissue harvest. These data should inform attempts to produce a second-generation, L2-based vaccine.  相似文献   

7.

Background

Dengue virus infection is a growing global public health concern in tropical and subtropical regions of the world. Dengue vaccine development has been hampered by concerns that cross-reactive immunological memory elicited by a candidate vaccine could increase the risk of development of more severe clinical forms. One possible strategy to reduce risks associated with a dengue vaccine is the development of a vaccine composed of selected critical epitopes of each of the serotypes.

Methodology/Principal Findings

Synthetic peptides were used to identify B-cell epitopes in the envelope (E) glycoprotein of dengue virus type 3 (DENV-3). Eleven linear, immunodominant epitopes distributed in five regions at amino acid (aa) positions: 51–65, 71–90, 131–170, 196–210 and 246–260 were identified by employing an enzyme- linked immunosorbent assay (ELISA), using a pool of human sera from dengue type 3 infected individuals. Peptides 11 (aa51–65), 27 and 28 (aa131–150) also reacted with dengue 1 (DENV-1) and dengue 2 (DENV-2) patient sera as analyzed through the ROC curves generated for each peptide by ELISA and might have serotype specific diagnostic potential. Mice immunized against each one of the five immunogenic regions showed epitopes 51–65, 131–170, 196–210 and 246–260 elicited the highest antibody response and epitopes131–170, 196–210 and 246–260, elicited IFN-γ production and T CD4+ cell response, as evaluated by ELISA and ELISPOT assays respectively.

Conclusions/Significance

Our study identified several useful immunodominant IgG-specific epitopes on the envelope of DENV-3. They are important tools for understanding the mechanisms involved in antibody dependent enhancement and immunity. If proven protective and safe, in conjunction with others well-documented epitopes, they might be included into a candidate epitope-based vaccine.  相似文献   

8.

Background

B-cell epitopes have been studied extensively due to their immunological applications, such as peptide-based vaccine development, antibody production, and disease diagnosis and therapy. Despite several decades of research, the accurate prediction of linear B-cell epitopes has remained a challenging task.

Results

In this work, based on the antigen’s primary sequence information, a novel linear B-cell epitope prediction model was developed using the multiple linear regression (MLR). A 10-fold cross-validation test on a large non-redundant dataset was performed to evaluate the performance of our model. To alleviate the problem caused by the noise of negative dataset, 300 experiments utilizing 300 sub-datasets were performed. We achieved overall sensitivity of 81.8%, precision of 64.1% and area under the receiver operating characteristic curve (AUC) of 0.728.

Conclusions

We have presented a reliable method for the identification of linear B cell epitope using antigen’s primary sequence information. Moreover, a web server EPMLR has been developed for linear B-cell epitope prediction: http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0414-y) contains supplementary material, which is available to authorized users.  相似文献   

9.
Chung TT  Yeh CB  Li YC  Su SC  Chien MH  Yang SF  Hsieh YH 《PloS one》2012,7(3):e33517

Background

The reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) down-regulation has been confirmed in numerous human cancers and is clinically associated with metastasis. This study investigates the potential associations of RECK single-nucleotide polymorphisms (SNPs) with hepatocellular carcinoma (HCC) susceptibility and its clinicopathologic characteristics.

Methodology/Principal Findings

A total of 135 HCC cancer patients and 501 cancer-free controls were analyzed for four RECK SNPs (rs10814325, rs16932912, rs11788747, and rs10972727) using real-time PCR and PCR-RFLP genotyping analysis. After adjusting for other co-variants, the individuals carrying RECK promoter rs10814325 inheriting at least one C allele had a 1.85-fold [95% confidence interval (CI), 1.03–3.36] risk of developing HCC compared to TT wild type carriers. The HCC patients, who carried rs11788747 with at least one G allele, had a higher distant metastasis risk than wild type probands.

Conclusions

RECK gene polymorphisms might be a risk factor increasing HCC susceptibility and distant metastasis in Taiwan.  相似文献   

10.
C Chen  S Wang  H Wang  X Mao  T Zhang  G Ji  X Shi  T Xia  W Lu  D Zhang  J Dai  Y Guo 《PloS one》2012,7(8):e43845

Background

Botulinum neurotoxins (BoNTs), the causative agents for life-threatening human disease botulism, have been recognized as biological warfare agents. Monoclonal antibody (mAb) therapeutics hold considerable promise as BoNT therapeutics, but the potencies of mAbs against BoNTs are usually less than that of polyclonal antibodies (or oligoclonal antibodies). The confirmation of key epitopes with development of effective mAb is urgently needed.

Methods and Findings

We selected 3 neutralizing mAbs which recognize different non-overlapping epitopes of BoNT/B from a panel of neutralizing antibodies against BoNT/B. By comparing the neutralizing effects among different combination groups, we found that 8E10, response to ganglioside receptor binding site, could synergy with 5G10 and 2F4, recognizing non-overlapping epitopes within Syt II binding sites. However, the combination of 5G10 with 2F4 blocking protein receptor binding sites did not achieve synergistical effects. Moreover, we found that the binding epitope of 8E10 was conserved among BoNT A, B, E, and F, which might cross-protect the challenge of different serotypes of BoNTs in vivo.

Conclusions

The combination of two mAbs recognizing different receptors'' binding domain in BoNTs has a synergistic effect. 8E10 is a potential universal partner for the synergistical combination with other mAb against protein receptor binding domain in BoNTs of other serotypes.  相似文献   

11.

Background

The prognosis of hepatocellular carcinoma (HCC) patients with extrahepatic metastasis is extremely poor. However, what is the main risk factor for survival remains unclear for these patients. We aimed to find out the relative frequency, incidence and locations of extrahepatic metastases and the risk factors of long-term survival of the patients.

Methods

132 HCC patients with extrahepatic metastasis diagnosed by 18F-FDG PET/CT and conventional workup were enrolled into this study. The incidence and locations of extrahepatic metastases were summarized, and the related risk factors of overall survival were analyzed.

Results

The most frequent extrahepatic metastatic sites were lymph nodes in 72 (54.5%), bone in 33 (25.0%) and lung in 28 (21.2%) patients. On univariate analysis, prothrombin time, Child-Pugh grade, portal/hepatic vein invasion and lymph node metastasis were independent risk factors of overall survival. On multivariate analysis, lymph node metastasis was the only independent risk factor of overall survival. The cumulative survival rates at 1- and 3-years after diagnosis of extrahepatic metastasis of HCC were 34.4% and 9.3%, respectively. The median survival time was 7 months (range 1 ∼38 months). The median survival time for patients with or without lymph node metastasis were 5 months (range 1∼38 months) and 12 months (range 1∼30 months), respectively (P = 0.036).

Conclusions

This study showed lymph nodes to be the most frequent site of extrahepatic metastases for primary HCC. Lymph node metastasis was the main risk factor of overall survival in patients with HCC with extrahepatic metastasis.  相似文献   

12.

Purpose

MAP3865c, a Mycobacterium avium subspecies paratuberculosis (MAP) cell membrane protein, has a relevant sequence homology with zinc transporter 8 (ZnT8), a beta-cell membrane protein involved in Zn++ transportation. Recently, antibodies recognizing MAP3865c epitopes have been shown to cross-react with ZnT8 in type 1 diabetes patients. The purpose of this study was to detect antibodies against MAP3865c peptides in patients with high-risk proliferative diabetic retinopathy and speculate on whether they may somehow be involved in the pathogenesis of this severe retinal disorder.

Methods

Blood samples were obtained from 62 type 1 and 80 type 2 diabetes patients with high-risk proliferative diabetic retinopathy and 81 healthy controls. Antibodies against 6 highly immunogenic MAP3865c peptides were detected by indirect ELISA.

Results

Type 1 diabetes patients had significantly higher rates of positive antibodies than controls. Conversely, no statistically significant differences were found between type 2 diabetes patients and controls. After categorization of type 1 diabetes patients into two groups, one with positive, the other with negative antibodies, we found that they had similar mean visual acuity (∼0.6) and identical rates of vitreous hemorrhage (28.6%). Conversely, Hashimoto''s thyroiditis prevalence was 4/13 (30.7%) in the positive antibody group and 1/49 (2%) in the negative antibody group, a statistically significant difference (P = 0.016).

Conclusions

This study confirmed that type 1 diabetes patients have significantly higher rates of positive antibodies against MAP/ZnT8 peptides, but failed to find a correlation between the presence of these antibodies and the severity degree of high-risk proliferative diabetic retinopathy. The significantly higher prevalence of Hashimoto''s disease among type 1 diabetes patients with positive antibodies might suggest a possible common environmental trigger for these conditions.  相似文献   

13.

Background

The development of new therapeutic targets and strategies to control highly pathogenic avian influenza (HPAI) H5N1 virus infection in humans is urgently needed. Broadly cross-neutralizing recombinant human antibodies obtained from the survivors of H5N1 avian influenza provide an important role in immunotherapy for human H5N1 virus infection and definition of the critical epitopes for vaccine development.

Methodology/Principal Findings

We have characterized two recombinant baculovirus-expressed human antibodies (rhAbs), AVFluIgG01 and AVFluIgG03, generated by screening a Fab antibody phage library derived from a patient recovered from infection with a highly pathogenic avian influenza A H5N1 clade 2.3 virus. AVFluIgG01 cross-neutralized the most of clade 0, clade 1, and clade 2 viruses tested, in contrast, AVFluIgG03 only neutralized clade 2 viruses. Passive immunization of mice with either AVFluIgG01 or AVFluIgG03 antibody resulted in protection from a lethal H5N1 clade 2.3 virus infection. Furthermore, through epitope mapping, we identify two distinct epitopes on H5 HA molecule recognized by these rhAbs and demonstrate their potential to protect against a lethal H5N1 virus infection in a mouse model.

Conclusions/Significance

Importantly, localization of the epitopes recognized by these two neutralizing and protective antibodies has provided, for the first time, insight into the human antibody responses to H5N1 viruses which contribute to the H5 immunity in the recovered patient. These results highlight the potential of a rhAbs treatment strategy for human H5N1 virus infection and provide new insight for the development of effective H5N1 pandemic vaccines.  相似文献   

14.

Background

Stem cell-fate is highly regulated by stem cell niche, which is composed of a distinct microenvironment, including neighboring cells, signals and extracellular matrix. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stem cells and are potentially applicable in wide variety of pathological conditions. However, the niche microenvironment for BM-MSCs maintenance has not been clearly characterized. Accumulating evidence indicated that heparan sulfate glycosaminoglycans (HS-GAGs) modulate the self-renewal and differentiation of BM-MSCs, while overexpression of heparanase (HPSE1) resulted in the change of histological profile of bone marrow. Here, we inhibited the enzymatic activity of cell-autonomous HPSE1 in BM-MSCs to clarify the physiological role of HPSE1 in BM-MSCs.

Results

Isolated mouse BM-MSCs express HPSE1 as indicated by the existence of its mRNA and protein, which includes latent form and enzymatically active HPSE1. During in vitro osteo-differentiations, although the expression levels of Hpse1 fluctuated, enzymatic inhibition did not affect osteogenic differentiation, which might due to increased expression level of matrix metalloproteinase 9 (Mmp9). However, cell proliferation and colony formation efficiency were decreased when HPSE1 was enzymatically inhibited. HPSE1 inhibition potentiated SDF-1/CXCR4 signaling axis and in turn augmented the migratory/anchoring behavior of BM-MSCs. We further demonstrated that inhibition of HPSE1 decreased the accumulation of acetylation marks on histone H4 lysine residues suggesting that HPSE1 also modulates the chromatin remodeling.

Conclusions

Our findings indicated cell-autonomous HPSE1 modulates clonogenicity, proliferative potential and migration of BM-MSCs and suggested the HS-GAGs may contribute to the niche microenvironment of BM-MSCs.  相似文献   

15.

Objective

This study was to explore the role of EFEMP1 in ovarian tumor progression and its relationship with prognosis of ovarian carcinoma.

Methods

EFEMP1 mRNA and protein expressions in normal ovarian tissue, ovarian tumor, high invasive subclones and low invasive subclones were evaluated by immunohistochemistry and real time RT-PCR. Serum EFEMP1 levels in patients with ovarian tumor were measured by ELISA assay. To assess the angiogenic properties of EFEMP1, VEGF and tumor microvessel density were analyzed in ovarian carcinoma by immunohistochemistry.

Results

EFEMP1 expression was up-regulated in ovarian carcinoma, positively correlated with MVD and VEGF, and its overexpression and high serum levels were significantly associated with high stage, low differentiation, lymph node metastasis and poor prognosis of ovarian cancer. EFEMP1 expression was also found to be over-expressed in the highly invasive subclones compared with the low invasive subclones.

Conclusion

EFEMP1 is a newly identified gene over-expressed in ovarian cancer, associated with poor clinicopathologic features and promotes angiogenesis. This study shows that EFEMP1 may serve as a new prognostic factor and a therapeutic target for patients with ovarian cancer in the future.  相似文献   

16.

Background

Although vaccines are important in preventing viral infections by inducing neutralizing antibodies (nAbs), HIV-1 has proven to be a difficult target and escapes humoral immunity through various mechanisms. We sought to test whether HIV-1 Env mimics may serve as immunogens.

Methodology/Principal Findings

Using random peptide phage display libraries, we identified the epitopes recognized by polyclonal antibodies of a rhesus monkey that had developed high-titer, broadly reactive nAbs after infection with a simian-human immunodeficiency virus (SHIV) encoding env of a recently transmitted HIV-1 clade C (HIV-C). Phage peptide inserts were analyzed for conformational and linear homology using computational analysis; some peptides mimicked various domains of the original HIV-C Env, such as conformational V3 loop epitopes and the conserved linear region of the gp120 C-terminus. Next, we devised a novel prime/boost strategy to test the immunogenicity of such phage-displayed peptides and primed mice only once with HIV-C gp160 DNA followed by boosting with mixtures of recombinant phages.

Conclusions/Significance

This strategy, which was designed to focus the immune system on a few Env epitopes (immunofocusing), not only induced HIV-C gp160 binding antibodies and cross-clade nAbs, but also linked a conserved HIV Env region for the first time to the induction of nAbs: the C-terminus of gp120. The identification of conserved antigen mimics may lead to novel immunogens capable of inducing broadly reactive nAbs.  相似文献   

17.

Background

Human bocavirus species 1–4 (HBoV1–4) have been associated with respiratory and enteric infections in children. However, the immunological mechanisms in response to HBoV infections are not fully understood. Though previous studies have shown cross-reactivities between HBoV species, the epitopes responsible for this phenomenon remain unknown. In this study, we used genomic and immunologic approaches to identify the reactive epitopes conserved across multiple HBoV species and explored their potential as the basis of a novel diagnostic test for HBoVs.

Methodology/Principal Findings

We generated HBoV1–3 VP2 gene fragment phage display libraries (GFPDLs) and used these libraries to analyze mouse antisera against VP2 protein of HBoV1, 2, and 3, and human sera positive for HBoVs. Using this approach, we mapped four epitope clusters of HBoVs and identified two immunodominant peptides–P1 (1MSDTDIQDQQPDTVDAPQNT20), and P2 (162EHAYPNASHPWDEDVMPDL180)–that are conserved among HBoV1–4. To confirm epitope immunogenicity, we immunized mice with the immunodominant P1 and P2 peptides identified in our screen and found that they elicited high titer antibodies in mice. These two antibodies could only recognize the VP2 of HBoV 1–4 in Western blot assays, rather than those of the two other parvoviruses human parvovirus B19 and human parvovirus 4 (PARV4). Based on our findings, we evaluated epitope-based peptide-IgM ELISAs as potential diagnostic tools for HBoVs IgM antibodies. We found that the P1+P2-IgM ELISA showed a higher sensitivity and specificity in HBoVs IgM detection than the assays using a single peptide.

Conclusions/Significance

The identification of the conserved B-cell epitopes among human bocavirus species contributes to our understanding of immunological cross-reactivities of HBoVs, and provides important insights for the development of HBoV diagnostic tools.  相似文献   

18.
W Zhang  Y Niu  Y Xiong  M Zhao  R Yu  J Liu 《PloS one》2012,7(8):e43575

Motivation

The conformational B-cell epitopes are the specific sites on the antigens that have immune functions. The identification of conformational B-cell epitopes is of great importance to immunologists for facilitating the design of peptide-based vaccines. As an attempt to narrow the search for experimental validation, various computational models have been developed for the epitope prediction by using antigen structures. However, the application of these models is undermined by the limited number of available antigen structures. In contrast to the most of available structure-based methods, we here attempt to accurately predict conformational B-cell epitopes from antigen sequences.

Methods

In this paper, we explore various sequence-derived features, which have been observed to be associated with the location of epitopes or ever used in the similar tasks. These features are evaluated and ranked by their discriminative performance on the benchmark datasets. From the perspective of information science, the combination of various features can usually lead to better results than the individual features. In order to build the robust model, we adopt the ensemble learning approach to incorporate various features, and develop the ensemble model to predict conformational epitopes from antigen sequences.

Results

Evaluated by the leave-one-out cross validation, the proposed method gives out the mean AUC scores of 0.687 and 0.651 on two datasets respectively compiled from the bound structures and unbound structures. When compared with publicly available servers by using the independent dataset, our method yields better or comparable performance. The results demonstrate the proposed method is useful for the sequence-based conformational epitope prediction.

Availability

The web server and datasets are freely available at http://bcell.whu.edu.cn.  相似文献   

19.

Background and Aims

Innovations in vegetative and reproductive characters were key factors in the evolutionary history of land plants and most of these transformations, including dramatic changes in life cycle structure and strategy, necessarily involved cell-wall modifications. To provide more insight into the role of cell walls in effecting changes in plant structure and function, and in particular their role in the generation of vascularization, an antibody-based approach was implemented to compare the presence and distribution of cell-wall glycan epitopes between (free-living) gametophytes and sporophytes of Ceratopteris richardii ‘C-Fern’, a widely used model system for ferns.

Methods

Microarrays of sequential diamino-cyclohexane-tetraacetic acid (CDTA) and NaOH extractions of gametophytes, spores and different organs of ‘C-Fern’ sporophytes were probed with glycan-directed monoclonal antibodies. The same probes were employed to investigate the tissue- and cell-specific distribution of glycan epitopes.

Key Results

While monoclonal antibodies against pectic homogalacturonan, mannan and xyloglucan widely labelled gametophytic and sporophytic tissues, xylans were only detected in secondary cell walls of the sporophyte. The LM5 pectic galactan epitope was restricted to sporophytic phloem tissue. Rhizoids and root hairs showed similarities in arabinogalactan protein (AGP) and xyloglucan epitope distribution patterns.

Conclusions

The differences and similarities in glycan cell-wall composition between ‘C-Fern’ gametophytes and sporophytes indicate that the molecular design of cell walls reflects functional specialization rather than genetic origin. Glycan epitopes that were not detected in gametophytes were associated with cell walls of specialized tissues in the sporophyte.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号