首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteorhodopsin (PR) is a light-driven proton pump that has been found in a variety of marine bacteria. Recently, many PR-like genes were found in non-marine environments. The goal of this study is to explore the function of rhodopsins that exist only as partial proteo-opsin genes using chimeras with marine green PR (GPR). We isolated nine partial genes of PR homologues using polymerase chain reaction (PCR) and chose three homologues of GPR from the surface of the Ganges River, which has earned them the name “CFR, Chimeric Freshwater Rhodopsin.” In order to characterize the proteins, we constructed the cassette based on GPR sequence without helices C to F and inserted the isolated conserved partial sequences. When expressed in E. coli, we could observe light-driven proton pumping activity similar to proteorhodopsin, however, photocycle kinetics of CFRs are much slower than proteorhodopsin. Half-time decay of O intermediates of CFRs ranged between 143 and 333 ms at pH 10; their absorption maxima were between 515 and 522 nm at pH 7. We can guess that the function of native rhodopsin, a retinal protein of fresh water bacteria, may be a light-driven proton transport based on the results from chimeric freshwater rhodopsins. This approach will enable many labs that keep reporting partial PCR-based opsin sequences to finally characterize their proteins.  相似文献   

2.

Background

Solar energy is the ultimate energy source on the Earth. The conversion of solar energy into fuels and energy sources can be an ideal solution to address energy problems. The recent discovery of proteorhodopsin in uncultured marine ??-proteobacteria has made it possible to construct recombinant Escherichia coli with the function of light-driven proton pumps. Protons that translocate across membranes by proteorhodopsin generate a proton motive force for ATP synthesis by ATPase. Excess protons can also be substrates for hydrogen (H2) production by hydrogenase in the periplasmic space. In the present work, we investigated the effect of the co-expression of proteorhodopsin and hydrogenase on H2 production yield under light conditions.

Results

Recombinant E. coli BL21(DE3) co-expressing proteorhodopsin and [NiFe]-hydrogenase from Hydrogenovibrio marinus produced ~1.3-fold more H2 in the presence of exogenous retinal than in the absence of retinal under light conditions (70 ??mole photon/(m2·s)). We also observed the synergistic effect of proteorhodopsin with endogenous retinal on H2 production (~1.3-fold more) with a dual plasmid system compared to the strain with a single plasmid for the sole expression of hydrogenase. The increase of light intensity from 70 to 130 ??mole photon/(m2·s) led to an increase (~1.8-fold) in H2 production from 287.3 to 525.7 mL H2/L-culture in the culture of recombinant E. coli co-expressing hydrogenase and proteorhodopsin in conjunction with endogenous retinal. The conversion efficiency of light energy to H2 achieved in this study was ~3.4%.

Conclusion

Here, we report for the first time the potential application of proteorhodopsin for the production of biohydrogen, a promising alternative fuel. We showed that H2 production was enhanced by the co-expression of proteorhodopsin and [NiFe]-hydrogenase in recombinant E. coli BL21(DE3) in a light intensity-dependent manner. These results demonstrate that E. coli can be applied as light-powered cell factories for biohydrogen production by introducing proteorhodopsin.  相似文献   

3.
Kang I  Kang D  Oh HM  Kim H  Kim HJ  Kang TW  Kim SY  Cho JC 《Journal of bacteriology》2011,193(14):3688-3689
Strain IMCC2047 was isolated from the Yellow Sea using dilution-to-extinction culturing. The strain was shown to occupy a distinct phylogenetic position within the Gammaproteobacteria. Here we present the genome sequence of strain IMCC2047, which harbors genes for various metabolic pathways, including proteorhodopsin and ribulose bisphosphate carboxylase.  相似文献   

4.
5.
6.
7.
Microorganisms can use complex photosystems or light-dependent proton pumps to generate membrane potential and/or reduce electron carriers to support growth. The discovery that proteorhodopsin is a light-dependent proton pump that can be expressed readily in recombinant bacteria enables development of new strategies to probe microbial physiology and to engineer microbes with new light-driven properties. Here, we describe functional expression of proteorhodopsin and light-induced changes in membrane potential in the bacterium Shewanella oneidensis strain MR-1. We report that there were significant increases in electrical current generation during illumination of electrochemical chambers containing S. oneidensis expressing proteorhodopsin. We present evidence that an engineered strain is able to consume lactate at an increased rate when it is illuminated, which is consistent with the hypothesis that proteorhodopsin activity enhances lactate uptake by increasing the proton motive force. Our results demonstrate that there is coupling of a light-driven process to electricity generation in a nonphotosynthetic engineered bacterium. Expression of proteorhodopsin also preserved the viability of the bacterium under nutrient-limited conditions, providing evidence that fulfillment of basic energy needs of organisms may explain the widespread distribution of proteorhodopsin in marine environments.Classic experiments in microbial bioenergetics used light-driven reactions from halobacterial bacteriorhodopsin or the photosynthetic reaction center to provide a temporary driving force for understanding transport and chemiosmotic coupling (6, 7, 19, 35). However, light-driven reactions have not been used in metabolic engineering to alter microbial physiology and production of chemicals. The recent discovery of proteorhodopsin (PR) in ocean microorganisms and the ease with which this membrane protein can be functionally expressed by recombinant bacteria have made possible many engineering strategies previously not available (1, 16). In this paper, we describe progress toward the goal of integrating light-driven reactions with biocatalysis.In contrast to the situation for established industrial microorganisms, such as Escherichia coli, our current understanding of less-studied algal and phototrophic bacteria may limit metabolic engineering strategies which require genetic manipulation. Metabolic engineering strategies using photosynthetic bacteria have focused largely on methods to increase hydrogen production, and improvements rely mainly on engineering of nitrogenase and hydrogenase to produce H2. Algae appear to be suited to large-scale cultivation for lipid production, but so far little has been done to engineer these organisms (36). In principle, platform microbial hosts capable of producing a diverse range of products could be boosted by addition of light-driven processes from phototrophic metabolism.To demonstrate the feasibility of transferring a light-driven process into a nonphotosynthetic bacterium, we chose to study proteorhodopsin (PR) first because it is one of the simplest mechanisms for harnessing the energy from light. The proteorhodopsins are a group of transmembrane proteins that use the light-induced isomerization of retinal, the oxidative cleavage product of the carotenoid β-carotene, either to initiate signaling pathways or to catalyze the transfer of ions across cell membranes (8). PR was discovered by metagenomic analysis of marine samples (1) and is related to the well-studied bacteriorhodopsin of archaea (33) and rhodopsin (34), a eukaryotic light-sensing protein. The membrane potential generated by light-driven proton pumping by PR has been confirmed to drive ATP synthesis in a heterologous system (25). However, bacteria expressing heterologous PR were shown not to benefit from this pumping activity, as no significant increases in growth rates were observed (9). This led to the suggestion that PR may benefit the organism only under starvation conditions. In agreement with this hypothesis, Gomez-Consarnau et al. (10) have reported that the light-dependent growth rates of a marine flavobacterium that has a native PR are increased only when the organism is cultured under energy-limited conditions.Studies of both native and recombinant systems in which rhodopsins are expressed have generated light-dependent membrane potentials. In membrane vesicles isolated from a native host, the light-dependent membrane potential generated by bacteriorhodopsin provides the driving force for ATP synthesis (35) and uptake of leucine and glutamate (20, 22). More recently, studies of recombinant systems have coupled the membrane potential to other transport processes. In one example, the membrane potential-dependent export of specific toxic molecules increased when E. coli cells expressing both an archaeal rhodopsin and a specific efflux pump were exposed to light (17). In another experiment, starved E. coli cells expressing PR increased the swimming motion of their flagella when they were illuminated (44). Based upon measurements of flagellar motion as a function of light intensity and azide concentration, the proton motive force generated by PR was estimated to be −0.2 V, a value similar to the value for aerobic respiration in E. coli (42).As a nonphotosynthetic host for recombinant PR expression, we chose the dissimilatory metal-reducing bacterium Shewanella oneidensis strain MR-1, which is genetically tractable for engineering and is able to use a variety of terminal electron acceptors, including insoluble metal oxides (11, 30). Key to the ability of this bacterium to reduce metal oxides is a multicomponent extracellular respiratory pathway that transports electrons from menaquinol to cytochromes in the outer membrane. This pathway is composed of a cytoplasmic membrane tetraheme protein (CymA), a periplasmic decaheme protein (MtrA), an integral outer membrane protein (MtrB), and a decaheme lipoprotein (MtrC) that is associated with MtrB (14, 37, 40). The ability of S. oneidensis to reduce extracellular metal oxides has made it possible to harvest electrons from this organism by coupling it to an electrode which serves as the electron acceptor (21). The electron flow to the outer surface allows respiration rates to be measured directly by electrochemistry.In the current work, we introduced PR into an electricity-generating bacterium, S. oneidensis strain MR-1, and demonstrated that there was integration of a light-driven process into the metabolism of a previously nonphotosynthetic organism that resulted in a useful output. We show here that PR allows cells to survive for extended periods in stationary phase and that the presence of light results in an increase in electricity generation. A possible physiological model to explain these effects is discussed.  相似文献   

8.
Jang Y  Oh HM  Kang I  Lee K  Yang SJ  Cho JC 《Journal of bacteriology》2011,193(13):3415-3416
Strain IMCC3088, cultivated from the Yellow Sea, is a novel isolate belonging to the OM60/NOR5 clade and is closely related to clone OM241, Congregibacter litoralis, and strain HTCC2080. Here, the genome sequence of strain IMCC3088 is presented, showing the absence of photosynthetic gene clusters and the presence of proteorhodopsin.  相似文献   

9.
Proteorhodopsins (PRs), the recently discovered light-driven proton pumps, play a major role in supplying energy for microbial organisms of oceans. In contrast to PR, rhodopsins found in Archaea and Eukarya are structurally well characterized. Using single-molecule microscopy and spectroscopy, we observed the oligomeric assembly of native PR molecules and detected their folding in the membrane. PR showed unfolding patterns identical with those of bacteriorhodopsin and halorhodopsin, indicating that PR folds similarly to archaeal rhodopsins. Surprisingly, PR predominantly assembles into hexameric oligomers, with a smaller fraction assembling into pentamers. Within these oligomers, PR arranged into radial assemblies. We suggest that this structural assembly of PR may have functional implications.  相似文献   

10.
The genome of thylakoidless cyanobacterium Gloeobacter violaceus encodes a fast-cycling rhodopsin capable of light-driven proton transport. We characterize the dark state, the photocycle, and the proton translocation pathway of GR spectroscopically. The dark state of GR contains predominantly all-trans-retinal and, similar to proteorhodopsin, does not show the light/dark adaptation. We found an unusually strong coupling between the conformation of the retinal and the site of Glu132, the homolog of Asp96 of BR. Although the photocycle of GR is similar to that of proteorhodopsin in general, it differs in accumulating two intermediates typical for BR, the L-like and the N-like states. The latter state has a deprotonated cytoplasmic proton donor and is spectrally distinct from the strongly red-shifted N intermediate known for proteorhodopsin. The proton uptake precedes the release and occurs during the transition to the O intermediate. The proton translocation pathway of GR is similar to those of other proton-pumping rhodopsins, involving homologs of BR Schiff base proton acceptor and donor Asp85 and Asp96 (Asp121 and Glu132). We assigned a pair of FTIR bands (positive at 1749 cm−1 and negative at 1734 cm−1) to the protonation and deprotonation, respectively, of these carboxylic acids.  相似文献   

11.
Rhodopsin mistrafficking can cause photoreceptor (PR) degeneration. Upon light exposure, activated rhodopsin 1 (Rh1) in Drosophila PRs is internalized via endocytosis and degraded in lysosomes. Whether internalized Rh1 can be recycled is unknown. Here, we show that the retromer complex is expressed in PRs where it is required for recycling endocytosed Rh1 upon light stimulation. In the absence of subunits of the retromer, Rh1 is processed in the endolysosomal pathway, leading to a dramatic increase in late endosomes, lysosomes, and light-dependent PR degeneration. Reducing Rh1 endocytosis or Rh1 levels in retromer mutants alleviates PR degeneration. In addition, increasing retromer abundance suppresses degenerative phenotypes of mutations that affect the endolysosomal system. Finally, expressing human Vps26 suppresses PR degeneration in Vps26 mutant PRs. We propose that the retromer plays a conserved role in recycling rhodopsins to maintain PR function and integrity.  相似文献   

12.
Many organisms use proton pump to earn energy for living. Some proton pumps start to work by light and one of the famous proteins are called proteorhodopsin (PR). From recent study it used not only protons but also mono-valent cations, divalent cations, or mono-valent anions during pumping activity. The goal of this study is to find new types of proton pumping proteins in the surface of the ocean. Metagenome samples were collected from the beach in Taean-gun and Incheon (Kkotji beach (36°30′0′′N, 126°19′56′′E), Kkotji mud (36°30′8′′N, 126°19′60′′E), Duegi beach (36°31′6′′N, 126°19′39′′E), Sorae salt pond (37°24′25′′N, 126°44′41′′E), swamp (37°24′59′′N, 126°44′54′′E) and reservoir (37°24′39′′N, 126°45′5′′E) in West Sea of Korea. Genomic DNA of each sample was isolated and used for PCR with specific primers for PR and sodium pumping rhodopsin. As a result, we obtained an unidentified PR in Duegi beach sample. The unidentified PR was expressed with chimeric expression system. It has 528 nm absorption maximum at pH 7. By the light differential spectrum measurement, putative M and O photo-intermediates were detected at around 400 and 600 nm, respectively. Similar to GPR, it has light driven outward proton transfer activity.  相似文献   

13.
《Biophysical journal》2023,122(1):168-179
The functional properties of proteorhodopsin (PR) have been found to be strongly modulated by oligomeric distributions and lipid membrane mimetics. This study aims to distinguish and explain their effects by investigating how oligomer formation impacts PR’s function of proton transport in lipid-based membrane mimetic environments. We find that PR forms stable hexamers and pentamers in both E. coli membranes and synthetic liposomes. Compared with the monomers, the photocycle kinetics of PR oligomers is ~2 and ~4.5 times slower for transitions between the K and M and the M and N photointermediates, respectively, indicating that oligomerization significantly slows PR’s rate of proton transport in liposomes. In contrast, the apparent pKa of the key proton acceptor residue D97 (pKaD97) of liposome-embedded PR persists at 6.2–6.6, regardless of cross-protomer modulation of D97, suggesting that the liposome environment helps maintain PR’s functional activity at neutral pH. By comparison, when extracted directly from E. coli membranes into styrene-maleic acid lipid particles, the pKaD97 of monomer-enriched E50Q PR drastically increases to 8.9, implying that there is a very low active PR population at neutral pH to engage in PR’s photocycle. These findings demonstrate that oligomerization impacts PR’s photocycle kinetics, while lipid-based membrane mimetics strongly affect PR’s active population via different mechanisms.  相似文献   

14.
Proteorhodopsin (PR) a recent addition to retinal type 1 protein family, is a bacterial homologue of archaeal bacteriorhodopsin. It was found to high abundance in γ-proteobacteria in the photic zone of the oceans and has been shown to act as a photoactive proton pump. It is therefore involved in the utilisation of light energy for energy production within the cell. Based on data from biodiversity screens, hundreds of variants were discovered worldwide, which are spectrally tuned to the available light at different locations in the sea. Here, we present a characterisation of 2D crystals of the green variant of proteorhodopsin by electron microscopy and solid state NMR. 2D crystal formation with hexagonal protein packing was observed under a very wide range of conditions indicating that PR might be also closely packed under native conditions. A low-resolution 2D projection map reveals a ring-shaped oligomeric assembly of PR. The protein state was analysed by 15N MAS NMR on lysine, tryptophan and methionine labelled samples. The chemical shift of the protonated Schiff base was almost identical to non-crystalline preparations. All residues could be cross-polarised in non-frozen samples. Lee-Goldberg cross-polarisation has been used to probe protein backbone mobility.  相似文献   

15.
Viruses with large genomes encode numerous proteins that do not directly participate in virus biogenesis but rather modify key functional systems of infected cells. We report that a distinct group of giant viruses infecting unicellular eukaryotes that includes Organic Lake Phycodnaviruses and Phaeocystis globosa virus encode predicted proteorhodopsins that have not been previously detected in viruses. Search of metagenomic sequence data shows that putative viral proteorhodopsins are extremely abundant in marine environments. Phylogenetic analysis suggests that giant viruses acquired proteorhodopsins via horizontal gene transfer from proteorhodopsin-encoding protists although the actual donor(s) could not be presently identified. The pattern of conservation of the predicted functionally important amino acid residues suggests that viral proteorhodopsin homologs function as sensory rhodopsins. We hypothesize that viral rhodopsins modulate light-dependent signaling, in particular phototaxis, in infected protists. This article was reviewed by Igor B. Zhulin and Laksminarayan M. Iyer. For the full reviews, see the Reviewers?? reports section.  相似文献   

16.
Proteorhodopsin (PR) a recent addition to retinal type 1 protein family, is a bacterial homologue of archaeal bacteriorhodopsin. It was found to high abundance in gamma-proteobacteria in the photic zone of the oceans and has been shown to act as a photoactive proton pump. It is therefore involved in the utilisation of light energy for energy production within the cell. Based on data from biodiversity screens, hundreds of variants were discovered worldwide, which are spectrally tuned to the available light at different locations in the sea. Here, we present a characterisation of 2D crystals of the green variant of proteorhodopsin by electron microscopy and solid state NMR. 2D crystal formation with hexagonal protein packing was observed under a very wide range of conditions indicating that PR might be also closely packed under native conditions. A low-resolution 2D projection map reveals a ring-shaped oligomeric assembly of PR. The protein state was analysed by 15N MAS NMR on lysine, tryptophan and methionine labelled samples. The chemical shift of the protonated Schiff base was almost identical to non-crystalline preparations. All residues could be cross-polarised in non-frozen samples. Lee-Goldberg cross-polarisation has been used to probe protein backbone mobility.  相似文献   

17.
Many H+-pump rhodopsins conserve “H+ donor” residues in cytoplasmic (CP) half channels to quickly transport H+ from the CP medium to Schiff bases at the center of these proteins. For conventional H+ pumps, the donors are conserved as Asp or Glu but are replaced by Lys in the minority, such as Exiguobacterium sibiricum rhodopsin (ESR). In dark states, carboxyl donors are protonated, whereas the Lys donor is deprotonated. As a result, carboxyl donors first donate H+ to the Schiff bases and then capture the other H+ from the medium, whereas the Lys donor first captures H+ from the medium and then donates it to the Schiff base. Thus, carboxyl and Lys-type H+ pumps seem to have different mechanisms, which are probably optimized for their respective H+-transfer reactions. Here, we examined these differences via replacement of donor residues. For Asp-type deltarhodopsin (DR), the embedded Lys residue distorted the protein conformation and did not act as the H+ donor. In contrast, for Glu-type proteorhodopsin (PR) and ESR, the embedded residues functioned well as H+ donors. These differences were further examined by focusing on the activation volumes during the H+-transfer reactions. The results revealed essential differences between archaeal H+ pump (DR) and eubacterial H+ pumps PR and ESR. Archaeal DR requires significant hydration of the CP channel for the H+-transfer reactions; however, eubacterial PR and ESR require the swing-like motion of the donor residue rather than hydration. Given this common mechanism, donor residues might be replaceable between eubacterial PR and ESR.  相似文献   

18.
So far retinylidene proteins (∼rhodopsin) have not been discovered in thermophilic organisms. In this study we investigated and characterized a microbial rhodopsin derived from the extreme thermophilic bacterium Thermus thermophilus, which lives in a hot spring at around 75 °C. The gene for the retinylidene protein, named thermophilic rhodopsin (TR), was chemically synthesized with codon optimization. The codon optimized TR protein was functionally expressed in the cell membranes of Escherichia coli cells and showed active proton transport upon photoillumination. Spectroscopic measurements revealed that the purified TR bound only all-trans-retinal as a chromophore and showed an absorption maximum at 530 nm. In addition, TR exhibited both photocycle kinetics and pH-dependent absorption changes, which are characteristic of rhodopsins. Of note, time-dependent thermal denaturation experiments revealed that TR maintained its absorption even at 75 °C, and the denaturation rate constant of TR was much lower than those of other proton pumping rhodopsins such as archaerhodopsin-3 (200 ×), Haloquadratum walsbyi bacteriorhodopsin (by 10-times), and Gloeobacter rhodopsin (100 ×). Thus, these results suggest that microbial rhodopsins are also distributed among thermophilic organisms and have high stability. TR should allow the investigation of the molecular mechanisms of ion transport and protein folding.  相似文献   

19.
Diversification and spectral tuning in marine proteorhodopsins   总被引:9,自引:0,他引:9       下载免费PDF全文
Proteorhodopsins, ubiquitous retinylidene photoactive proton pumps, were recently discovered in the cosmopolitan uncultured SAR86 bacterial group in oceanic surface waters. Two related proteorhodopsin families were found that absorb light with different absorption maxima, 525 nm (green) and 490 nm (blue), and their distribution was shown to be stratified with depth. Using structural modeling comparisons and mutagenesis, we report here on a single amino acid residue at position 105 that functions as a spectral tuning switch and accounts for most of the spectral difference between the two pigment families. Furthermore, looking at natural environments, we found novel proteorhodopsin gene clusters spanning the range of 540-505 nm and containing changes in the same identified key switch residue leading to changes in their absorption maxima. The results suggest a simultaneous diversification of green proteorhodopsin and the new key switch variant pigments. Our observations demonstrate that this single-residue switch mechanism is the major determinant of proteorhodopsin wavelength regulation in natural marine environments.  相似文献   

20.
A Gram-stain-negative, rod-shaped, obligately aerobic, nonflagellated, and chemoheterotrophic bacterium, designated IMCC3088T, was isolated from coastal seawater of the Yellow Sea. The 16S rRNA gene sequence analysis indicated that this strain belonged to the family Halieaceae which shared the highest sequence similarities with Luminiphilus syltensis NOR5-1BT (94.5%) and Halioglobus pacificus S1-72T (94.5%), followed by 92.3–94.3% sequence similarities with other species within the aforementioned family. Phylogenetic analyses demonstrated that strain IMCC3088T was robustly clustered with Luminiphilus syltensis NOR5-1BT within the family Halieaceae. However, average amino acid identity (AAI), percentages of conserved proteins (POCP), average nucleotide identity (ANI), and alignment fraction (AF) between strain IMCC3088T and Luminiphilus syltensis NOR5-1BT were 54.5%, 47.7%, 68.0%, and 16.5%, respectively, suggesting that they belonged to different genera. Whole-genome sequencing of strain IMCC3088T revealed a 3.1 Mbp genome size with a DNA G + C content of 51.7 mol%. The genome encoded diverse metabolic pathways including sulfur oxidation, phenol degradation, and proteorhodopsin phototrophy. Mono-unsaturated fatty acids were found to be the predominant cellular fatty acid components in the strain. Phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol were the primarily identified polar lipids, and ubiquinone-8 was identified as a major respiratory quinone. The taxonomic data collected herein suggested that strain IMCC3088T represented a novel genus and species of the family Halieaceae, for which the name Aequoribacter fuscus gen. nov., sp. nov. is proposed with the type strain (= KACC 15529T = NBRC 108213T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号