首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chikungunya fever is a vector-borne viral disease transmitted to humans by chikungunya virus(CHIKV)-infected mosquitoes. There have been many outbreaks of CHIKV infection worldwide, and the virus poses ongoing risks to global health. To prevent and control CHIKV infection, it is important to improve the current CHIKV diagnostic approaches to allow for the detection of low CHIKV concentrations and to correctly distinguish CHIKV infections from those due to other mosquito-transmitted viruses, including dengue virus(DENV), Japanese encephalitis virus(JEV), and Zika virus(ZIKV). Here, we produced monoclonal antibodies(mAbs) against the CHIKV envelope 2 protein(CHIKV-E2) and compared their sensitivity and specificity with commercially available m Abs using enzyme-linked immunosorbent assays(ELISA). Two anti-CHIKV-E2 mAbs, 19-1 and 21-1, showed higher binding affinities to CHIKV-E2 protein than the commercial mAbs did. In particular, the 19-1 m Ab had the strongest binding affinity to inactivated CHIKV. Moreover, the 19-1 mAb had very little cross-reactivity with other mosquito-borne viruses, such as ZIKV, JEV, and DENV. These results suggest that the newly produced anti-CHIKV-E2 mAb, 19-1, could be used for CHIKV diagnostic approaches.  相似文献   

2.
While a large number of mosquito-transmitted alphaviruses are known to cause serious human diseases, there are no licensed vaccines that protect against alphavirus infections. The alphavirus chikungunya virus (CHIKV) has caused multiple recent outbreaks of chikungunya fever. This virus has the potential to cause a worldwide epidemic and has generated strong interest in development of a prophylactic CHIKV vaccine. We report here on the development of a potent experimental vaccine for CHIKV based on a chimeric vesicular stomatitis virus (VSV) expressing the entire CHIKV envelope polyprotein (E3-E2-6K-E1) in place of the VSV glycoprotein (G). These VSVΔG-CHIKV chimeras incorporated functional CHIKV glycoproteins into the viral envelope in place of VSV G. The chimeric viruses were attenuated for growth in tissue culture but could be propagated to high titers without VSV G complementation. They also generated robust neutralizing antibody and cellular immune responses to CHIKV in mice after a single dose and protected mice against CHIKV infection. VSVΔG-alphavirus chimeras could have general applicability as alphavirus vaccines.  相似文献   

3.
Chikungunya virus (CHIKV) is an emerging/re-emerging mosquito-borne pathogen responsible for explosive epidemics of febrile illness characterized by debilitating polyarthralgia and the risk of lethal infection among the most severe cases. Despite the public health risk posed by CHIKV, no vaccine is currently available. Using a site-directed hydrogen peroxide-based inactivation approach, we developed a new CHIKV vaccine, HydroVax-CHIKV. This vaccine technology was compared to other common virus inactivation approaches including β-propiolactone (BPL), formaldehyde, heat, and ultraviolet (UV) irradiation. Heat, UV, and BPL were efficient at inactivating CHIKV-181/25 but caused substantial damage to neutralizing epitopes and failed to induce high-titer neutralizing antibodies in vaccinated mice. HydroVax-CHIKV and formaldehyde-inactivated CHIKV retained intact neutralizing epitopes similar to live virus controls but the HydroVax-CHIKV approach demonstrated a more rapid rate of virus inactivation. HydroVax-CHIKV vaccination induced high neutralizing responses to homologous and heterologous CHIKV clades as well as to other alphaviruses including Mayaro virus, O’nyong’nyong virus, and Una virus. Following heterologous infection with CHIKV-SL15649, HydroVax-CHIKV-immunized mice were protected against viremia, CHIKV-associated arthritic disease, and lethal CHIKV infection by an antibody-dependent mechanism. In contrast, animals vaccinated with Heat- or UV-inactivated virus showed no protection against viremia in addition to demonstrating significantly exacerbated CD4+ T cell-mediated footpad swelling after CHIKV infection. Together, these results demonstrate the risks associated with using suboptimal inactivation methods that fail to elicit protective neutralizing antibody responses and show that HydroVax-CHIKV represents a promising new vaccine candidate for prevention of CHIKV-associated disease.  相似文献   

4.
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes acute fever and acute and chronic musculoskeletal pain in humans. Since 2004, CHIKV has caused millions of cases of disease in the Indian Ocean region and has emerged in new areas, including Europe, the Middle East, and the Pacific region. The mosquito vectors for this virus are globally distributed in tropical and temperate zones, providing the opportunity for CHIKV to continue to expand into new geographic regions. In October 2013, locally acquired cases of CHIKV infection were identified on the Caribbean island of Saint Martin, signaling the arrival of the virus in the Western Hemisphere. In just 9 months, CHIKV has spread to 22 countries in the Caribbean and Central and South America, resulting in hundreds of thousands of cases. CHIKV disease can be highly debilitating, and large epidemics have severe economic consequences. Thus, there is an urgent need for continued research into the epidemiology, pathogenesis, prevention, and treatment of these infections.  相似文献   

5.

Background

Chikungunya virus (CHIKV) is a re-emerging alphavirus that causes chikungunya fever and persistent arthralgia in humans. Currently, there is no effective vaccine or antiviral against CHIKV infection. Therefore, this study evaluates whether RNA interference which targets at viral genomic level may be a novel antiviral strategy to inhibit the medically important CHIKV infection.

Methods

Plasmid-based small hairpin RNA (shRNA) was investigated for its efficacy in inhibiting CHIKV replication. Three shRNAs designed against CHIKV Capsid, E1 and nsP1 genes were transfected to establish stable shRNA-expressing cell clones. Following infection of stable shRNA cells clones with CHIKV at M.O.I. 1, viral plaque assay, Western blotting and transmission electron microscopy were performed. The in vivo efficacy of shRNA against CHIKV replication was also evaluated in a suckling murine model of CHIKV infection.

Results

Cell clones expressing shRNAs against CHIKV E1 and nsP1 genes displayed significant inhibition of infectious CHIKV production, while shRNA Capsid demonstrated a modest inhibitory effect as compared to scrambled shRNA cell clones and non-transfected cell controls. Western blot analysis of CHIKV E2 protein expression and transmission electron microscopy of shRNA E1 and nsP1 cell clones collectively demonstrated similar inhibitory trends against CHIKV replication. shRNA E1 showed non cell-type specific anti-CHIKV effects and broad-spectrum silencing against different geographical strains of CHIKV. Furthermore, shRNA E1 clones did not exert any inhibition against Dengue virus and Sindbis virus replication, thus indicating the high specificity of shRNA against CHIKV replication. Moreover, no shRNA-resistant CHIKV mutant was generated after 50 passages of CHIKV in the stable cell clones. More importantly, strong and sustained anti-CHIKV protection was conferred in suckling mice pre-treated with shRNA E1.

Conclusion

Taken together, these data suggest the promising efficacy of anti-CHIKV shRNAs, in particular, plasmid-shRNA E1, as a novel antiviral strategy against CHIKV infection.  相似文献   

6.
Chikungunya virus (CHIKV) is a reemerging, ordinarily mosquito-transmitted, alphavirus that occasionally produces hemorrhagic manifestations, such as nose bleed and bleeding gums, in human patients. Interferon response factor 3 and 7 deficient (IRF3/7-/-) mice, which are deficient for interferon α/β responses, reliably develop hemorrhagic manifestations after CHIKV infection. Here we show that infectious virus was present in the oral cavity of CHIKV infected IRF3/7-/- mice, likely due to hemorrhagic lesions in the olfactory epithelium that allow egress of infected blood into the nasal, and subsequently, oral cavities. In addition, IRF3/7-/- mice were more susceptible to infection with CHIKV via intranasal and oral routes, with IRF3/7-/- mice also able to transmit virus mouse-to-mouse without an arthropod vector. Cynomolgus macaques often show bleeding gums after CHIKV infection, and analysis of saliva from several infected monkeys also revealed the presence of viral RNA and infectious virus. Furthermore, saliva samples collected from several acute CHIKV patients with hemorrhagic manifestations were found to contain viral RNA and infectious virus. Oral fluids can therefore be infectious during acute CHIKV infections, likely due to hemorrhagic manifestations in the oral/nasal cavities.  相似文献   

7.
Chikungunya virus (CHIKV) is a re-emerging mosquito-borne Alphavirus that causes a clinical disease involving fever, myalgia, nausea and rash. The distinguishing feature of CHIKV infection is the severe debilitating poly-arthralgia that may persist for several months after viral clearance. Since its re-emergence in 2004, CHIKV has spread from the Indian Ocean region to new locations including metropolitan Europe, Japan, and even the United States. The risk of importing CHIKV to new areas of the world is increasing due to high levels of viremia in infected individuals as well as the recent adaptation of the virus to the mosquito species Aedes albopictus. CHIKV re-emergence is also associated with new clinical complications including severe morbidity and, for the first time, mortality. In this study, we characterized disease progression and host immune responses in adult and aged Rhesus macaques infected with either the recent CHIKV outbreak strain La Reunion (LR) or the West African strain 37997. Our results indicate that following intravenous infection and regardless of the virus used, Rhesus macaques become viremic between days 1–5 post infection. While adult animals are able to control viral infection, aged animals show persistent virus in the spleen. Virus-specific T cell responses in the aged animals were reduced compared to adult animals and the B cell responses were also delayed and reduced in aged animals. Interestingly, regardless of age, T cell and antibody responses were more robust in animals infected with LR compared to 37997 CHIKV strain. Taken together these data suggest that the reduced immune responses in the aged animals promotes long-term virus persistence in CHIKV-LR infected Rhesus monkeys.  相似文献   

8.
ABSTRACT: BACKGROUND: Double-stranded RNA (dsRNA) and its mimic, polyinosinic acid: polycytidylic acid [Poly (I:C)], are recognized by toll-like receptor 3 (TLR3) and induce interferon (IFN)-beta in many cell types. Poly (I:C) is the most potent IFN inducer. In in vivo mouse studies, intraperitoneal injection of Poly (I:C) elicited IFN-alpha/beta production and natural killer (NK) cells activation. The TLR3 pathway is suggested to contribute to innate immune responses against many viruses, including influenza virus, respiratory syncytial virus, herpes simplex virus 2, and murine cytomegalovirus. In Chikungunya virus (CHIKV) infection, the viruses are cleared within 7-10 days postinfection before adaptive immune responses emerge. The innate immune response is important for CHIKV clearance. RESULTS: The effects of Poly (I:C) on the replication of CHIKV in human bronchial epithelial cells, BEAS-2B, were studied. Poly (I:C) suppressed cytopathic effects (CPE) induced by CHIKV infection in BEAS-2B cells in the presence of Poly (I:C) and inhibited the replication of CHIKV in the cells. The virus titers of Poly (I:C)-treated cells were much lower compared with those of untreated cells. CHIKV infection and Poly (I:C) treatment of BEAS-2B cells induced the production of IFN-beta and increased the expression of anti-viral genes, including IFN-alpha, IFN-beta, MxA, and OAS. Both Poly (I:C) and CHIKV infection upregulate the expression of TLR3 in BEAS-2B cells. CONCLUSIONS: CHIKV is sensitive to innate immune response induced by Poly (I:C). The inhibition of CHIKV replication by Poly (I:C) may be through the induction of TLR3, which triggers the production of IFNs and other anti-viral genes. The innate immune response is important to clear CHIKV in infected cells.  相似文献   

9.
Chikungunya virus (CHIKV) is an alphavirus responsible for numerous epidemics throughout Africa and Asia, causing infectious arthritis and reportedly linked with fatal infections in newborns and elderly. Previous studies in animal models indicate that humoral immunity can protect against CHIKV infection, but despite the potential efficacy of B-cell-driven intervention strategies, there are no virus-specific vaccines or therapies currently available. In addition, CHIKV has been reported to elicit long-lasting virus-specific IgM in humans, and to establish long-term persistence in non-human primates, suggesting that the virus might evade immune defenses to establish chronic infections in man. However, the mechanisms of immune evasion potentially employed by CHIKV remain uncharacterized. We previously described two human monoclonal antibodies that potently neutralize CHIKV infection. In the current report, we have characterized CHIKV mutants that escape antibody-dependent neutralization to identify the CHIKV E2 domain B and fusion loop "groove" as the primary determinants of CHIKV interaction with these antibodies. Furthermore, for the first time, we have also demonstrated direct CHIKV cell-to-cell transmission, as a mechanism that involves the E2 domain A and that is associated with viral resistance to antibody-dependent neutralization. Identification of CHIKV sub-domains that are associated with human protective immunity, will pave the way for the development of CHIKV-specific sub-domain vaccination strategies. Moreover, the clear demonstration of CHIKV cell-to-cell transmission and its possible role in the establishment of CHIKV persistence, will also inform the development of future anti-viral interventions. These data shed new light on CHIKV-host interactions that will help to combat human CHIKV infection and inform future studies of CHIKV pathogenesis.  相似文献   

10.
基孔肯雅病毒是引起基孔肯雅热的病原体,主要经伊蚊传播,感染者的症状主要以发热、皮疹和关节疼痛为主。该病毒主要分布在非洲、东南亚等地区,近年来在印度洋地区造成大规模流行。我国主要以输入性病例为主,未发生大规模流行。对基孔肯雅病毒的实验室检测方法及最新研究进展进行了综述。  相似文献   

11.
The mosquito-borne alphavirus, chikungunya virus (CHIKV), has recently reemerged, producing the largest epidemic ever recorded for this virus, with up to 6.5 million cases of acute and chronic rheumatic disease. There are currently no licensed vaccines for CHIKV and current anti-inflammatory drug treatment is often inadequate. Here we describe the isolation and characterization of two human monoclonal antibodies, C9 and E8, from CHIKV infected and recovered individuals. C9 was determined to be a potent virus neutralizing antibody and a biosensor antibody binding study demonstrated it recognized residues on intact CHIKV VLPs. Shotgun mutagenesis alanine scanning of 98 percent of the residues in the E1 and E2 glycoproteins of CHIKV envelope showed that the epitope bound by C9 included amino-acid 162 in the acid-sensitive region (ASR) of the CHIKV E2 glycoprotein. The ASR is critical for the rearrangement of CHIKV E2 during fusion and viral entry into host cells, and we predict that C9 prevents these events from occurring. When used prophylactically in a CHIKV mouse model, C9 completely protected against CHIKV viremia and arthritis. We also observed that when administered therapeutically at 8 or 18 hours post-CHIKV challenge, C9 gave 100% protection in a pathogenic mouse model. Given that targeting this novel neutralizing epitope in E2 can potently protect both in vitro and in vivo, it is likely to be an important region both for future antibody and vaccine-based interventions against CHIKV.  相似文献   

12.
Identification and characterization of virus host interactions is an essential step for the development of novel antiviral strategies. Very few studies have been targeted towards identification of chikungunya virus (CHIKV) interacting host proteins. In current study, virus overlay protein binding assay (VOPBA) and matrix-assisted laser desorption/ionization time of flight analysis (MALDI TOF/TOF) were employed for the identification of CHIKV binding proteins in mammalian cells. HSP70 and actin were identified as virus binding proteins in HEK-293T and Vero-E6 cells, whereas STAT-2 was identified as an additional protein in Vero-E6 cells. Pre-incubation with anti-HSP70 antibody and miRNA silencing of HSP70 significantly reduced the CHIKV production in HEK-293T and Vero-E6 cells at early time points. These results suggest that CHIKV exploits the housekeeping molecules such as actin, HSP70 and STAT-2 to establish infection in the mammalian cells.  相似文献   

13.
Chikungunya virus (CHIKV) is an alphavirus responsible for numerous epidemics in Africa and Asia. Infection by CHIKV is often characterized by long-lasting, incapacitating arthritis, and some fatal cases have been described among elderly and newborns. Currently, there is no available vaccine or specific treatment against CHIKV. Blood B cells from a donor with history of CHIKV infection were activated, immortalized, amplified, and cloned. Two human mAbs against CHIKV, 5F10 and 8B10, were identified, sequenced, and expressed in recombinant form for characterization. In a plaque reduction neutralization test, 5F10 and 8B10 show mean IC(50) of 72 and 46 ng/ml, respectively. Moreover, both mAbs lead to a strong decrease in extracellular spreading of infectious viral particles from infected to uninfected cells. Importantly, the mAbs neutralize different CHIKV isolates from Singapore, Africa, and Indonesia, as well as O'nyong-nyong virus, but do not recognize other alphaviruses tested. Both mAbs are specific for the CHIKV envelope: 5F10 binds to the E2 glycoprotein ectodomain and 8B10 to E1 and/or E2. In conclusion, these two unique human mAbs strongly, broadly, and specifically neutralize CHIKV infection in vitro and might become possible therapeutic tools against CHIKV infection, especially in individuals at risk for severe disease. Importantly, these mAbs will also represent precious tools for future studies on host-pathogen interactions and the rational design of vaccines against CHIKV.  相似文献   

14.
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that re-emerged in 2004 and has caused massive outbreaks in recent years. The lack of a licensed vaccine or treatment options emphasize the need to obtain more insight into the viral life cycle and CHIKV-host interactions. Infectious cDNA clones are important tools for such studies, and for mechanism of action studies on antiviral compounds. Existing CHIKV cDNA clones are based on a single genome from an individual clinical isolate, which is expected to have evolved specific characteristics in response to the host environment, and possibly also during subsequent cell culture passaging. To obtain a virus expected to have the general characteristics of the recent E1-226V CHIKV isolates, we have constructed a new CHIKV full-length cDNA clone, CHIKV LS3, based on the consensus sequence of their aligned genomes. Here we report the characterization of this synthetic virus and a green fluorescent protein-expressing variant (CHIKV LS3-GFP). Their characteristics were compared to those of natural strain ITA07-RA1, which was isolated during the 2007 outbreak in Italy. In cell culture the synthetic viruses displayed phenotypes comparable to the natural isolate, and in a mouse model they caused lethal infections that were indistinguishable from infections with a natural strain. Compared to ITA07-RA1 and clinical isolate NL10/152, the synthetic viruses displayed similar sensitivities to several antiviral compounds. 3-deaza-adenosine was identified as a new inhibitor of CHIKV replication. Cyclosporin A had no effect on CHIKV replication, suggesting that cyclophilins -opposite to what was found for other +RNA viruses- do not play an essential role in CHIKV replication. The characterization of the consensus sequence-based synthetic viruses and their comparison to natural isolates demonstrated that CHIKV LS3 and LS3-GFP are suitable and representative tools to study CHIKV-host interactions, screen for antiviral compounds and unravel their mode of action.  相似文献   

15.
Tang BL 《Cellular microbiology》2012,14(9):1354-1363
Chikungunya virus (CHIKV) infection causes a disease which appears to affect multiple cell types and tissues. The acute phase is manifested by a non-fatal febrile illness, polyarthralgia and maculopapular rashes in adults, but with recurrent arthralgia that may linger for months during convalescence. The issue of cellular and tissue tropism of CHIKV has elicited interest primarily because of this lingering incapacitating chronic joint pain, as well as clear encephalopathy in severe cases among neonates during the re-emergence of the virus in recent epidemics. The principle cell types productively infected by CHIKV are skin fibroblasts, epithelial cells and lymphoid tissues. There is controversy as to whether CHIKV productively infects haematopoietic cells and neurones/glia. CHIKV infection triggers rapid and robust innate immune responses which quickly clears the acute phase infection. However, significant acute as well as chronic infection of less obvious cell types, such as monocytes, neurones/glia or even CNS neural progenitors may conceivably occur. There is therefore a need to ascertain the full range potential of CHIKV tropism, fully understand the cellular responses triggered during the acute the convalescent phases, and explore possible cell types that might be the source of chronic problems associated with CHIKV infection.  相似文献   

16.
IntroductionChikungunya virus (CHIKV) is a mosquito-borne virus known to cause acute febrile illness associated with debilitating polyarthritis. In 2019, several institutions in Myanmar reported a CHIKV outbreak. There are no official reports of CHIKV cases between 2011 and 2018. Therefore, this study sought to determine the seroprevalence of CHIKV infection before the 2019 outbreak.MethodsA total of 1,544 serum samples were collected from healthy volunteers and patients with febrile illnesses in Yangon, Mandalay, and the Myeik district in 2013, 2015, and 2018. Participants ranged from one month to 65 years of age. Antibody screening was performed with in-house anti-CHIKV IgG and IgM ELISA. A neutralization assay was used as a confirmatory test.ResultsThe seroprevalence of anti-CHIKV IgM and anti-CHIKV IgG was 8.9% and 28.6%, respectively, with an overall seropositivity rate of 34.5%. A focus reduction neutralization assay confirmed 32.5% seroprevalence of CHIKV in the study population. Age, health status, and region were significantly associated with neutralizing antibodies (NAbs) and CHIKV seropositivity (p < 0.05), while gender was not (p = 0.9). Seroprevalence in 2013, 2015, and 2018 was 32.1%, 28.8%, and 37.3%, respectively. Of the clinical symptoms observed in participants with fevers, arthralgia was mainly noted in CHIKV-seropositive patients.ConclusionThe findings in this study reveal the circulation of CHIKV in Myanmar’s Mandalay, Yangon, and Myeik regions before the 2019 CHIKV outbreak. As no treatment or vaccine for CHIKV exists, the virus must be monitored through systematic surveillance in Myanmar.  相似文献   

17.
Dengue and chikungunya are acute viral infections with overlapping clinical symptoms. Both diseases are transmitted by common mosquito vectors resulting in their co‐circulation in a region. Molecular and serological tests specific for both dengue and chikungunya infections were performed on 87 acute phase blood samples collected from patients with suspected dengue/chikungunya infections in Delhi from September to December, 2011. RT‐PCR and IgM ELISA were performed to detect dengue virus (DENV) and chikungunya virus (CHIKV). NS1 and IgG ELISA were also performed to detect DENV specific antigen and secondary DENV infection. DENV infection was detected in 49%, CHIKV infection in 29% and co‐infection with DENV and CHIKV in 10% of the samples by RT‐PCR. DENV serotypes 1, 2 and 3 were detected in this study. Nine DENV‐1 strains, six DENV‐2 strains and 20 CHIKV strains were characterized by DNA sequencing and phylogenetic analysis of their respective envelope protein genes. DENV‐1 strains grouped in the American African genotype, DENV‐2 strains in the Cosmopolitan genotype and CHIKV strains in the East Central South African genotype by phylogenetic analysis. This is one of the few studies reporting the phylogeny of two dengue virus serotypes (DENV‐1 and DENV‐2) and CHIKV. Surveillance and monitoring of DENV and CHIKV strains are important for design of strategies to control impending epidemics.  相似文献   

18.
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has been responsible for an epidemic outbreak of unprecedented magnitude in recent years. Since then, significant efforts have been made to better understand the biology of this virus, but we still have poor knowledge of CHIKV interactions with host cell components at the molecular level. Here we describe the extensive use of high-throughput yeast two-hybrid (HT-Y2H) assays to characterize interactions between CHIKV and human proteins. A total of 22 high-confidence interactions, which essentially involved the viral nonstructural protein nsP2, were identified and further validated in protein complementation assay (PCA). These results were integrated to a larger network obtained by extensive mining of the literature for reports on alphavirus-host interactions. To investigate the role of cellular proteins interacting with nsP2, gene silencing experiments were performed in cells infected by a recombinant CHIKV expressing Renilla luciferase as a reporter. Collected data showed that heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and ubiquilin 4 (UBQLN4) participate in CHIKV replication in vitro. In addition, we showed that CHIKV nsP2 induces a cellular shutoff, as previously reported for other Old World alphaviruses, and determined that among binding partners identified by yeast two-hybrid methods, the tetratricopeptide repeat protein 7B (TTC7B) plays a significant role in this activity. Altogether, this report provides the first interaction map between CHIKV and human proteins and describes new host cell proteins involved in the replication cycle of this virus.  相似文献   

19.
After two decades of quiescence, epidemic resurgence of Chikungunya fever (CHIKF) was reported in Africa, several islands in the Indian Ocean, South-East Asia and the Pacific causing unprecedented morbidity with some cases of fatality. Early phylogenetic analyses based on partial sequences of Chikungunya virus (CHIKV) have led to speculation that the virus behind recent epidemics may result in greater pathogenicity. To understand the reasons for these new epidemics, we first performed extensive analyses of existing CHIKV sequences from its introduction in 1952 to 2009. Our results revealed the existence of a continuous genotypic lineage, suggesting selective pressure is active in CHIKV evolution. We further showed that CHIKV is undergoing mild positive selection, and that site-specific mutations may be driven by cell-mediated immune pressure, with occasional changes that resulted in the loss of human leukocyte antigen (HLA) class I-restricting elements. These findings provide a basis to understand Chikungunya virus evolution and reveal the power of post-genomic analyses to understand CHIKV and other viral epidemiology. Such an approach is useful for studying the impact of host immunity on pathogen evolution, and may help identify appropriate antigens suitable for subunit vaccine formulations.  相似文献   

20.
The chikungunya virus (CHIKV) is an Alphavirus that belongs to the Old World group. These arthritogenic viruses cause a febrile illness characterized by arthralgias and myalgias.Although fatal cases during CHIKV infection are rare, the disease may be disabling and generate a broad spectrum of atypical manifestations, such as cardiovascular, respiratory, eye, kidney, and skin complications, among others. When joint pain persists for three or more months, it results in the chronic form of the disease called post-chikungunya chronic inflammatory rheumatism, which constitutes the main disease sequel. CHIKV is not considered a neurotropic virus; however, it can affect the central nervous system, especially in children and the elderly, causing severe and permanent sequelae.CHIKV outbreaks had been previously reported in Africa, Asia, and Europe, but the virus introduction to the American continent was documented until the end of 2013. Since then, the virus has spread to 45 countries and territories causing near two million cases in just two years. This review describes the molecular biology, clinical manifestations, pathogenesis, and significant post-infection complications of CHIKV. Additionally, it collects published information about the outbreak in Colombia and the American continent between 2014 and 2020.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号