首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Paramyosin is a major structural protein of thick filaments in invertebrate muscles. Coiled-coil dimers of paramyosin form a paracrystalline core of these filaments, and the motor protein myosin is arranged on the core surface. To investigate the function of paramyosin in myofibril assembly and muscle contraction, we functionally disrupted the Drosophila melanogaster paramyosin gene by mobilizing a P element located in its promoter region. Homozygous paramyosin mutants die at the late embryo stage. Mutants display defects in both myoblast fusion and in myofibril assembly in embryonic body wall muscles. Mutant embryos have an abnormal body wall muscle fiber pattern arising from defects in myoblast fusion. In addition, sarcomeric units do not assemble properly and muscle contractility is impaired. We confirmed that these defects are paramyosin-specific by rescuing the homozygous paramyosin mutant to adulthood with a paramyosin transgene. Antibody analysis of normal embryos demonstrated that paramyosin accumulates as a cytoplasmic protein in early embryo development before assembling into thick filaments. We conclude that paramyosin plays an unexpected role in myoblast fusion and is important for myofibril assembly and muscle contraction.  相似文献   

3.
Prostaglandins and myoblast fusion   总被引:4,自引:0,他引:4  
Physiological concentrations of prostaglandin E1 (10?7 and 10?10M) provoke a discrete burst of cell fusion in cultures of primary chick myoblasts, 5 hr after their addition but well before the start of fusion, under control conditions. Two inhibitors of prostaglandin synthesis, aspirin (2-acetoxybenzoic acid) and indomethacin (1-[p-chlorobenzoyl]-5-methoxy-2-methylindole-3-acetic acid), have been used to examine the possibility of prostaglandin production by the undifferentiated myoblasts. Both inhibitors produce a marked inhibition of cell fusion which is possible to reverse by the further addition of 10?5M prostaglandin E. The findings provide evidence of prostaglandin synthesis in the cultures and suggest that prostaglandin E is required for the generation of a transient increase in intracellular cyclic AMP which brings about the cellular changes necessary for fusion to occur.  相似文献   

4.
Alteration of the membrane fatty acyl composition modulates the fusion of myoblasts into multinucleate myotubes. The rate of fusion after addition of calcium to 50–52 hour cultures of chick pectoral myoblasts is markedly inhibited in cells possessing acyl chains enriched in elaidate and is enhanced in those enriched in oleate. The modulations appear to occur after the cells have recognized one another and adhered strongly but before the membranes have united. These observations lead to a hypothesis for membrane union (fusion) in which the lipids participate directly perhaps by a mechanism analogous to that proposed for the fusion of lipid vesicles.  相似文献   

5.
Myoblasts, derived from primary chick pectoral muscle explants and grown on collagencoated culture dishes in a low calcium medium, are harvested with EDTA and are gently agitated in suspension. In the presence of calcium, the cells rapidly form easily dissociable aggregates which exclude fibroblasts. The apparent strength of adhesion increases with time until, under appropriate conditions, the myoblasts fuse in suspension to form multinucleate cells. The calcium-dependent dissociable aggregation shows optima for pH, temperature, calcium concentration, and culture age that closely parallel those observed for myotube formation measured with cells attached to tissue culture plates. We conclude from this marked correlation between the effects of these variables on myoblast aggregation and myotube formation that cell-cell adhesion is an integral part of myoblast fusion. Furthermore, we suggest that the formation of multinucleate cells is the result of a sequence of steps beginning with cell-cell recognition and adhesion, progressing to membrane union, and ultimately ending after subsequent morphologic changes producing the morphologies characteristic of multinucleate cells both in suspension and on tissue culture plates.  相似文献   

6.
Myoblast fusion has been studied in cultures of chick embryonic muscle utilizing ultrastructural techniques. The multinucleated muscle cells (myotubes) are generated by the fusion of two plasma membranes from adjacent cells, apparently by forming a single bilayer that is particle-free in freeze-fracture replicas. This single bilayer subsequently collapses, and cytoplasmic continuity is established between the cells. The fusion between the two plasma membranes appears to take place primarily within particle-free domains (probably phospholipid enriched), and cytoplasmic unilamellar, particle-free vesicles are occasionally associated with these regions. These vesicles structurally resemble phospholipid vesicles (liposomes). They are present in normal myoblasts, but they are absent in certain fusion-arrested myoblast popluations, such as those treated with either 5-bromo-deoxyuridine (BUdR), cycloheximide (CHX), or pospholipase C (PLC). The unilamellar, particle-free vesicles are present in close proximity to the plasma membranes, and physical contact is observed frequently between the vesicle membrane and the plasma membrane. The regions of vesicle membrane-plasma membrane interaction are characteristically free of intramembrane particles. A model for myoblast fusion is presented that is based onan interpretation of these observations. This model suggests that the cytoplasmic vesicles initiate the generation of particle-depleted membrane domains, both being essential components in the fusion process.  相似文献   

7.
8.
In Drosophila, as in vertebrates, each muscle is a syncytium and arises from mesodermal cells by successive fusion. This requires cell-cell recognition, alignment, formation of prefusion complexes, followed by electron-dense plaques and membrane breakdown. Because muscle development in Drosophila is rapid and well-documented, it has been possible to identify several genes essential for fusion. Molecular analysis of two of these genes revealed the importance of cytoplasmic components. One of these, Myoblast city, is expressed in several tissues and is homologous to the mammalian protein DOCK180. Myoblast city is presumably involved in cell recognition and cell adhesion. Blown fuse, the second cytoplasmic component, is selectively expressed in the mesoderm and essential in order to proceed from the prefusion complex to electron-dense plaques at opposed membranes between adjacent myoblasts. The rolling stone gene is transiently expressed during myoblast fusion. The Rost protein is located in the membrane and thus might be a key component for cell recognition. The molecular characterization of further genes relevant for fusion such as singles bar and sticks and stones will help to elucidate the mechanism of myoblast fusion in Drosophila.  相似文献   

9.
Intercellular fusion among myoblasts is required for the generation of multinucleated muscle fibers during skeletal muscle development. Recent studies in Drosophila have shed light on the molecular mechanisms that underlie this process, and a signaling pathway that relays fusion signals from the cell membrane to the cytoskeleton has emerged. In this article, we review these recent advances and discuss how Drosophila offers a powerful model system to study myoblast fusion in vivo.  相似文献   

10.
11.
Under normal culture conditions, fusion of myoblasts was strictly coordinated with the accumulation of various characteristic muscle enzymes as well as of myosin and actin. Nevertheless, it was not clear whether these two events depended on one another, in other words: is fusion a trigger for myoblast differentiation? We have approached this problem by blocking morphological differentiation by the use of cytochalasin B at the moment when the cells become ‘committed’. It is shown that fusion and accumulation of creatine phosphokinase and phosphorylase can be uncoupled. In view of our results, it seems that fusion is not absolutely necessary for the onset of increased synthesis of muscle-specific enzymes.  相似文献   

12.
Myoblast fusion is a key step during skeletal muscle differentiation as it enables the formation of contractile fibers. Calpains have been implicated in some aspects of myogenesis in mammals, but whether they exert a conserved function during myoblast fusion has not been investigated. Here, we studied Calpain function in two models of myogenesis: in vitro analysis of chick myogenic cultures and in vivo analysis of Drosophila melanogaster muscle development. First we showed that Calpain A is important for fly muscle function. In addition, Calpain A knockdown reduced lateral body wall muscle length and width, as well as the number of nuclei in dorsal oblique muscles, consistent with fewer cells fusing to form fibers. Treatment of chick cultures with a selective Calpain inhibitor led to the formation of thinner myotubes containing a reduced number of nuclei, consistent with decreased myoblast fusion. Dynamic changes in IκBα labeling and transfection with a dominant‐negative IκBα suggest a role for the NFκB pathway during chick myogenesis and a possible role of Calpains in attenuating NFκB signals that restrict myoblast fusion. Our data suggest that different model organisms may be used to study the role of Calpains in regular myogenesis and Calpain‐related muscular degenerative disorders. genesis 53:417–430, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Myoblasts cultivated in suspension in serum-free medium were used to examine whether fibronectin influences myoblast fusion. No effect on cell fusion was observed when the medium was supplemented with antibodies against fibronectin (at a concentration effective in inhibiting the myoblast attachment to gelatinized dishes mediated by 1 % horse serum). Purified horse serum fibronectin (70 μg/ml) also had no effect. The assay did, however, detect both inhibition of fusion in low-calcium medium and stimulation of fusion with added embryo extract, horse serum, and fibronectin-depleted horse serum. Thus, although fibronectin may influence cell motility or other processes necessary for fusion in monolayer cultures, it does not affect the fusion process itself.  相似文献   

14.
Over several years, genetic studies in the model system, Drosophila melanogastor, have uncovered genes that when mutated, lead to a block in myoblast fusion. Analyses of these gene products have suggested that Arp2/3-mediated regulation of the actin cytoskeleton is crucial to myoblast fusion in the fly. Recent advances in imaging in Drosophila embryos, both in fixed and live preparations, have led to a new appreciation of both the three-dimensional organization of the somatic mesoderm and the cell biology underlying myoblast fusion.  相似文献   

15.
Inositol phospholipid metabolism and myoblast fusion.   总被引:3,自引:0,他引:3       下载免费PDF全文
The fusion of chick embryonic myoblasts has been studied in tissue culture. Myoblasts are maintained at 0.1 microM-Ca2+ for 50 h. During this time they achieve fusion competence. Fusion is initiated by raising the medium Ca2+ concentration to 1.4 mM. A rapid breakdown of the polyphosphoinositides was detected within 3 min of Ca2+ addition. Rapid synthesis of phosphatidic acid was also detected at this time. Breakdown of phosphatidylinositol and synthesis of 1,2-diacylglycerol were also detected. Other phospholipids were unaffected. Sr2+ could replace Ca2+ in this process but Mg2+ could not and also inhibited the Ca2+ effect. The Ca2+-ionophore A23187 stimulated further apparent polyphosphoinositide breakdown in the presence of Ca2+. 6. The results are discussed with respect to myoblast fusion.  相似文献   

16.
17.
Ruiz-Gómez M  Coutts N  Price A  Taylor MV  Bate M 《Cell》2000,102(2):189-198
Aggregation and fusion of myoblasts to form myotubes is essential for myogenesis in many organisms. In Drosophila the formation of syncytial myotubes is seeded by founder myoblasts. Founders fuse with clusters of fusion-competent myoblasts. Here we identify the gene dumbfounded (duf) and show that it is required for myoblast aggregation and fusion. duf encodes a member of the immunoglobulin superfamily of proteins that is an attractant for fusion-competent myoblasts. It is expressed by founder cells and serves to attract clusters of myoblasts from which myotubes form by fusion.  相似文献   

18.
Formation of the Drosophila larval body wall muscles requires the specification, coordinated cellular behaviors and fusion of two cell types: Founder Cells (FCs) that control the identity of the individual muscle and Fusion Competent Myoblasts (FCMs) that provide mass. These two cell types come together to control the final size, shape and attachment of individual muscles. However, the spatial arrangement of these cells over time, the sequence of fusion events and the contribution of these cellular relationships to the fusion process have not been addressed. We analyzed the three-dimensional arrangements of FCs and FCMs over the course of myoblast fusion and assayed whether these issues impact the process of myoblast fusion. We examined the timing of the fusion process by analyzing the fusion profile of individual muscles in wild type and fusion mutants. We showed that there are two temporal phases of myoblast fusion in wild type embryos. Limited fusion events occur during the first 3 h of fusion, while the majority of fusion events occur in the remaining 2.5 h. Altogether, our data have led us to propose a new model of myoblast fusion where the frequency of myoblast fusion events may be influenced by the spatial arrangements of FCs and FCMs.  相似文献   

19.
In this report, we have examined the effects of a calcium chelator, EGTA, and a calcium ionophore, A23187, on fusion of a cloned muscle cell line, L6. Our results confirm that EGTA essentially blocks all myoblast fusion because the lateral alignment of presumptive myoblasts cannot occur in the absence of extracellular calcium. A23187, however, promotes the precocious fusion of myoblasts, apparently by facilitating Ca2+ transport into myoblasts. We have also demonstrated that a Ca2+-activated protease, CAP (mM), appears to relocate in response to the Ca2+ flux, changing from a random, dispersed distribution in proliferative myoblasts to a predominantly peripheral distribution in prefusion myoblasts. Coincident with the mM CAF relocation is an altered distribution of a surface glycoprotein, fibronectin. Extracellular fibronectin is seen in abundance in proliferating myoblasts, but is essentially absent from the surface of fusing myoblasts. We suggest that mM CAF when activated by Ca2+ influx may act to promote the release of fibronectin from the myoblast cell surface, thus providing a mechanism by which the membrane of the fusing myoblast may be rearranged to accommodate fusion.  相似文献   

20.
Myoblast fusion is crucial for formation and repair of skeletal muscle. Here we show that active remodeling of the actin cytoskeleton is essential for fusion in Drosophila. Using live imaging, we have identified a dynamic F-actin accumulation (actin focus) at the site of fusion. Dissolution of the actin focus directly precedes a fusion event. Whereas several known fusion components regulate these actin foci, others target additional behaviors required for fusion. Mutations in kette/Nap1, an actin polymerization regulator, lead to enlarged foci that do not dissolve, consistent with the observed block in fusion. Kette is required to positively regulate SCAR/WAVE, which in turn activates the Arp2/3 complex. Mutants in SCAR and Arp2/3 have a fusion block and foci phenotype, suggesting that Kette-SCAR-Arp2/3 participate in an actin polymerization event required for focus dissolution. Our data identify a new paradigm for understanding the mechanisms underlying fusion in myoblasts and other tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号