首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Congenital myasthenic syndromes (CMS) are rare genetic diseases affecting the neuromuscular junction (NMJ) and are characterized by a dysfunction of the neurotransmission. They are heterogeneous at their pathophysiological level and can be classified in three categories according to their presynaptic, synaptic and postsynaptic origins. We report here the first case of a human neuromuscular transmission dysfunction due to mutations in the gene encoding a postsynaptic molecule, the muscle-specific receptor tyrosine kinase (MuSK). Gene analysis identified two heteroallelic mutations, a frameshift mutation (c.220insC) and a missense mutation (V790M). The muscle biopsy showed dramatic pre- and postsynaptic structural abnormalities of the neuromuscular junction and severe decrease in acetylcholine receptor (AChR) epsilon-subunit and MuSK expression. In vitro and in vivo expression experiments were performed using mutant MuSK reproducing the human mutations. The frameshift mutation led to the absence of MuSK expression. The missense mutation did not affect MuSK catalytic kinase activity but diminished expression and stability of MuSK leading to decreased agrin-dependent AChR aggregation, a critical step in the formation of the neuromuscular junction. In electroporated mouse muscle, overexpression of the missense mutation induced, within a week, a phenotype similar to the patient muscle biopsy: a severe decrease in synaptic AChR and an aberrant axonal outgrowth. These results strongly suggest that the missense mutation, in the presence of a null mutation on the other allele, is responsible for the dramatic synaptic changes observed in the patient.  相似文献   

2.
One of the earliest events in neuromuscular junction (NMJ) development is the accumulation of acetylcholine receptor (AChR) at the center of muscle cells. The unplugged/MuSK (muscle specific tyrosine kinase) gene is essential to initiate AChR clustering but also to restrict approaching growth cones to the muscle center, thereby coordinating pre- and postsynaptic development. To determine how unplugged/MuSK signaling coordinates these two processes, we examined the temporal and spatial requirements of unplugged/MuSK in zebrafish embryos using heat-shock inducible transgenes. Here, we show that despite its expression in muscle cells from the time they differentiate, unplugged/MuSK activity is first required just prior to the appearance of AChR clusters to simultaneously induce AChR accumulation and to guide motor axons. Furthermore, we demonstrate that ectopic expression of unplugged/MuSK throughout the muscle membrane results in wildtype-like AChR prepattern and neuromuscular synapses in the central region of muscle cells. We propose that AChR prepatterning and axonal guidance are spatio-temporally coordinated through common unplugged/MuSK signals, and that additional factor(s) restrict unplugged/MuSK signaling to a central muscle zone critical for establishing mid-muscle synaptogenesis.  相似文献   

3.
The formation of the vertebrate neuromuscular junction (NMJ) requires the receptor tyrosine kinase MuSK and the adaptor molecule rapsyn. Here, we report that the phenotypes of mice deficient in these two molecules can be reproduced by RNA interference (RNAi) in rat muscle in vivo. Specifically, double-stranded RNA (dsRNA) targeting MuSK and rapsyn inhibited the formation of the NMJ in rat muscle fibres in vivo, while dsRNA targeting nonessential proteins did not have any effect. Moreover, plasmids that trigger RNAi to MuSK induced the disassembly of existing NMJs. These results thus demonstrate for the first time the functionality of dsRNA in silencing endogenous genes in adult mammalian muscle in vivo. Moreover, they show that MuSK is also required for the maintenance of the NMJ, offering a mechanistic explanation for the myasthenia gravis caused by auto-antibodies to MuSK.  相似文献   

4.
MuSK (muscle-specific kinase) is a receptor tyrosine kinase that plays a central signaling role in the formation of neuromuscular junctions (NMJs). MuSK is activated in a complex spatio-temporal manner to cluster acetylcholine receptors on the postsynaptic (muscle) side of the synapse and to induce differentiation of the nerve terminal on the presynaptic side. The ligand for MuSK is LRP4 (low-density lipoprotein receptor-related protein-4), a transmembrane protein in muscle, whose binding affinity for MuSK is potentiated by agrin, a neuronally derived heparan-sulfate proteoglycan. In addition, Dok7, a cytoplasmic adaptor protein, is also required for MuSK activation in vivo. This review focuses on the physical interplay between these proteins and MuSK for activation and downstream signaling, which culminates in NMJ formation. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.  相似文献   

5.
We report the case of a congenital myasthenic syndrome due to a mutation in AGRN, the gene encoding agrin, an extracellular matrix molecule released by the nerve and critical for formation of the neuromuscular junction. Gene analysis identified a homozygous missense mutation, c.5125G>C, leading to the p.Gly1709Arg variant. The muscle-biopsy specimen showed a major disorganization of the neuromuscular junction, including changes in the nerve-terminal cytoskeleton and fragmentation of the synaptic gutters. Experiments performed in nonmuscle cells or in cultured C2C12 myotubes and using recombinant mini-agrin for the mutated and the wild-type forms showed that the mutated form did not impair the activation of MuSK or change the total number of induced acetylcholine receptor aggregates. A solid-phase assay using the dystrophin glycoprotein complex showed that the mutation did not affect the binding of agrin to α-dystroglycan. Injection of wild-type or mutated agrin into rat soleus muscle induced the formation of nonsynaptic acetylcholine receptor clusters, but the mutant protein specifically destabilized the endogenous neuromuscular junctions. Importantly, the changes observed in rat muscle injected with mutant agrin recapitulated the pre- and post-synaptic modifications observed in the patient. These results indicate that the mutation does not interfere with the ability of agrin to induce postsynaptic structures but that it dramatically perturbs the maintenance of the neuromuscular junction.  相似文献   

6.
Analysis of neuromuscular junction morphology can give important insight into the physiological status of a given motor neuron. Analysis of thin flat muscles can offer significant advantage over traditionally used thicker muscles, such as those from the hind limb (e.g. gastrocnemius). Thin muscles allow for comprehensive overview of the entire innervation pattern for a given muscle, which in turn permits identification of selectively vulnerable pools of motor neurons. These muscles also allow analysis of parameters such as motor unit size, axonal branching, and terminal/nodal sprouting. A common obstacle in using such muscles is gaining the technical expertise to dissect them. In this video, we detail the protocol for dissecting the transversus abdominis (TVA) muscle from young mice and performing immunofluorescence to visualize axons and neuromuscular junctions (NMJs). We demonstrate that this technique gives a complete overview of the innervation pattern of the TVA muscle and can be used to investigate NMJ pathology in a mouse model of the childhood motor neuron disease, spinal muscular atrophy.  相似文献   

7.
Peripheral nerves exhibit robust regenerative capabilities in response to selective injury among amniotes, but the regeneration of entire muscle groups following volumetric muscle loss is limited in birds and mammals. In contrast, lizards possess the remarkable ability to regenerate extensive de novo muscle after tail loss. However, the mechanisms underlying reformation of the entire neuromuscular system in the regenerating lizard tail are not completely understood. We have tested whether the regeneration of the peripheral nerve and neuromuscular junctions (NMJs) recapitulate processes observed during normal neuromuscular development in the green anole, Anolis carolinensis. Our data confirm robust axonal outgrowth during early stages of tail regeneration and subsequent NMJ formation within weeks of autotomy. Interestingly, NMJs are overproduced as evidenced by a persistent increase in NMJ density 120 and 250 days post autotomy (DPA). Substantial Myelin Basic Protein (MBP) expression could also be detected along regenerating nerves indicating that the ability of Schwann cells to myelinate newly formed axons remained intact. Overall, our data suggest that the mechanism of de novo nerve and NMJ reformation parallel, in part, those observed during neuromuscular development. However, the prolonged increase in NMJ number and aberrant muscle differentiation hint at processes specific to the adult response. An examination of the coordinated exchange between peripheral nerves, Schwann cells, and newly synthesized muscle of the regenerating neuromuscular system may assist in the identification of candidate molecules that promote neuromuscular recovery in organisms incapable of a robust regenerative response.  相似文献   

8.
9.
Crk and CrkL are noncatalytic adaptor proteins necessary for the formation of neuromuscular synapses which function downstream of muscle-specific kinase (MuSK), a receptor tyrosine kinase expressed in skeletal muscle, and the MuSK binding protein Dok-7. How Crk/CrkL regulate neuromuscular endplate formation is not known. To better understand the roles of Crk/CrkL, we identified CrkL binding proteins using mass spectrometry and have identified Sorbs1 and Sorbs2 as two functionally redundant proteins that associate with the initiating MuSK/Dok-7/Crk/CrkL complex, regulate acetylcholine receptor (AChR) clustering in vitro, and are localized at synapses in vivo.  相似文献   

10.
Recent studies demonstrate reduced motor-nerve function during autoimmune muscle-specific tyrosine kinase (MuSK) myasthenia gravis (MG). To further understand the basis of motor-nerve dysfunction during MuSK-MG, we immunized female C57/B6 mice with purified rat MuSK ectodomain. Nerve-muscle preparations were dissected and neuromuscular junctions (NMJs) studied electrophysiologically, morphologically, and biochemically. While all mice produced antibodies to MuSK, only 40% developed respiratory muscle weakness. In vitro study of respiratory nerve-muscle preparations isolated from these affected mice revealed that 78% of NMJs produced endplate currents (EPCs) with significantly reduced quantal content, although potentiation and depression at 50 Hz remained qualitatively normal. EPC and mEPC amplitude variability indicated significantly reduced number of vesicle-release sites (active zones) and reduced probability of vesicle release. The readily releasable vesicle pool size and the frequency of large amplitude mEPCs also declined. The remaining NMJs had intermittent (4%) or complete (18%) failure of neurotransmitter release in response to 50 Hz nerve stimulation, presumably due to blocked action potential entry into the nerve terminal, which may arise from nerve terminal swelling and thinning. Since MuSK-MG-affected muscles do not express the AChR γ subunit, the observed prolongation of EPC decay time was not due to inactivity-induced expression of embryonic acetylcholine receptor, but rather to reduced catalytic activity of acetylcholinesterase. Muscle protein levels of MuSK did not change. These findings provide novel insight into the pathophysiology of autoimmune MuSK-MG.  相似文献   

11.
Nedd4 (neural precursor cell expressed developmentally down-regulated gene 4) is an E3 ubiquitin ligase highly conserved from yeast to humans. The expression of Nedd4 is developmentally down-regulated in the mammalian nervous system, but the role of Nedd4 in mammalian neural development remains poorly understood. Here we show that a null mutation of Nedd4 in mice leads to perinatal lethality: mutant mice were stillborn and many of them died in utero before birth (between E15.5-E18.5). In Nedd4 mutant embryos, skeletal muscle fiber sizes and motoneuron numbers are significantly reduced. Surviving motoneurons project axons to their target muscles on schedule, but motor nerves defasciculate upon reaching the muscle surface, suggesting that Nedd4 plays a critical role in fine-tuning the interaction between the nerve and the muscle. Electrophysiological analyses of the neuromuscular junction (NMJ) demonstrate an increased spontaneous miniature endplate potential (mEPP) frequency in Nedd4 mutants. However, the mutant neuromuscular synapses are less responsive to membrane depolarization, compared to the wildtypes. Ultrastructural analyses further reveal that the pre-synaptic nerve terminal branches at the NMJs of Nedd4 mutants are increased in number, but decreased in diameter compared to the wildtypes. These ultrastructural changes are consistent with functional alternation of the NMJs in Nedd4 mutants. Unexpectedly, Nedd4 is not expressed in motoneurons, but is highly expressed in skeletal muscles and Schwann cells. Together, these results demonstrate that Nedd4 is involved in regulating the formation and function of the NMJs through non-cell autonomous mechanisms.  相似文献   

12.
The molecular mechanisms controlling the subunit composition of glutamate receptors are crucial for the formation of neural circuits and for the long-term plasticity underlying learning and memory. Here we use the Drosophila neuromuscular junction (NMJ) to examine how specific receptor subtypes are recruited and stabilized at synaptic locations. In flies, clustering of ionotropic glutamate receptors (iGluRs) requires Neto (Neuropillin and Tolloid-like), a highly conserved auxiliary subunit that is essential for NMJ assembly and development. Drosophila neto encodes two isoforms, Neto-α and Neto-β, with common extracellular parts and distinct cytoplasmic domains. Mutations that specifically eliminate Neto-β or its intracellular domain were generated. When Neto-β is missing or is truncated, the larval NMJs show profound changes in the subtype composition of iGluRs due to reduced synaptic accumulation of the GluRIIA subunit. Furthermore, neto-β mutant NMJs fail to accumulate p21-activated kinase (PAK), a critical postsynaptic component implicated in the synaptic stabilization of GluRIIA. Muscle expression of either Neto-α or Neto-β rescued the synaptic transmission at neto null NMJs, indicating that Neto conserved domains mediate iGluRs clustering. However, only Neto-β restored PAK synaptic accumulation at neto null NMJs. Thus, Neto engages in intracellular interactions that regulate the iGluR subtype composition by preferentially recruiting and/or stabilizing selective receptor subtypes.  相似文献   

13.
14.
Formation of the postsynaptic membrane at the skeletal neuromuscular junction (NMJ) requires activation of the muscle-specific receptor tyrosine kinase (MuSK). Few intracellular mediators or modulators of MuSK actions are known. E3 ubiquitin ligases may serve this role, because activities of several receptor tyrosine kinases, G-protein-coupled receptors and channels are modulated by ubiquitination. Here, we report identification of a putative Ariadne-like ubiquitin ligase (PAUL) that binds to the cytoplasmic domain of MuSK. PAUL is expressed in numerous tissues of developing and adult mice, and is present at NMJs in muscle fibers but is not confined to them.  相似文献   

15.
The neuromuscular junction (NMJ) consists of a tripartite synapse with a presynaptic nerve terminal, Schwann cells that ensheathe the terminal bouton, and a highly specialized postsynaptic membrane. Synaptic structural integrity is crucial for efficient signal transmission. Congenital myasthenic syndromes (CMSs) are a heterogeneous group of inherited disorders that result from impaired neuromuscular transmission, caused by mutations in genes encoding proteins that are involved in synaptic transmission and in forming and maintaining the structural integrity of NMJs. To identify further causes of CMSs, we performed whole-exome sequencing (WES) in families without an identified mutation in known CMS-associated genes. In two families affected by a previously undefined CMS, we identified homozygous loss-of-function mutations in COL13A1, which encodes the alpha chain of an atypical non-fibrillar collagen with a single transmembrane domain. COL13A1 localized to the human muscle motor endplate. Using CRISPR-Cas9 genome editing, modeling of the COL13A1 c.1171delG (p.Leu392Sfs71) frameshift mutation in the C2C12 cell line reduced acetylcholine receptor (AChR) clustering during myotube differentiation. This highlights the crucial role of collagen XIII in the formation and maintenance of the NMJ. Our results therefore delineate a myasthenic disorder that is caused by loss-of-function mutations in COL13A1, encoding a protein involved in organization of the NMJ, and emphasize the importance of appropriate symptomatic treatment for these individuals.  相似文献   

16.
Low-density lipoprotein receptor-related protein 4 (Lrp4) is essential for pre- and post-synaptic specialization at the neuromuscular junction (NMJ), an indispensable synapse between a motor nerve and skeletal muscle. Muscle-specific receptor tyrosine kinase MuSK must form a complex with Lrp4 to organize postsynaptic specialization at NMJs. Here, we show that the chaperon Mesdc2 binds to the intracellular form of Lrp4 and promotes its glycosylation and cell-surface expression. Furthermore, knockdown of Mesdc2 suppresses cell-surface expression of Lrp4, activation of MuSK, and postsynaptic specialization in muscle cells. These results suggest that Mesdc2 plays an essential role in NMJ formation by promoting Lrp4 maturation.  相似文献   

17.

Background

Myosin Va is a motor protein involved in vesicular transport and its absence leads to movement disorders in humans (Griscelli and Elejalde syndromes) and rodents (e.g. dilute lethal phenotype in mice). We examined the role of myosin Va in the postsynaptic plasticity of the vertebrate neuromuscular junction (NMJ).

Methodology/Principal Findings

Dilute lethal mice showed a good correlation between the propensity for seizures, and fragmentation and size reduction of NMJs. In an aneural C2C12 myoblast cell culture, expression of a dominant-negative fragment of myosin Va led to the accumulation of punctate structures containing the NMJ marker protein, rapsyn-GFP, in perinuclear clusters. In mouse hindlimb muscle, endogenous myosin Va co-precipitated with surface-exposed or internalised acetylcholine receptors and was markedly enriched in close proximity to the NMJ upon immunofluorescence. In vivo microscopy of exogenous full length myosin Va as well as a cargo-binding fragment of myosin Va showed localisation to the NMJ in wildtype mouse muscles. Furthermore, local interference with myosin Va function in live wildtype mouse muscles led to fragmentation and size reduction of NMJs, exclusion of rapsyn-GFP from NMJs, reduced persistence of acetylcholine receptors in NMJs and an increased amount of punctate structures bearing internalised NMJ proteins.

Conclusions/Significance

In summary, our data show a crucial role of myosin Va for the plasticity of live vertebrate neuromuscular junctions and suggest its involvement in the recycling of internalised acetylcholine receptors back to the postsynaptic membrane.  相似文献   

18.
Madhavan R  Peng HB 《IUBMB life》2005,57(11):719-730
The neuromuscular junction (NMJ) is a synapse that develops between a motor neuron and a muscle fiber. A defining feature of NMJ development in vertebrates is the re-distribution of muscle acetylcholine (ACh) receptors (AChRs) following innervation, which generates high-density AChR clusters at the postsynaptic membrane and disperses aneural AChR clusters formed in muscle before innervation. This process in vivo requires MuSK, a muscle-specific receptor tyrosine kinase that triggers AChR re-distribution when activated; rapsyn, a muscle protein that binds and clusters AChRs; agrin, a nerve-secreted heparan-sulfate proteoglycan that activates MuSK; and ACh, a neurotransmitter that stimulates muscle and also disperses aneural AChR clusters. Moreover, in cultured muscle cells, several additional muscle- and nerve-derived molecules induce, mediate or participate in AChR clustering and dispersal. In this review we discuss how regulation of AChR re-distribution by multiple factors ensures aggregation of AChRs exclusively at NMJs.  相似文献   

19.
During the development of the vertebrate neuromuscular junction (NMJ), motor axon tips stop growing after contacting muscle and transform into presynaptic terminals that secrete the neurotransmitter acetylcholine and activate postsynaptic ACh receptors (AChRs) to trigger muscle contraction. The neuron-intrinsic signaling that retards axonal growth to facilitate stable nerve–muscle interaction and synaptogenesis is poorly understood. In this paper, we report a novel function of presynaptic signaling by phosphatase and tensin homologue (PTEN) in mediating a growth-to-synaptogenesis transition in neurons. In Xenopus nerve–muscle cocultures, axonal growth speed was halved after contact with muscle, when compared with before contact, but when cultures were exposed to the PTEN blocker bisperoxo (1,10-phenanthroline) oxovanadate, axons touching muscle grew ∼50% faster than their counterparts in control cultures. Suppression of neuronal PTEN expression using morpholinos or the forced expression of catalytically inactive PTEN in neurons also resulted in faster than normal axonal advance after contact with muscle cells. Significantly, interference with PTEN by each of these methods also led to reduced AChR clustering at innervation sites in muscle, indicating that disruption of neuronal PTEN signaling inhibited NMJ assembly. We thus propose that PTEN-dependent slowing of axonal growth enables the establishment of stable nerve–muscle contacts that develop into NMJs.  相似文献   

20.
Butyrylcholinesterase deficiency is characterized by prolonged apnea after the use of muscle relaxants (suxamethonium or mivacurium) in patients who have mutations in the BCHE gene. Here, we report a case of prolonged neuromuscular block after administration of suxamethonium leading to the discovery of a novel BCHE variant (c.695T>A, p.Val204Asp). Inhibition studies, kinetic analysis and molecular dynamics were undertaken to understand how this mutation disrupts the catalytic triad and determines a “silent” phenotype. Low activity of patient plasma butyrylcholinesterase with butyrylthiocholine (BTC) and benzoylcholine, and values of dibucaine and fluoride numbers fit with heterozygous atypical silent genotype. Electrophoretic analysis of plasma BChE of the proband and his mother showed that patient has a reduced amount of tetrameric enzyme in plasma and that minor fast-moving BChE components: monomer, dimer, and monomer-albumin conjugate are missing. Kinetic analysis showed that the p.Val204Asp/p.Asp70Gly-p.Ala539Thr BChE displays a pure Michaelian behavior with BTC as the substrate. Both catalytic parameters Km = 265 µM for BTC, two times higher than that of the atypical enzyme, and a low Vmax are consistent with the absence of activity against suxamethonium. Molecular dynamic (MD) simulations showed that the overall effect of the mutation p.Val204Asp is disruption of hydrogen bonding between Gln223 and Glu441, leading Ser198 and His438 to move away from each other with subsequent disruption of the catalytic triad functionality regardless of the type of substrate. MD also showed that the enzyme volume is increased, suggesting a pre-denaturation state. This fits with the reduced concentration of p.Ala204Asp/p.Asp70Gly-p.Ala539Thr tetrameric enzyme in the plasma and non-detectable fast moving-bands on electrophoresis gels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号