首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local adaptation between sympatric host and parasite populations driven by vector genetics appears to be a factor that influences dynamics of disease epidemics and evolution of insect-vectored viruses. Although T. tabaci is the primary vector of Tomato spotted wilt virus (TSWV) in some areas of the world, it is not an important vector of this economically important plant virus in many areas where it occurs. Previous studies suggest that genetic variation of thrips populations, virus isolates, or both are important factors underlying the localized importance of this species as a vector of TSWV. This study was undertaken to quantify variation in transmissibility of TSWV isolates by T. tabaci, in the ability of T. tabaci to transmit isolates of TSWV, and to examine the possibility that genetic interactions and local adaptation contribute to the localized nature of this species as a vector of TSWV. Isofemale lines of Thrips tabaci from multiple locations were tested for their ability to transmit multiple TSWV isolates collected at the same and different locations as the thrips. Results revealed that the probability of an isofemale line transmitting TSWV varied among virus isolates, and the probability of an isolate being transmitted varied among isofemale lines. These results indicate that the interaction of T. tabaci and TSWV isolate genetic determinants underlie successful transmission of TSWV by T. tabaci. Further analysis revealed sympatric vector-virus pairing resulted in higher transmission than allopatric pairing, which suggests that local adaptation is occurring between T. tabaci and TSWV isolates.  相似文献   

2.
Of eight thelytokous populations of onion thrips (Thrips tabaci) collected from potato (three populations), onion (four) or Chrysanthemum (one) hosts from various regions of Australia, only those from potato were capable of transmitting Tomato spotted wilt virus (TSWV) in controlled transmission experiments. Genetic differentiation of seven of these eight populations, and nine others not tested for TSWV vector competence, was examined by comparison of the DNA sequences of mitochondrial cytochrome oxidase subunit 1 (COI) gene. All Australian populations of T. tabaci grouped within the European ‘L2'' clade of Brunner et al. (2004). Within this clade the seven populations from potato, the three from onion, and the four from other hosts (Chrysanthemum, Impatiens, lucerne, blackberry nightshade) clustered as three distinct sub-groupings characterised by source host. Geographical source of thrips populations had no influence on genetic diversity. These results link genetic differentiation of thelytokous T. tabaci to source host and to TSWV vector capacity for the first time.  相似文献   

3.
Theoretically, the dynamics of clonal and genetic diversities of clonal plant populations are strongly influenced by the competition among clones and rate of seedling recruitment, but little empirical assessment has been made of such dynamics through temporal genetic surveys. We aimed to quantify 3 years of evolution in the clonal and genetic composition of Zostera marina meadows, comparing parameters describing clonal architecture and genetic diversity at nine microsatellite markers. Variations in clonal structure revealed a decrease in the evenness of ramet distribution among genets. This illustrates the increasing dominance of some clonal lineages (multilocus lineages, MLLs) in populations. Despite the persistence of these MLLs over time, genetic differentiation was much stronger in time than in space, at the local scale. Contrastingly with the short-term evolution of clonal architecture, the patterns of genetic structure and genetic diversity sensu stricto (that is, heterozygosity and allelic richness) were stable in time. These results suggest the coexistence of (i) a fine grained (at the scale of a 20 × 30 m quadrat) stable core of persistent genets originating from an initial seedling recruitment and developing spatial dominance through clonal elongation; and (ii) a local (at the scale of the meadow) pool of transient genets subjected to annual turnover. This simultaneous occurrence of initial and repeated recruitment strategies highlights the different spatial scales at which distinct evolutionary drivers and mating systems (clonal competition, clonal growth, propagule dispersal and so on) operate to shape the dynamics of populations and the evolution of polymorphism in space and time.  相似文献   

4.
Genetic diversity is often considered important for species that inhabit highly disturbed environments to allow for adaptation. Many variables affect levels of genetic variation; however, the two most influential variables are population size and type of reproduction. When analyzed separately, both small population size and asexual reproduction can lead to reductions in genetic variation, although the exact nature of which can be contrasting. Genetic variables such as allelic richness, heterozygosity, inbreeding coefficient, and population differentiation have opposite predictions depending upon the trait (rarity or clonality) examined. The goal of this study was to quantify genetic variation and population differentiation in a species that resides in a highly stochastic environment and is both rare and highly clonal, Spiraea virginiana, and to determine if one trait is more influential genetically than the other. From populations sampled throughout the natural range of S. virginiana, we used microsatellite loci to estimate overall genetic variation. We also calculated clonal structure within populations, which included genotypic richness, evenness, and diversity. Gene flow was investigated by quantifying the relationship between genetic and geographic distances, and population differentiation (θ) among populations. Observed heterozygosity, genotypic richness, and inbreeding coefficients were found to be representative of high clonal reproduction (averaging 0.505, 0.1, and –0.356, respectively) and the number of alleles within populations was low (range = 2.0–3.6), being more indicative of rarity. Population differentiation (θ) among populations was high (average = 0.302) and there was no relationship between genetic and geographic distances. By examining a species that exhibits two traits that both can lead to reduced genetic variation, we may find an enhanced urgency for conservation. Accurate demographic counts of clonal species are rarely, if ever, possible and genetic exploration for every species is not feasible. Therefore, the conclusions in this study can be potentially extrapolated to other riparian, clonal shrubs that share similar biology as S. virginiana.  相似文献   

5.
Allopatric speciation often yields ecologically equivalent sister species, so that their secondary admixis enforces competition. The shores of Lake Tanganyika harbor about 120 distinct populations of the cichlid genus Tropheus, but only some are sympatric. When alone, Tropheus occupies a relatively broad depth zone, but in sympatry, fish segregate by depth. To assess the effects of competition, we studied the partial co-occurrence of Tropheus moorii ‘Kaiser'' and ‘Kirschfleck'' with Tropheus polli. A previous study demonstrated via standardized breeding experiments that some observed differences between Tropheus ‘Kaiser'' living alone and in sympatry with T. polli have a genetic basis despite large-scale phenotypic plasticity. Using geometric morphometrics and neutral genetic markers, we now investigated whether sympatric populations differ consistently in body shape from populations living alone and if the differences are adaptive. We found significant differences in mean shape between non-sympatric and sympatric populations, whereas all sympatric populations of both color morphs clustered together in shape space. Sympatric populations had a relatively smaller head, smaller eyes and a more anterior insertion of the pectoral fin than non-sympatric populations. Genetically, however, non-sympatric and sympatric ‘Kaiser'' populations clustered together to the exclusion of ‘Kirschfleck''. Genetic distances, but not morphological distances, were correlated with geographic distances. Within- and between-population covariance matrices for T. moorii populations deviated from proportionality. It is thus likely that natural selection acts on both phenotypic plasticity and heritable traits and that both factors contribute to the observed shape differences. The consistency of the pattern in five populations suggests ecological character displacement.  相似文献   

6.
Invasions of exotic species often involve a rapid evolutionary change in the introduced populations. Elodea canadensis is an invasive aquatic weed native to North America. Our aims were to reveal the evolutionary consequences of invasion to the population genetic structure of the presumably clonal E. canadensis in Finland and to test the hypothesis that the whole Finnish population originates from the first introduction of the species. We used ten polymorphic microsatellite markers to analyze the genetic characteristics of seven introduced E. canadensis populations in Finland. Despite the species' totally asexual mode of reproduction in Finland, two to five alleles per locus were detected in Finnish populations, and the expected heterozygosities varied between 0.19 and 0.37. The majority of variation was found within populations. Except for one, all pairwise values of population differentiation (F ST) were significant, indicating restricted gene flow among the Finnish populations. In addition, a Bayesian analysis of population structure revealed the presence of regional population structuring. Genetic analyses indicate that E. canadensis could have been introduced to Finland multiple times. However, the amount of genetic variation and regional clustering detected could also be explained by post-establishment evolution, and based on this study it is not possible to exclude one introduction event followed by rapid evolution. We also tested the usability of the microsatellite markers for native North American samples in order to compare the within-population genetic characteristics of introduced and native populations. However, in native populations only four microsatellite markers amplified reliably, indicating sequence variation within primer-binding regions and, thus, genetic differentiation among populations of E. canadensis.  相似文献   

7.
Refugia are expected to preserve genetic variation of relict taxa, especially in polyploids, because high gene dosages could prevent genetic erosion in small isolated populations. However, other attributes linked to polyploidy, such as asexual reproduction, may strongly limit the levels of genetic variability in relict populations. Here, ploidy levels and patterns of genetic variation at nuclear microsatellite loci were analysed in Prunus lusitanica, a polyploid species with clonal reproduction that is considered a paradigmatic example of a Tertiary relict. Sampling in this study considered a total of 20 populations of three subspecies: mainland lusitanica (Iberian Peninsula and Morocco), and island azorica (Azores) and hixa (Canary Islands and Madeira). Flow cytometry results supported an octoploid genome for lusitanica and hixa, whereas a 16‐ploid level was inferred for azorica. Fixed heterozygosity of a few allele variants at most microsatellite loci resulted in levels of allelic diversity much lower than those expected for a high‐order polyploid. Islands as a whole did not contain higher levels of genetic variation (allelic or genotypic) than mainland refuges, but island populations displayed more private alleles and higher genotypic diversity in old volcanic areas. Patterns of microsatellite variation were compatible with the occurrence of clonal individuals in all but two island populations, and the incidence of clonality within populations negatively correlated with the estimated timing of colonization. Our results also suggest that gene flow has been very rare among populations, and thus population growth following founder events was apparently mediated by clonality rather than seed recruitment, especially in mainland areas. This study extends to clonal taxa the idea of oceanic islands as important refugia for biodiversity, since the conditions for generation and maintenance of clonal diversity (i.e. occasional events of sexual reproduction, mutation and/or seed immigration) appear to have been more frequent in these enclaves than in mainland areas.  相似文献   

8.
Populations of onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), were shown to differ significantly in their ability to transmit an isolate of tomato spotted wilt virus (Tospovirus: Bunyaviridae) (TSWV) collected from potato [Solanum tuberosum L. (Solanaceae)]. To gain an understanding of the basis for this variation, we generated reciprocal crosses between an efficient and an inefficient transmitting population. The resulting F1 progeny and progeny from the parental populations were tested for their ability to transmit TSWV. Our results indicate that the ability to transmit TSWV efficiently by T. tabaci is inherited as a recessive trait.  相似文献   

9.
Asexual reproduction by cloning may affect the genetic structure of populations, their potential to evolve, and, among foundation species, contributions to ecosystem functions. Macroalgae of the genus Fucus are known to produce attached plants only by sexual recruitment. Recently, however, clones of attached plants recruited by asexual reproduction were observed in a few populations of Fucus radicans Bergström et L. Kautsky and F. vesiculosus L. inside the Baltic Sea. Herein we assess the distribution and prevalence of clonality in Baltic fucoids using nine polymorphic microsatellite loci and samples of F. radicans and F. vesiculosus from 13 Baltic sites. Clonality was more common in F. radicans than in F. vesiculosus, and in both species it tended to be most common in northern Baltic sites, although variation among close populations was sometimes extensive. Individual clonal lineages were mostly restricted to single or nearby locations, but one clonal lineage of F. radicans dominated five of 10 populations and was widely distributed over 550 × 100 km of coast. Populations dominated by a few clonal lineages were common in F. radicans, and these were less genetically variable than in other populations. As thalli recruited by cloning produced gametes, a possible explanation for this reduced genetic variation is that dominance of one or a few clonal lineages biases the gamete pool resulting in a decreased effective population size and thereby loss of genetic variation by genetic drift. Baltic fucoids are important habitat‐forming species, and genetic structure and presence of clonality have implications for conservation strategies.  相似文献   

10.
Increased population density may lead to a decrease in energy available for growth and reproduction via effects on the activity level of individuals. Whilst this may be of particular importance for organisms that compete for defendable resources and/or have a high frequency of social interactions, it is less obvious how individual activity should covary with population density when food resources are not defendable or direct interactions among individuals are negligible. Based on observations that there is a general negative relationship between population density and metabolism it has been suggested that organisms actively reduce activity under increased density to accommodate an expected decrease in food availability. However, in the absence of direct activity measurements the validity of this hypothesis is unclear. Here we test for such anticipatory adjustments of activity levels in the planktonic cladoceran Daphnia magna Straus, a filter feeder whose food resources are not defendable, meaning that density responses can be evaluated in the absence of direct interactions. We tested for changes in activity in response to two separate density cues, one being the direct physical and visual stimuli resulting from being in the vicinity of conspecifics (‘direct density experiment’), and the other being the detection of olfactory cues in their environment (‘olfactory cue experiment’). Ten genetically distinct clones were used to evaluate the potential for genetic variation in these responses. Our measures of activity were highly repeatable, and there was significant variation in activity among clones. Furthermore, this clonal variation was consistent in the ‘direct density’ and ‘olfactory cue’ experiments. The estimated evolvability of the trait (1.3–3.2%) was within the range typically observed in behavioural traits. However, there was no indication that the activity level of individuals respond to population density, either directly to actual density or to olfactory cues representing high density. In this case, the energetic influence of density on population dynamics is sufficiently described by effects on per capita resource availability.  相似文献   

11.
Somatic mutations are an underappreciated source of genetic variation within multi-cellular organisms. The resulting genetic mosaicism should be particularly abundant in large clones of vegetatively propagating angiosperms. Little is known on the abundance and ecological correlates of genetic mosaicism in field populations, despite its potential evolutionary significance. Because sexual reproduction restores genetic homogeneity, we predicted that in facultatively clonally reproducing organisms, the prevalence of genetic mosaicism increases with increasing clonality. This was tested among 33 coastal locations colonized by the ecologically important marine angiosperm Zostera marina, ranging from Portugal to Finland. Genetic mosaics were detectable as complex microsatellite genotypes at two hypervariable loci that revealed additional mosaic alleles, suggesting the presence of one or more divergent cell lineages within the same ramet. The proportions of non-mosaic genotypes in a population sharply decreased below a clonal richness of 0.2. Accordingly, more genetic mosaics were found at the southern and northern limit of the distribution of Z. marina in Europe where sexual reproduction is rare or absent. The genetic mosaics observed at neutral microsatellite markers suggest the possibility of within-clone variation at selectively relevant loci and supports the notion that members of clones are seldom genetically identical.  相似文献   

12.
The emerging availability of microsatellite markers from mammalian sex chromosomes provides opportunities to investigate both male- and female-mediated gene flow in wild populations, identifying patterns not apparent from the analysis of autosomal markers alone. Tammar wallabies (Macropus eugenii), once spread over the southern mainland, have been isolated on several islands off the Western Australian and South Australian coastlines for between 10 000 and 13 000 years. Here, we combine analyses of autosomal, Y-linked and X-linked microsatellite loci to investigate genetic variation in populations of this species on two islands (Kangaroo Island, South Australia and Garden Island, Western Australia). All measures of diversity were higher for the larger Kangaroo Island population, in which genetic variation was lowest at Y-linked markers and highest at autosomal markers (θ=3.291, 1.208 and 0.627 for autosomal, X-linked and Y-linked data, respectively). Greater relatedness among females than males provides evidence for male-biased dispersal in this population, while sex-linked markers identified genetic lineages not apparent from autosomal data alone. Overall genetic diversity in the Garden Island population was low, especially on the Y chromosome where most males shared a common haplotype, and we observed high levels of inbreeding and relatedness among individuals. Our findings highlight the utility of this approach for management actions, such as the selection of animals for translocation or captive breeding, and the ecological insights that may be gained by combining analyses of microsatellite markers on sex chromosomes with those derived from autosomes.  相似文献   

13.
The size, structure and distribution of host populations are key determinants of the genetic composition of parasite populations. Despite the evolutionary and epidemiological merits, there has been little consideration of how host heterogeneities affect the evolutionary trajectories of parasite populations. We assessed the genetic composition of natural populations of the parasite Schistosoma mansoni in northern Senegal. A total of 1346 parasites were collected from 14 snail and 57 human hosts within three villages and individually genotyped using nine microsatellite markers. Human host demographic parameters (age, gender and village of residence) and co-infection with Schistosoma haematobium were documented, and S. mansoni infection intensities were quantified. F-statistics and clustering analyses revealed a random distribution (panmixia) of parasite genetic variation among villages and hosts, confirming the concept of human hosts as ‘genetic mixing bowls'' for schistosomes. Host gender and village of residence did not show any association with parasite genetics. Host age, however, was significantly correlated with parasite inbreeding and heterozygosity, with children being more infected by related parasites than adults. The patterns may be explained by (1) genotype-dependent ‘concomitant immunity'' that leads to selective recruitment of genetically unrelated worms with host age, and/or (2) the ‘genetic mixing bowl'' hypothesis, where older hosts have been exposed to a wider variety of parasite strains than children. The present study suggests that host-specific factors may shape the genetic composition of schistosome populations, revealing important insights into host–parasite interactions within a natural system.  相似文献   

14.
Populus davidiana Dode, the only aspen in Korea, is useful for restoration because of its fast growth and vigorous reproduction. This study was conducted to estimate the genetic diversity and subdivision in populations of P. davidiana in South Korea using microsatellite markers. DNA from 113 individuals from five populations was amplified using five microsatellite primers. Fifty-three alleles were detected, and the expected heterozygosity was 0.603. The populations of P. davidiana in Korea have high genetic variation despite their peripheral distribution. R ST (0.213) indicated a significant level of genetic subdivision among populations compared to the differentiation among other aspen populations. The high conservation value of the populations is attributed to its ecological and commercial importance.  相似文献   

15.
Paecilomyces lilacinus is a geographically widespread nematophagous fungus and a promising biological control agent against plant parasitic nematodes. However, relatively little is known about its patterns of genetic variation through its broad geographic and ecological contexts. In this study, we analyzed the genetic variation of 2 virulence-associated genes (PLS and PLC) and 4 housekeeping gene fragments (ITS, RPB1, RPB2, and β-tubulin) among 80 P. lilacinus specimens collected from 7 locations in China. Various degrees of polymorphism and haplotype diversity were observed among the six gene fragments. However, no genetic differentiation was observed among the geographic populations, consistent with extensive gene flow among these geographic populations of P. lilacinus in China. Our analysis also suggested that clonal reproduction was the predominant mode of reproduction in natural populations of P. lilacinus.  相似文献   

16.
  • Investigating spatial variation in the relative importance of sexual reproduction and clonal propagation is critical to obtain more accurate estimates of future effective population sizes and genetic diversity, as well as to identify ecological correlates of clonality.
  • We combined a stratified sampling scheme with microsatellite genetic analyses to estimate variation in the proportion of sexual versus clonal recruits among saplings in five populations of the tree Pyrus bourgaeana. Using a likelihood framework, we identified clones among the genotypes analysed and examined variation among populations regarding the proportion of saplings coming from clonal propagation. We also examined the relationship between the relative abundance of clonal shoots across the studied populations and their herbivory levels.
  • Our results revealed that one third of the saplings examined (N = 225 saplings) had a probability above 0.9 of being clones of nearby (<10 m) trees, with the ratio between clonal propagation and sexual recruitment varying up to eight‐fold among populations. A small portion of these putative clonal shoots reached sexual maturity. Relative abundance of clonal shoots did not significantly relate to the herbivory by ungulates.
  • Our results call into question optimistic expectations of previous studies reporting sufficient levels of recruitment under parental trees without animal seed dispersal services. Nevertheless, given that some of these clonal shoots reach sexual maturity, clonal propagation can ultimately facilitate the long‐term persistence of populations during adverse periods (e.g. environmental stress, impoverished pollinator communities, seed dispersal limitation).
  相似文献   

17.
Determining the spatial genetic structure within and among cold-water coral populations is crucial to understanding population dynamics, assessing the resilience of cold-water coral communities and estimating genetic effects of habitat fragmentation for conservation. The spatial distribution of genetic diversity in natural populations depends on the species’ mode of reproduction, and coral species often have a mixed strategy of sexual and asexual reproduction. We describe the clonal architecture of a cold-water coral reef and the fine-scale population genetic structure (<35 km) of five reef localities in the NE Skagerrak. This study represents the first of this type of analysis from deep waters. We used thirteen microsatellite loci to estimate gene flow and genotypic diversity and to describe the fine-scale spatial distribution of clonal individuals of Lophelia pertusa. Within-population genetic diversity was high in four of the five reef localities. These four reefs constitute a genetic cluster with asymmetric gene flow that indicates metapopulation dynamics. One locality, the Säcken reef, was genetically isolated and depauperate. Asexual reproduction was found to be a highly important mode of reproduction for L. pertusa: 35 genetic individuals were found on the largest reef, with the largest clone covering an area of nearly 300 m2.  相似文献   

18.

Background and Aims

The association of clonality, polyploidy and reduced fecundity has been identified as an extinction risk for clonal plants. Compromised sexual reproduction limits both their ability to adapt to new conditions and their capacity to disperse to more favourable environments. Grevillea renwickiana is a prostrate, putatively sterile shrub reliant on asexual reproduction. Dispersal is most likely limited by the rate of clonal expansion via rhizomes. The nine localized populations constituting this species provide an opportunity to examine the extent of clonality and spatial genotypic diversity to evaluate its evolutionary prospects.

Methods

Ten microsatellite loci were used to compare genetic and genotypic diversity across all sites with more intensive sampling at four locations (n = 185). The spatial distribution of genotypes and chloroplast DNA haplotypes based on the trnQ–rps16 intergenic spacer region were compared. Chromosome counts provided a basis for examining genetic profiles inconsistent with diploidy.

Key Results

Microsatellite analysis identified 46 multilocus genotypes (MLGs) in eight multilocus clonal lineages (MLLs). MLLs are not shared among sites, with two exceptions. Spatial autocorrelation was significant to 1·6 km. Genotypic richness ranged from 0 to 0·33. Somatic mutation is likely to contribute to minor variation between MLGs within clonal lineages. The eight chloroplast haplotypes identified were correlated with eight MLLs defined by ordination and generally restricted to single populations. Triploidy is the most likely reason for tri-allelic patterns.

Conclusions

Grevillea renwickiana comprises few genetic individuals. Sterility has most likely been induced by triploidy. Extensive lateral suckering in long-lived sterile clones facilitates the accumulation of somatic mutations, which contribute to the measured genetic diversity. Genetic conservation value may not be a function of population size. Despite facing evolutionary stagnation, sterile clonal species can play a vital role in mitigating ecological instability as floras respond to rapid environmental change.  相似文献   

19.
Common bermudagrass [C. dactylon (L.) Pers. var. dactylon] is economically and environmentally the most important member among Cynodon species because of its extensive use for turf, forage and soil erosion control in the world. However, information regarding the inheritance within the taxon is limited. Accordingly, the objective of this study was to determine qualitative inheritance mode in common bermudagrass. Two tetraploid (2n = 4x = 36), first-generation selfed (S1) populations, 228 progenies of ‘Zebra’ and 273 from A12359, were analyzed for segregation with 21 and 12 simple sequence repeat (SSR) markers, respectively. It is concluded that the inheritance mode of tetraploid bermudagrass was complete or near complete disomic. It is evident that the two bermudagrass parents had an allotetraploid genome with two distinct subgenomes since 33 SSR primer pairs amplified 34 loci, each having two alleles. Severe transmission ratio distortions occurred in the Zebra population while less so in the A12359 population. The findings of disomic inheritance and segregation ratio distortion in common bermudagrass is significant in subsequent linkage map construction, quantitative trait locus mapping and marker-assisted selection in the species.  相似文献   

20.
Trypoxylon is a genus of solitary crabronid wasps whose population genetics is poorly known. The purpose of the present study was to investigate the genetic variation and differentiation among five populations of Trypoxylon albitarse, a species widely distributed throughout the Neotropics, with records from Panama to northern Argentina. Eight species-specific microsatellite loci were used for genotyping 96 adult wasps (one female per nest) sampled at five sites in Brazil. The analysis of allelic richness and private alleles indicated high genetic diversity in the populations sampled. Pairwise comparisons using the F st and D est indices revealed significant differentiation for all, but one pair of populations. F st, D est, AMOVA and assignment test values pointed to inter-population differentiation. Additionally, the analysis of population structure using Bayesian and PCA methods characterized two alternative genetic groups. The Mantel test indicated no correlation between genetic and geographic distances. Despite evidence of considerable dispersal capacity for T. albitarse, the data indicate low to moderate population structuring in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号